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Abstract. Let X be a metric spaces. Recently in [27] it was considered a new type of mappings T : X → X
which can be characterized as mappings contracting perimeters of triangles. These mappings are defined
by the condition based on the mapping of three points of the space instead of two, as it is adopted in many
fixed point theorems. In the present paper we consider so-called (F,G)-contracting mappings, which form a
more general class of mappings than mappings contracting perimeters of triangles. The fixed point theorem
for these mappings is proved. We also prove a fixed point theorem for mappings contracting perimeters of
triangles in the sense of Edelstein.

1. Introduction

The Contraction Mapping Principle was established by S. Banach in his dissertation (1920) and published
in 1922 [5]. It has been generalized in many ways over the years. It is possible to distinguish two types of
generalizations of this theorem: in the first case the contractive nature of the mapping is weakened, see,
e.g. [1, 21, 28, 29, 40]; in the second case the topology is weakened, see, e.g. [2–4, 7, 13, 16, 22, 23, 31, 39].

Let X be a nonempty set. Recall that a mapping d : X×X→ R+,R+ = [0,∞) is a metric if for all x, y, z ∈ X
the following axioms hold:

(i) (d(x, y) = 0)⇔ (x = y),

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ⩽ d(x, z) + d(z, y).

2020 Mathematics Subject Classification. Primary 47H10; Secondary 47H09.
Keywords. fixed point theorem, mappings contracting perimeters of triangles, metric space, contractive mappings.
Received: 18 December 2023; Accepted: 13 October 2024
Communicated by Erdal Karapınar
The second author was partially supported by the Volkswagen Foundation project “From Modeling and Analysis to Approxima-

tion”. This work was partially supported by a grant from the Simons Foundation (PD-Ukraine-00010584, E. Petrov).
* Corresponding author: Evgeniy Petrov
Email addresses: ch.bey@uni-luebeck.de (Christian Bey), eugeniy.petrov@gmail.com (Evgeniy Petrov),

ruslan.salimov1@gmail.com (Ruslan Salimov)
ORCID iDs: https://orcid.org/0009-0001-4362-9963 (Christian Bey), https://orcid.org/0000-0002-6902-9640 (Evgeniy

Petrov), https://orcid.org/0000-0001-9395-3334 (Ruslan Salimov)



Ch. Bey et al. / Filomat 39:1 (2025), 185–195 186

The pair (X, d) is called a metric space.
Everywhere below by |X|we denote the cardinality of the set X.
In [27] it was considered a new type of mappings T : X → X which can be characterized as mappings

contracting perimeters of triangles.

Definition 1.1. Let (X, d) be a metric space with |X| ⩾ 3. We shall say that T : X → X is a mapping contracting
perimeters of triangles on X if there exists α ∈ [0, 1) such that the inequality

d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz) ⩽ α(d(x, y) + d(y, z) + d(x, z)) (1)

holds for all three pairwise distinct points x, y, z ∈ X.

Recall that a mapping T : X → X is a contraction on the metric space (X, d) if there exists α ∈ [0, 1) such
that

d(Tx,Ty) ⩽ αd(x, y) (2)

for all x, y ∈ X.
It is clear that every contraction is a mapping contractive perimeters of triangles.

Remark 1.2. Note that the requirement for x, y, z ∈ X to be pairwise distinct in Definition 1.1 is essential. One can
see that otherwise this definition is equivalent to the definition of contraction mapping.

In [27] it was shown that mappings contracting perimeters of triangles are continuous. The fixed point
theorem for such mappings was proved and the classical Banach fixed-point theorem was obtained like a
simple corollary. An example of a mapping contracting perimeters of triangles which is not a contraction
mapping was constructed for a space X with card(X) = ℵ0.

In [19] authors noted that except Banach’s fixed point theorem there are also three classical fixed point
theorems against which metric extensions are usually checked. These are, respectively, Nadler’s well-
known set-valued extension of Banach’s theorem [26], the extension of Banach’s theorem to nonexpansive
mappings [20], and Caristi’s theorem [6]. Note that an important place in the fixed point theory is also
occupied by Edelstein’s [15] fixed point theorem, the scheme of the proof of which is fundamentally different
from the proof of above mentioned theorems.

