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Fixed point results for 0-¢ interpolative mappings in super metric
space with an application

Swati Saxena®*, U. C. Gairola®

*Department of Mathematics, H. N. B. Garhwal University, BGR Campus, Pauri Garhwal-246001, Uttarakhand, India

Abstract. This paper aims at introducing the notion of generalized interpolative 0-¢ contraction, interpola-
tive Matkowski type contraction and an interpolative 0-¢ Kannan type contraction in frame of Super metric
space. The result proved in this paper improve and extend the corresponding results due to Matkowski
and Karapinar, Kannan and Karapinar. Examples are given to demonstrate the relevance of our results. As
application, we obtain the solution for the non-linear matrix equations.

1. Introduction

Fixed point theory is a fundamental concept in mathematics, particularly in the field of functional

analysis and related areas. It has significant applications in various branches of mathematics and have
practical implications in many real-world problems. Applications of fixed point theory are vast and
diverse, ranging from economics and computer science to physics. For example in the study of phase
transitions, finding solutions to equations and optimization problems, nash equilibrium in game theory
and engineering, control theory and stability analysis etc. Key theorems in fixed point theory, such as the
Banach fixed point theorem [3] and the Brouwer fixed point theorem provide crucial insights and tools
to determine the existence and properties of fixed points for different types of mappings. The Banach
Contraction Principle also known as the Banach Fixed Point Theorem, is a fundamental result in the field
of metric space theory and functional analysis.
The generalization of Banach contraction principle in many spaces such as b-metric space [6], fuzzy metric
space [31], partial metric space [26], modular metric space [5], cone metric space [8] etc has been done
by several authors. In 2007, Huang and Jhang [8] proposed the concept of cone metric space which
is a generalization of metric space. Many authors have obtained fixed point results for different types
of contractions in this space([2], [9], [12], [23], [29]). In 2015, Jleli and Samet [11] introduced a new
generalization of metric spaces that recovers a large class of topological spaces including standard metric
spaces, b-metric spaces, dislocated metric spaces, and modular spaces. Recently a new generalization of
metric space known as super metric space was introduced by Karapinar and Khojasteh [21] in 2022.
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As it is known that a mapping which satisfies Banach contraction mapping is necessarily continuous.
A pertinent query arises: Can a discontinuous mapping with comparable contractive conditions possess a
fixed point? In 1968, Kannan [13] provided an affirmative response to this inquiry. According to Kannan,
a mapping U is said to be Kannan contraction if there exists a € [0, 1/2) such that for any x, y € X we have

d(Ux, Uy) < ald(x, Ux) + d(y, Uy)}

where U is not a continuous map. He proved that if X is a complete metric space and U is a Kannan
contraction mapping then it has a unique fixed point. In 1999, Pant [27] obtained the first result on
discontinuity at fixed point. Recently some new results to this problem has been obtained by Pant et al.
(141, [28]).

Further in 2018, Karapinar [14] revisit the Kannan type contraction and used the interpolation technique.
An interpolative contraction mapping is a contraction mapping in which the contraction factor k can be
chosen to interpolate or “squeeze” the distance between points at any desired rate between 0 and 1. For
standard metric space (M, b) Karapinar gave the following generalization of Kannan type contraction by
interpolative approach

b(Ux, Uy) < A([b(x, Ux)[b(y, Uy)l'™),

forall x,y € M ~ Fix(U) and A € [0, 1).

Many authors have done work in this direction recently ([1], [7], [17], [30]). Several recent studies in
interpolative Ciri¢-Reich-Rus contractions ([1], [22]), Meir-Keeler type contraction ([15], [20]), Hardy Roger
type contraction [7] may be reffered to. Continuing this, in 2020 Karapinar et al. [18] introduced the notion
of interpolative Boyd-Wong type contraction and Matkowski type contraction for a standard metric space
and partial metric space. They proved fixed point theorems for these contraction mappings.

Motivated by recent results, in this paper we introduced the notion of generalized interpolative 0-¢
contraction, interpolative Matkowski type contraction and an interpolative 0-¢ Kannan type contraction in
frame of Super metric space. We also provide examples to illustrate how our results are relevant compared
to some existing ones in the literature. Conclusion of our paper is demonstrated with the help of an
application of our primary finding in solving nonlinear matrix equations.