Theorem 1.3 (Edelstein, 1962). Let X be a metric space and let T : X→ X be a mapping satisfying

d(Tx,Ty) < d(x, y) (3)

for all x , y, x, y ∈ X. Assume that there exists x ∈ X such that the sequence of iterates (Tnx) contains a subsequence
(Tnk x) convergent to a point ξ ∈ X. Then ξ is a unique fixed point of T.

Clearly, that if X is a compact metric space and T : X → X satisfies (3) for all x , y, x, y ∈ X, then there
exists a unique fixed point. Recall that mappings of type (3) are called contractive.

One new interesting proof of Edelstein’s theorem was given in [10]. Note that generalizations of this the-
orem are not as numerous as generalizations of Banach’s theorem. One of the most famous generalizations
is Suzuki’s [33] theorem. Let us mention also generalizations of Theorem 1.3 in topological spaces [17, 24],
ν-generalized metric spaces [34, 36, 38], complete metric spaces [35], compact metric spaces [37], Cartesian
product of metric spaces [8]. See [9, 12, 14, 18, 25, 30, 32] for further developments in this direction.

In Section 2 we consider so-called (F,G)-contracting mappings, which form a more general class of
mappings than mappings contracting perimeters of triangles, see Definition 2.1. We show that (F,G)-
contracting mappings are continuous and prove the fixed point theorem for these mappings.

In Section 3 we show continuity and prove a fixed point theorem for mappings contracting perimeters
of triangles in the sense of Edelstein.
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2. Mappings with controlled contraction

In this section we consider a more general class of mappings in ordinary metric spaces than mappings
contracting perimeters of triangles and prove a fixed point theorem for this class.

Definition 2.1. Let (X, d) be a metric space with |X| ⩾ 3 and let functions F,G : R+ ×R+ ×R+ → R+ be such that
for all ξ, η, ζ ∈ R+ the following conditions hold:

F and G are symmetric in all variables, i.e., F(ξ, η, ζ) = F(π(ξ), π(η), π(ζ)),
G(ξ, η, ζ) = G(π(ξ), π(η), π(ζ)), where π is any permutation of the set {ξ, η, ζ};

(4)

G(ξ, η, ζ) ⩾ ξ; (5)

F(ξ, η, ζ) ⩾ G(ξ, η, ζ); (6)

G(0, 0, 0) = 0 and G is continuous at (0, 0, 0); (7)

The function G is monotone increasing in all of its arguments. (8)

We shall say that T : X → X is an (F,G)-contracting mapping on X if there exists α ∈ [0, 1) such that the
inequality

F(d(Tx,Ty), d(Ty,Tz), d(Tx,Tz)) ⩽ αG(d(x, y), d(y, z), d(x, z)) (9)

holds for all three pairwise distinct points x, y, z ∈ X.

Note that the proposed (F,G)-contracting mappings are trivial extension of the known generalized
contractive-type mappings studied in [29].

Remark 2.2. Inequalities (5) and (6) for all ξ, η, ζ ∈ R+ imply

F(ξ, η, ζ) ⩾ ξ. (10)

Remark 2.3. Note that the requirement for x, y, z ∈ X to be pairwise distinct is essential. One can see that, otherwise,
in the case

F(ξ, η, ζ) = G(ξ, η, ζ) = ξ + η + ζ

(when F and G are such that T is a mapping contracting perimeters of triangles) this definition is equivalent to
Definition 1.1.

Proposition 2.4. If in Definition 2.1 the function G additionally satisfies the condition

G(ξ, η, ζ) ⩽ Kξ with αK < 1, (11)

then T is a mapping contracting perimeters of triangles.

Proof. By condition (4) we have F(ξ, η, ζ) = F(η, ξ, ζ) and F(ξ, η, ζ) = F(ζ, η, ξ), which together with (10) gives

F(ξ, η, ζ) ⩾ η, F(ξ, η, ζ) ⩾ ζ.