2. Preliminary

Within this section we recall the basic definitions, lemma, results which will help to develop our main
results. We begin with recalling the definition of super metric space.

Definition 2.1. [21] Let X be a nonempty set and m : X X X — [0, o0), then m is said to be super metric if
(mq) forallx,y e X, ifm(x,y) =0, thenx = y;
(my) m(x,y) =m(y,x)forallx,y € X;

(m3) there exists s > 1 such that for every y € X, there exist distinct sequences x,, y, C X, with m(x,, y,) — 0 when
n — oo such that

lim sup m(y,, y) <s lim sup m(x,,y)
Also, (X, m,s) is called a super metric space.
Example 2.2. Let X = [0, 00), m : X X X — [0, 00) defined by

IX* =13, for x, yeR, x#y

e, y) = {O, for x=y
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Let y € X and {x,}, {y.} are two distinct sequences in X such that m(x,, y,) — 0as n — oo. Since the sequence are
distinct, we have

Mm(Xp, Yn) = |x,31 —yil —0a n—- o

Thus, lim x, = lim y, = a and

n—oo n—-oo
lim sup m(y,, y) = lim sup [x; = y;| < sla® — y3| = lim sup m(x,, y)
when y = 0 the proof is simple and direct. Thus, (X, m) is a super metric space.

Definition 2.3. [21] On a super metric space (X, m,s), a sequence {x,} is said to

(i) convergent and converges to x in X iff lim m(x,, x) = 0.
n—oo
(i1) A cauchy sequence in X iff lim sup{m(x,,x,) : p > n} = 0.
n—o0o

Proposition 2.4. [19] The limit of a convergent sequence is unique in a super metric space.

Definition 2.5. [21] A super metric space is said to be complete if and only if every cauchy sequence is convergent
in itself.

In 2014, 6- contraction was defined by Jleli and Samet [10] as following:
Definition 2.6. [10] Let © be the family of all functions 0 : (0, 00) — [1, c0) such that
(61) O is non-decreasing;

(62) for each sequence x,, € (0, 00) lim x,, = 0 iff lim O(x,) = 1,

(63) O is continuous.

From the above definitions we can categorise the Banach contraction as a specific type of 6 contraction while
vice-versa need not be true. Jleli and Samet proved a fixed point theorem for 0-contraction. According to
them:

Theorem 2.7. [10] Let (X, d) be a complete metric space and T : X — X be a O-contraction. Then T has a unique
fixed point.

Recently, Zheng et al. [32] defined the new type of contractive mappings as follows:
Definition 2.8. [32] Let © be the family of all functions ¢ : [1, 00) — [1, c0) such that
(¢p1) ¢ is non-decreasing;

(¢2) foreacht>1, '}i_r)?oqb"(t) =1;

(p3) ¢ is continuous on [1, 00).

Lemma 2.9. [32] If ¢ € @, then ¢(1) = 1 and ¢(t) < t for each t € [1, 00).

Zheng et al. [32] gave the definition of 0-¢ contraction as follow:

Definition 2.10. [32] Let (X, d) be a metric spaceand T : X — X be a self-map, then T is said to be a O-¢ contraction
if there exist O € © and ¢ € O such that for any x,y € X,

0(d(Tx, Ty)) < P[ON(x, y))]
where N(x, y) = max{d(x, v),d(x, Tx),d(y, Ty)}.
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3. Main Result

Motivated and inspired by Zheng et al. [32] we define the notion of generalized interpolative 0-¢
contraction on the super metric space and obtained the fixed point result.

Definition 3.1. Let (X,m) be a super metric space. A self map U : X — X is generalized interpolative 0-¢
contraction, if there exists p,q,r € (0,1/s)and ¢ € ®,0 € O s.t.

O(m(Ux, Uy)) < [O(Im(x, y)I[m(x, Ux)) [m(y, Uy)]’[%[m(x, Uy) +m(y, Ux)]'717"])] )
VxyeX

Theorem 3.2. Let (X, m,s) be a complete super metric space and U : X — X be a self mapping satisfying (1), then
Fix(U) is non-empty.