Summarizing the left and right parts of previous two inequalities and of inequality (10) we get

ξ + η + ζ

3
⩽ F(ξ, η, ζ). (12)

Analogously, by (4) and (11) we have G(ξ, η, ζ) = G(η, ξ, ζ) ⩽ Kη, G(ξ, η, ζ) = G(ζ, ξ, η) ⩽ Kζ, which gives

G(ξ, η, ζ) ⩽ K
ξ + η + ζ

3
. (13)

Finally, combining inequalities (12) and (13) with (9), we get

1
3

(d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz)) ⩽
αK
3

(d(x, y) + d(y, z) + d(x, z)),

which is equivalent to (1) since αK < 1. This completes the proof.
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Proposition 2.5. Let (X, d) be a metric space, |X| ⩾ 3, and let T : X → X be an (F,G)-contracting mapping on X.
Then T is continuous.

Proof. Let (X, d) be a metric space with |X| ⩾ 3, T : X→ X be a mapping contracting perimeters of triangles
on X and let x0 be an isolated point in X. Then, clearly, T is continuous at x0. Let now x0 be an accumulation
point. Let us show that for every ε > 0, there exists δ > 0 such that d(Tx0,Tx) < ε whenever d(x0, x) < δ.
Suppose that x , x0, otherwise this assertion is evident. Since x0 is an accumulation point, for every δ > 0
there exists y ∈ X such that x0 , y , x and d(x0, y) < δ. Since the points x0, x and y are pairwise distinct
by (10) and (9) we have

d(Tx0,Tx) ⩽ F(d(Tx0,Tx), d(Tx0,Ty), d(Tx,Ty))

⩽ αG(d(x0, x), d(x0, y), d(x, y)).

Further, using the triangle inequality d(x, y) ⩽ d(x0, x) + d(x0, y), we obtain

d(Tx0,Tx) ⩽ αG(d(x0, x), d(x0, y), d(x0, x) + d(x0, y)). (14)

By (7) we get that for every ε > 0 there exists δ > 0 such that the inequality αG(δ, δ, 2δ) < ε holds. Using
this inequality, inequalities d(x0, x) < δ, d(x0, y) < δ, the monotonicity of G and inequality (14), we get the
desired inequality d(Tx0,Tx) < ε, which completes the proof.

Let T be a mapping on the metric space X. A point x ∈ X is called a periodic point of period n, n ∈ N+,
if Tn(x) = x. The least positive integer n for which Tn(x) = x is called the prime period of x, see, e.g., [11,
p. 18]. In particular, the point x is of prime period 2 if T(T(x)) = x and Tx , x.

Theorem 2.6. Let (X, d), |X| ⩾ 3, be a complete metric space and let T : X→ X be a mapping satisfying the following
two conditions:

(i) T does not possess periodic points of prime period 2.

(ii) T is an (F,G)-contracting mapping on X.

Then T has a fixed point. The number of fixed points is at most two.

Proof. Let x0 ∈ X. Consider the sequence x1 = Tx0, x2 = Tx1, · · · , xn+1 = Txn, · · · . Suppose first that xi is
not a fixed point of the mapping T for every i = 0, 1, . . .. Let us show that all xi are different. Since xi is not
fixed, then xi , xi+1 = Txi. By condition (i) xi+2 = T(T(xi)) , xi and by the assumption that xi+1 is not fixed
we have xi+1 , xi+2 = Txi+1. Hence, xi, xi+1 and xi+2 are pairwise distinct.

Further, set

p̃0 = F(d(x0, x1), d(x1, x2), d(x2, x0)), p0 = G(d(x0, x1), d(x1, x2), d(x2, x0)),

p̃1 = F(d(x1, x2), d(x2, x3), d(x3, x1)), p1 = G(d(x1, x2), d(x2, x3), d(x3, x1)),

· · ·

p̃n = F(d(xn, xn+1), d(xn+1, xn+2), d(xn+2, xn)),

pn = G(d(xn, xn+1), d(xn+1, xn+2), d(xn+2, xn)),

· · · .