Proof. Consider a sequence {x,,} C X and let xg € X be such that x,, = U"x for all n > 0. If x,, = x;,41, for some
n, then Fix(U) is non empty. If x,, # x,41 from (1), we have

O(m(Usxy,, Uxy_1)) < GLO{m(xn, Xu-1)]7[m (e, Uxy) P [m(x_1, Uxy_1)]"
[%[m(xn, Usxp1) + m(xn_1, Ux,)]IP77)]
= GLO{[m(xn, xu-1)17[m(xn, Xna1) 1P [m (-1, %)
[é[m(xn,xn) + (X1, X1) ] PN
< QLO{Im(xn, 20-1) 1 [m (xn, )P [m(xn, x0) 1’

[ 25m (2, %) + 551, %)+ i, e 1)

@
Let
mM(Xn, Xn-1) < 11X, X11)
for some n > 1, so that
1, x0) + () < ().
Thus, (2) yield
0 < 0011, %)) < IOt X0 D050, 10 D2, ) 050, 10) 1771
= L0050 1)1 Tt )P
®
we obtain,
B0n(xusn, ) < O, %y )T (e, )]

IA A

O(m(xn+1,Xn)) < O{m(xy, Xn-1)}-
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but 6 is non-decreasing hence contradiction occurs. Therefore, m(x,, x,-1) is a non-increasing sequence.
Thus

G(m(XrHl, xn)) < ¢[6{[m(xn, Xn_l)]ﬂ+r[m(xn+1/ xn)]r[m(xn+1, Xn)]l_p_q_r}]
= GLO{Im (i, Xy )1 I (1, x)] PN
< ¢[O{m(xn, x4-1)}].

we conclude that
O(m(xu41,%n)) < PLO{M(xy, x,1)}] < ... < P"[O{m(x1, x0)}]. 4)

Since, ¢ € ® and lim ¢"(t) = 1 for t > 0, we have
n—00
31_1)1‘;10 m(Xn, Xn+1) = 0 (by ©2) ®)

Now, let m,n € N and m > n. If x,, = x,,,, we have U™ (xg) = U"(xo). Thus we have, U™ (U"(xg)) = U"(xp).
Hence U"(xo) is the fixed point of U"™". Also,

uu™"(U"(xo))) = U""(U(U" (x0))) = U(U"(x0))

It implies that, U(U"(xo)) is the fixed point of U™™". Thus, U(U"(xg)) = U"(xp). So U"(xp) is the fixed point
of U. Therefore, we can assume without losing any generality that x,, # x,,. Hence,

lim sup m(xy41, X4-1) < s im sup m(xp41, x). (6)
n—0o0 n—0oo

Thus, since lim sup m(x,+1,x,-1) = 0, we have

n—oo

lim sup m(xy42, Xp—1) < s lim sup m(x,42, Xp41) = 0. (7)
n—oo n—co

By applying induction, one can deduce that lim sup{m(x,,x,);m > n} = 0 which implies that {x,} is a

Cauchy sequence. Since (X, m) is a complete super metric space, the sequence {x,} converges to u € X. We
assert that u is the fixed point of U. Conversely, assume m(u, Uu) > 0. Note that

O(m(xns1, Un)) = O(m(Usxy, Un)) < QLO{[m(xn, 1)1 [m(xn, Uxn) ) [m(u, Un)]

(5 (L) + G, U 97

< O{lm(xn, )] [m(xn, X)) I [m(u, Uu)]r[%[m(xn, Uut) + m(u, %,41)]] 7777,

Letting lim, we obtain m(u, Uu) = 0 which is a contradiction. Therefore, u is a fixed point of U and Fix(U)
n—o00
isnonempty. [
Example 3.3. Let X ={1,3,5,7} and m : X x X — [0, o0) such that
1 1
m(xr y) = |; - ;Ir x/y € {1!3/5}/(1I 1)/ m(l, 1) = 7rm(7/x) = m(x/ 7) = 7xlv xeX.