Then by (9) we have p̃1 ⩽ αp0, p̃2 ⩽ αp1, . . . , p̃n ⩽ αpn−1. Hence and by condition (6) we have

p0 > αp0 ⩾ p̃1 ⩾ p1 > αp1 ⩾ p̃2 ⩾ p2 · · · . (15)

Consequently,

p0 > p1 > · · · > pn > · · · . (16)
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Suppose now that j ⩾ 3 is a minimal natural number such that x j = xi for some i such that 0 ⩽ i < j − 2.
Then x j+1 = xi+1, x j+2 = xi+2. Hence, pi = p j which contradicts to (16). Thus, all xi are different.

Further, let us show that {xi} is a Cauchy sequence. By (5) and (15) we have

d(x0, x1) ⩽ p0,

d(x1, x2) ⩽ p1 ⩽ αp0,

d(x2, x3) ⩽ p2 ⩽ αp1 ⩽ α
2p0,

· · ·

d(xn−1, xn) ⩽ pn−1 ⩽ α
n−1p0,

d(xn, xn+1) ⩽ pn ⩽ α
np0,

· · · .

By the triangle inequality for every n, p ∈N+,

d(xn, xn+p) ⩽ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xn+p−1, xn+p)

⩽ αnp0 + α
n+1p0 + · · · + α

n+p−1p0 = α
n(1 + α + · · · + αp−1)p0 = α

n 1 − αp

1 − α
p0.

Since 0 ⩽ α < 1 we have 0 ⩽ αp < 1 and

d(xn, xn+p) ⩽
αnp0

1 − α
.

Hence, d(xn, xn+p) → 0 as n → ∞ for every p ∈ N+. Thus, {xn} is a Cauchy sequence. By completeness of
(X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. Since xn → x∗, and by Proposition 2.5 the mapping T is continuous, we have
xn+1 = Txn → Tx∗. By triangle inequality we have

d(x∗,Tx∗) ⩽ d(x∗, xn) + d(xn,Tx∗)→ 0

as n→∞, which means that x∗ is the fixed point.
Suppose that there exist at least three pairwise distinct fixed points x, y and z. Then Tx = x, Ty = y and

Tz = z, which contradicts to (9) combined with (6).

Example 2.7. It is easy to see that the class of functions F and G satisfying the conditions of Definition 2.1 is enough
wide. As an example we can take F(ξ, η, ζ) = ξ + η + ζ and G(ξ, η, ζ) = (ξq + ηq + ζq)

1
q , q ⩾ 1.

Example 2.8. Let G(ξ, η, ζ) = ξ + η + ζ and let

F(ξ, η, ζ) = 3φ−1

(
φ(ξ) + φ(η) + φ(ζ)

3

)
,

where φ : [0,∞) → [0,∞) is continuous, strictly increasing and convex function. Since φ is convex by Jensen’s
inequality we have

φ

(
ξ + η + ζ

3

)
⩽
φ(ξ) + φ(η) + φ(ζ)

3

for all ξ, η, ζ ∈ [0,∞), which implies condition (6). The other conditions of Definition 2.1 can be easily verified by the
reader.

Example 2.9. Let the function H satisfy all conditions of Definition 2.1 that satisfies the function G, then as F we
can take F(ξ, η, ζ) = G(ξ, η, ζ) +H(ξ, η, ζ).
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Remark 2.10. Let the supposition of Theorem 2.6 holds, let additionally F and G be continuous at their domain and
let the mapping T have a fixed point x∗ which is a limit of some iteration sequence x0, x1 = Tx0, x2 = Tx1, · · · such
that xn , x∗ for all n = 1, 2, . . .. Then x∗ is a unique fixed point.

Indeed, suppose that T has another fixed point x∗∗ , x∗. It is clear that xn , x∗∗ for all n = 1, 2, . . .. Hence, we
have that the points x∗, x∗∗ and xn are pairwise distinct for all n = 1, 2, . . .. Consider the ratio

Rn =
F(d(Tx∗,Tx∗∗), d(Tx∗,Txn), d(Tx∗∗,Txn))

G(d(x∗, x∗∗), d(x∗, xn), d(x∗∗, xn))

=
F(d(x∗, x∗∗), d(x∗, xn+1), d(x∗∗, xn+1))

G(d(x∗, x∗∗), d(x∗, xn), d(x∗∗, xn))
.