Here, clearly if we put x =7 and y =7, then m(7,7) =9 # Oalsom(1,1) =7 # 0.
Hence if x = y = m(x,y) = 0.
Now, let U : X — X such that

un=u@=7, U@ =uUup®)=1
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(X, m, s) is a complete super metric space w.r.t. U.
Take

O(x)= Vx+2, ¥V x€(0,c0)

and

etbu>0,u#l
pu) = {Lu _q

1.65

1.55 4

Figure 1: image representation of fixed point

By considering all possible cases, condition (1) satisfies in every case. Here x = 7 is a fixed point.
Definition 3.4. [24] Let W be the set of functions, Y : [0, c0) — [0, 00) such that
(i) 1 is non decreasing.
(ii) lim ¢"(t) = O for each t > 0.
Lemma 3.5. [25] Let ¢ € WV then (t) < t forall t > 0 and 1p(0) = 0.

Definition 3.6. Let (X, m) be a complete super metric space. A self map U : X — X is an interpolative Matkowski
type contraction, if there exist p,q,v € (0,1) and € WV such that

m(Ux, Uy) < p([m(x, )} [m(x, Ux)] [m(y, Uy)]rlé(m(x, Uy) + m(y, Ux)]7P17) (8)

VxyeX

Theorem 3.7. Let (X, m) be a complete super metric space with a continuous metric m and U : X — X be a self map
satisfying (8), then Fix(U) is non empty.
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Proof. Consider a sequence {x,} C X and let xg € X be such that x,, = U"xy ¥V n > 0. If x,, = x,,41 for some n
then Fix(U) is non empty. If x, # X,,41 from (8), we have

m(Ux,, Ux,_1) < Hl}([m(xn/ X)) [m (e, Ux) P [m(x,-1, Ux,-1)]
(5 I, U ) + i, L) 117
= l111([7/”(9511/ xn—l)]q[m(xnr xn+1)]p[m(xn—1/ xn)]r[%[m(xnr xn) + m(xn—lz xn+1)]]1—p—q—r)
< 1;D([n/l(xn/ xn—l)]q[m(xn/ xn+1)]p[m(xn—1/ xn)]y
[% [m(xn, xn) + m(xu-1, %) + m(xy, xn+1)]]17piqir)' )
Suppose,
m(xXu-1,Xu) < M(Xp, Xn+1)

for some n > 1, so that
1
g[m(xn/ Xn) + M(Xp-1, Xn) + M(X, Xn41)] < M(Xp, Xn41)

Thus, (9) yields

0 < m(xp, Xps1) < W([m(xn/ X)) [m (X, Xu1) 1P [m (-1, x0)] [m(xn, xn+1)]1—p—q—7)
= Y([m(xn, x0)I (X, X00)] 7). (10)

we obtain

m(xn/ xn+1) < [m(xn/ xn—l)]qw[m(xn/ xn+1)]1—q—r
M(xXy, Xp41) < M(Xn, Xn-1)-

which is a contradiction. Thus, {m(x,,x,-1)} is a non-increasing sequence of non-negative real numbers,
which is convergent due to monotone convergence theorem. Using (10), we obtain

M(Xp, Xp41) < ll]([m(xnrxnfl)]q”[m(xnl anrl)]l—q—r)
< P(m(xn, Xp-1))

We conclude that
M(Xy, Xpr1) < Y(xy, Xp-1)) < ..o < P (M(x0, x71)). (11)

Since, € ¥ and lim ¢"(t) = 0 for each ¢ > 0, and we have
lim m(x,-1,x,) = 0. (12)

Now, let m,n € N and m > n. If x,, = x;,;, we have U™ (xy) = U"(xg). Thus, we have U™ " (U"(xy)) = U"(xo).
Thus, we have U"(xp) is the fixed point of U™". Also,

uum™"(U(xy))) = U™ (UU"(xp))) = U(U"(x0))

It means that, U(U"(x)) is the fixed point of U"™". Thus, U(U"(x0)) = U"(xo). So, U"(xp) is the fixed point
of U. Therefore, we can assume without losing any generality that x,, # x,,. Hence,

lim sup m(xy41, Xp—1) < s lim sup m(x,41, Xn). (13)
n—oo n—oo
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Thus, since lim sup m(x,4+1,x,-1) = 0, we have

n—oo

lim sup m(xy42, X4-1) < s im sup m(xp12, xp41) = 0. (14)
n—oo

n—oo

By applying induction, one can deduce that lim sup{m(x,, x,,); m > n} = 0. It implies that {x,} is a Cauchy

sequence. Since (X, m) is a complete super metric space, the sequence {x,} converge to u — X. We assert
that u is the fixed point of U. Conversely, assume m(u, Uu) > 0. Note that

1
(X1, Ue) < ([mQen, )1 [, W) P Im(ue, Un)]'[5 I, Un) + m(u, Ux)]]' 7717
letting n — oo we obtain m(u, Uu) = 0 which is a contradiction. Therefore, u is a fixed point of U and Fix(U)
is non empty. []

Example 3.8. Let X = [0,2] and m : X X X — [0, co0) such that m(x, y) = (x — y)z, Vx,yeX
Now, let U : X — X such that

uay:% VxeX

(X, m, s) is a complete super metric space w.r.t. U.

Take
t, te[0,1)
Mﬂ={t

5/ te [1/ 2]

Let x,y € X, clearly U satisfies (8). Now, u = 0 € X such that U(u) = 0. Here u is the fixed point of U.
Now, we obtain fixed point for an interpolative 0-¢ Kannan type contraction mapping.

Definition 3.9. Let (X, m) be a super metric space. A mapping U : X — X is said to be an interpolative 0-¢ Kannan
type contraction mapping if there exist some o € (0, 1) such that

O(m(Ux, Uy)) < @pLO(m(x, U] [m(y, Uy)I'™)] (15)
forall x,y € X with x # Ux.

Theorem 3.10. Let (X, m) be a complete super metric space and U be an interpolative 0-¢ Kannan type contraction.
Then U has a unique fixed point in X.

Proof. Consider a sequence {x,,} C X and let xy € X be such that x, = U"xq ¥ n > 0. If x, = x,,41 for some n
then Fix(U) is non empty. If x, # x,11, from (15), we have

6(Wl(llxn/ uxn—l)) < (P[@([m(xm uxn)]a[m(xn—l/ uxn—l)ll_a)]
= PLO([m(xn, Xn1)] [ (1, X2)]' )]

< O([m(x, Xpa) 1 (1, %2)1%)

O(m(xp41, xn)) < O(m(xy, x,-1))-

but 0 is non-decreasing function. Hence, contradiction occurs. Therefore, m(x,, x,—1) is a non increasing
sequence. Thus,

O(m(xns1, %)) < QLO(IM (X, Xu-1)] )]

we deduce that

O(m (i1, Xn)) < QLOM(X, X)) < oo < P [O[m (X, Xp-1)]' )] (16)
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Since, ¢ € ® and lim ¢"(t) = 1 for each ¢t > 0 and we have
n—oo

lim m(x,, x,—1) =0 (by©,)
Now let m,n € N and m > n. If x,, = x,,, we have U™ (xg) = U"(xp). Thus, we have U™ "(U"(xy)) = U"(xo)-
Hence U"(xo) is the fixed point of U"™". Also,

U™ (U (x))) = U™ "(U(U"(xo))) = U(U"(x0))
It implies that, U(U"(xo)) is the fixed point of U™™". Thus, U(U"(xo)) = U"(xp). So U"(xp) is the fixed point
of U. Therefore, we can assume without losing any generality that x,, # x,,. Hence,

lim sup m(xy41, X4-1) < s im sup m(xp11, xp). (17)
n—oo

n—oo

Thus, since lim sup m(x,4+1,x,-1) = 0, we have

n—oo

lim sup m(xy42, X4-1) < s im sup m(xp12, xp41) = 0. (18)

By applying induction, one can deduce that lim sup{m(x,, x,,); m > n} = 0. It implies that {x,} is a Cauchy

sequence. Since (X, m) is a complete super metric space, the sequence {x,} converge to u — X. We assert
that u is the fixed point of U. Conversely, assume m(u, Uu) > 0. Note that

O(m(xe1, Un)) = O(m(Unxy, Un) < GIOm(xn, Uxa)]* [m(u, Uu)]'™)]

Letting n — oo, we obtain m(u, Uu) = 0 since 6 is non decreasing which is a contradiction. Therefore, u is a
fixed point of U and Fix(U) is non empty. [

Example 3.11. Let X = [0, 1] and m : X x X — [0, c0) such that m(x, y) = (x — y)?, x,y € [0,1]
Now, let U : X — X such that

U(x) = 1% vV xel0,1]

(X, m, s) is a complete super metric space w.r.t. U.
Take

Ox)=1+x, ¥ x€(0,00)
and

Gt =2", ¥ te[l,c0)

Forany x,y € X, clearly U satisfies (15). Now, u = % € X such that U(u) = % Here u is the fixed point of U.