It is clear that d(x∗, xn+1) → 0, d(x∗, xn) → 0, d(x∗∗, xn+1) → d(x∗∗, x∗) and d(x∗∗, xn) → d(x∗∗, x∗). Taking into
consideration condition (6), suppose first that

F(d(x∗, x∗∗), 0, d(x∗∗, x∗)) = G(d(x∗, x∗∗), 0, d(x∗∗, x∗)).

In this case by continuity of F and G we get Rn → 1 as n→∞. Now suppose that

F(d(x∗, x∗∗), 0, d(x∗∗, x∗)) > G(d(x∗, x∗∗), 0, d(x∗∗, x∗)).

In this case by continuity of F and G we obtain Rn > 1 for some sufficiently large n. Anyway both cases contradict to
condition (9).

Proposition 2.11. Let (X, d) be a metric space and let T : X → X be an (F,G)-contracting mapping on X with
continuous F and G and with

G(ξ, ξ, 0) ⩽ kξ, (17)

where k is such that αk < 1 and α is as in (9). If x is an accumulation point of X, then inequality (2) holds for all
points y ∈ X with the coefficient αk.

Proof. Let y ∈ X and let x ∈ X be an accumulation point. Then there exists a sequence (zn) such that zn → x,
zn , y, zn , x, and all zn are different. Hence, by (9) the inequality

F(d(Tx,Ty), d(Ty,Tzn), d(Tx,Tzn)) ⩽ αG(d(x, y), d(y, zn), d(x, zn))

holds for every n ∈ N+. Since every metric is continuous, we have d(y, zn) → d(x, y), d(x, zn) → 0,
d(Ty,Tzn)→ d(Tx,Ty) and d(Tx,Tzn)→ 0. Letting n→∞ and using the continuity of F and G we obtain

F(d(Tx,Ty), d(Tx,Ty), 0) ⩽ αG(d(x, y), d(x, y), 0).

By (10) we have
d(Tx,Ty) ⩽ αG(d(x, y), d(x, y), 0).

Using (17), we obtain (2) with another coefficient αk.

Corollary 2.12. Let the supposition of Proposition 2.11 hold. If all points of X are accumulation points, then T is a
contraction mapping.

3. Edelstein type fixed point theorem

The main result of this section is an analogue of Edelstein’s fixed point theorem for mappings contracting
perimeters of triangles.
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Definition 3.1. Let (X, d) be a metric space with |X| ⩾ 3. We shall say that T : X → X is a mapping contracting
perimeters of triangles in the sense of Edelstein on X if the inequality

d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz) < d(x, y) + d(y, z) + d(z, x) (18)

holds for all three pairwise distinct points x, y, z ∈ X.

Proposition 3.2. Mappings contracting perimeters of triangles in the sense of Edelstein are continuous.

Proof. Let (X, d) be a metric space with |X| ⩾ 3, T : X→ X be a mapping contracting perimeters of triangles
on X and let x0 be an isolated point in X. Then, clearly, T is continuous at x0. Let now x0 be an accumulation
point. Let us show that for every ε > 0, there exists δ > 0 such that d(Tx0,Tx) < εwhenever d(x0, x) < δ. Let
x , x0. Since x0 is an accumulation point, for every δ > 0 there exists y ∈ X, x0 , y , x, such that d(x0, y) < δ.
By (18) we have

d(Tx0,Tx) ⩽ d(Tx0,Tx) + d(Tx0,Ty) + d(Tx,Ty)

< d(x0, x) + d(x0, y) + d(x, y).

Using the triangle inequality d(x, y) ⩽ d(x0, x) + d(x0, y), we have

d(Tx0,Tx) < 2(d(x0, x) + d(x0, y)) < 2(δ + δ) = 4δ.

Setting δ = ε/4, we obtain the desired inequality.

Theorem 3.3. Let (X, d), |X| ⩾ 3, be a metric space and let the mapping T : X → X satisfy the following three
conditions:

(i) T is a mapping contracting perimeters of triangles in the sense of Edelstein.

(ii) T does not possess periodic points of prime period 2.

(iii) There exists an x ∈ X such that the sequence (ξn), ξn = Tnx, has a subsequence (ξni ) which converges to ξ ∈ X.

Then ξ is a fixed point of T. The general number of fixed points of T is at most two.

Proof. Suppose that ξ is not a fixed point of T. Then, by condition (ii), there are only two possibilities: 1)
the points ξ, Tξ and T2ξ are pairwise distinct; 2) Tξ is fixed.

Suppose that possibility 1) holds. Throughout the text below for any x, y, z ∈ X denote the perimeter
p(x, y, z) on the points x, y, z by

p(x, y, z) = d(x, y) + d(y, z) + d(z, x).

The mapping r(q, s, t) of

Y := X × X × X \ ({(x, y, z) : x = y} ∪ {(x, y, z) : y = z} ∪ {(x, y, z) : z = x})

into the real line, defined by

r(p, q, s) :=
p(Tq,Ts,Tt)

p(q, s, t)

is continuous on Y since every metric is continuous and the denominator of the fraction is nonzero. Hence,
there exists a neighbourhood U of (ξ,T(ξ),T2(ξ)) and R such that (q, s, t) ∈ U implies

0 ≤ r(q, s, t) < R < 1. (19)

Let S1, S2 and S3 be open balls centered at ξ, Tξ and T2ξ, respectively, of radius ρ > 0 small enough so as to
have

ρ <
1
7

p(ξ,Tξ,T2ξ) (20)
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and S1 × S2 × S3 ⊆ U. Consider the sequences (ξni+1) and (ξni+2). Since T is continuous, by condition (iii) the
first sequence converges to Tξ and the second one converges to T2ξ. Hence, and since ξni → ξ, there exists
a positive integer N such that i > N implies ξni ∈ S1, ξni+1 ∈ S2 and ξni+2 ∈ S3. Then

p(ξni , ξni+1, ξni+2) > ρ, (i > N). (21)

Indeed, assume the opposite. Then, by the triangle inequality,

p(ξ,Tξ,T2ξ) ≤ d(ξ, ξni ) + d(ξni , ξni+1) + d(ξni+1,Tξ)

+d(Tξ, ξni+1)) + d(ξni+1, ξni+2) + d(ξni+2,T2ξ)

+d(T2ξni+2), ξni+2) + d(ξni+2, ξni ) + d(ξni , ξ)

≤ 6ρ + p(ξni , ξni+1, ξni+2) ≤ 7ρ,

which contradicts to (20).
Suppose first that ξi is a fixed point of T for some i. Clearly, in this case every subsequence of (ξn)

converges to ξi = ξ. Suppose now that ξi is not a fixed point of the mapping T for every i = 1, 2, . . ..
Since ξi is not fixed, then ξi , ξi+1 = Tξi. Since T have no periodic points of prime period 2 we have
ξi+2 = T(Tξi) , ξi and by the supposition that ξi+1 is not fixed we have ξi+1 , ξi+2 = Tξi+1. Hence, every
three consecutive points ξi, ξi+1 and ξi+2 are pairwise distinct.

Let us show that all ξi are different. Set

p0 = p(x0, x1, x2), p1 = p(x1, x2, x3), · · · , pn = p(xn, xn+1, xn+2), · · · .

Since ξi, ξi+1 and ξi+2 are pairwise distinct by (18) we have

p0 > p1 > · · · > pn > · · · . (22)

Suppose that j ⩾ 3 is a minimal natural number such that ξ j = ξi for some i such that 0 ⩽ i < j − 2. Then
ξ j+1 = ξi+1, ξ j+2 = ξi+2. Hence, pi = p j which contradicts to (22).

Since ξni , ξni+1 and ξni+2 are pairwise distinct points of (ξi), for i > N we can use (19):

p(ξni+1, ξni+2, ξni+3) < R · p(ξni , ξni+1, ξni+2).