4. Application

In the present section we prove a theorem for solving non linear matrix equations as an application of
our main result. We use the following notations:
|Il.lle represents the trace norm. ||C||; or tr(C) is the sum of eigen values of C*C.

|I.|| represents spectral norm. ||C|| = 4/AT(C*C) where A*(C*C) is the largest eigen value of C*C.
M,, denotes set of 1 X n matrices.

H,, denotes set of n X n hermitian matrices.

A, denotes set of n X 1 positive definite matrices.

H; denotes set of nn X n positive definite hermitian matrices.

C>0 = CeH;.

C>0 = CeA,.

C>D = C-D>0.

C=D = C-D=>=0.
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Lemma 4.1. IfC,D € H; then 0 < t+(CD) < 6(||C||.tr(D)).

Proof. The eigen value of the product of two positive semi definite matrices is non negative. Particularly
we have tr(CD) > 0. Moreover, since C < ||C||L, and 6 is non decreasing, we have

0 < O(tr((IICll — C)D)) = 6(tr(ICIID — CD)) = 6(|ClItr(D) — tr(CD)) < 6(|ClItr(D))
[
Lemma 4.2. IfC € H, and C < I then 6(|C||) < 1.

Consider the following non linear matrix equation
C=]+) ViFQV; (19)
i=1

where each V; is an arbitrary n X n matrix for eachi=1,2, ..., m.

J is a positive definite hermitian matrix.

F: H, — A, such that F(0) = 0 is an order preserving continuous map.

H, endowed with trace norm is a normed Banach Space hence it is a complete super metric space.
Let T : H, — H, such that

T(C) =] + Z V:F(C)V; ¥ Xce€H, 20)
i=1
T is a continuous order preserving self mapping. Clearly solution of (19) is a fixed point of T.

Theorem 4.3. Considering the equation (19), let A k > 1 where k is a real number and M such that for X,Y € H,
with X <Y having following properties

(@) Y1, ViV < MI, and p VIF()Vi >0
1
(b) O(tr(F(Y) = F(X))") < M(P(@{IIX = YIILIX = TXOILIY = T(Y)IIL,0))
where 6 = %(HX = Tl + 1Y = TX)||py) 797" and p,q,r € (0,1) withp + g+ r < 1 and ¢ € D, then the matrix

equation defined by (19) has a solution.

Proof. Consider a super metric P : H, X H, — [0,0) as P(C,D) = ||C — DII’t‘r. Thus, (Hy, P,s) is a complete
super metric space with s = 251,
Let X, Y € H,, with X < Y and consider

P(T(Y), T(X)) = ] + Y VENVi =] = Y VIEX)Fils
i=1 i=1

= [t} | ViFONVi = VIE)V)I
i=1

= () (tr(V;(F(Y) - FX)V)Y

i=1
= (tr() (Vi (F(Y) = (FCO)Vi)Y
i=1

= (tr() _(V;V(E(Y) = FX))Y
i=1

<) (V;VDIPIECY) = FO)IE,

i=1
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using (i), lemma (4.1) and (4.2) we have
P(T(Y), T(X)) < MPO(tr(F(X) — F(Y)F) (21)

Since Y1, VIF(J)Vi < 0, consequently we have | > T(J). Now using (b), (20) and theorem (3.2), we get T has
a fixed point. Hence, the solution for non-linear matrix equation (19) exists. [

5. Conclusion

In this paper, we presented a novel framework for exploring the presence of fixed points. The notion of
generalized interpolative 0-¢ contraction, interpolative Matkowski type contraction and an interpolative
0 - ¢ Kannan type contraction in frame of Super metric space is introduced. Our results generalized and
extended the result presented in ([14], [18]) and some other results in the existing literature. We have
included pertinent examples to validate our findings. Additionally, we created an application that utilizes
our primary result to address non-linear matrix equations. The result presented in this paper will provide
insights for future research, enabling the exploration of fixed point existence for these contractions within
various metric space settings and their applications across diverse fields.
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