Repeated use of condition (18) and this inequality gives for ℓ > j > N

p(ξnℓ , ξnℓ+1, ξnℓ+2) ⩽ p(ξnℓ−1+1, ξnℓ−1+2, ξnℓ−1+3)

< R · p(ξnℓ−1 , ξnℓ−1+1, ξnℓ−1+2) ⩽ · · ·

< Rℓ− j
· p(ξn j , ξn j+1, ξn j+2)→ 0, ℓ→∞,

which contradicts to (21). Thus, T(ξ) = ξ.
Suppose that possibility 2) holds. Since Tξni = ξni+1 → Tξ, for every ε > 0 there exist N1 > 0 such that

for every i, j > N1, i , j, inequalities d(ξni+1,Tξ) < ε and d(ξn j+1,Tξ) < ε hold. Hence, using the triangle
inequality d(ξni+1, ξn j+1) ⩽ d(ξni+1,Tξ) + d(Tξ, ξn j+1), we get

p(ξni+1, ξn j+1,Tξ) < 4ε. (23)

Since there is no fixed points in the sequence (ξn) and Tξ is fixed for T, we have that Tξ , ξn for all n ⩾ 1.
Hence, using the fact that all ξi are different we see that the points ξni+1, ξn j+1 and Tξ are pairwise distinct
and for any k ⩾ 1 we can consecutively apply k times inequality (18) to inequality (23):

p(Tkξni+1,Tkξn j+1,TkTξ) = p(ξni+k+1, ξn j+k+1,Tξ) < 4ε. (24)
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On the other hand, since ξni → ξ, for every ε > 0 there exist N2 > 0 such that for every m > N2 the
inequality d(ξnm , ξ) < ε holds. It is clear that it is always possible to choose m > N2 such that nm > ni + 1.
Let k = nm − ni − 1. Hence, nm = ni + k + 1 and ξnm = ξni+k+1. Further, using the inequality d(ξ,Tξ) ⩽
d(ξ, ξnm ) + d(ξnm , ξn j+k+1) + d(ξn j+k+1,Tξ), we obtain

p(ξni+k+1, ξn j+k+1,Tξ) = p(ξnm , ξn j+k+1,Tξ)

= d(ξnm , ξn j+k+1) + d(ξn j+k+1,Tξ) + d(Tξ, ξnm )

⩾ d(ξ,Tξ) − d(ξ, ξnm ) − d(ξn j+k+1,Tξ) + d(ξn j+k+1,Tξ) + d(Tξ, ξnm )

> d(ξ,Tξ) − ε.

Setting ε = d(ξ,Tξ)/5 we obtain that this inequality contradicts to (24).
Suppose that there exists at least three pairwise distinct fixed points x, y and z. Then Tx = x, Ty = y and

Tz = z, which contradicts to (18).

Corollary 3.4. Let (X, d), |X| ⩾ 3, be a compact metric space and let the mapping T : X → X satisfy the following
two conditions:

(i) T is a mapping contracting perimeters of triangles in the sense of Edelstein.

(ii) T does not possess periodic points of prime period 2.

Then T has a fixed point. The general number of fixed points of T is at most two.

Proof. Indeed, condition (iii) of Theorem 3.3 holds if X is compact.

Recall that for a given metric space X, a point x ∈ X is said to be an accumulation point of X if every open
ball centered at x contains infinitely many points of X. In [27] in Corollary 2.8 it was shown that mappings
contracting perimeters of triangles, in metric spaces such that every point of the space is an accumulation
point, are contraction mappings. The following proposition shows that similar effect does not hold for
mappings contracting perimeters of triangles in the sense of Edelstein.

Proposition 3.5. Let (X, d), |X| ⩾ 3, be a metric space and let T : X → X be a mapping contracting perimeters of
triangles in the sense of Edelstein. If all points of X are accumulation points, then the mapping T is not obligatory
contractive.

Proof. Let (X, d) be a metric space such that X = [−2,−1] ∪ [1, 2] and d is the Euclidean metric. It is clear
that all points of the space X are accumulation points. Define a mapping T : X→ X as follows: T(x) = −1 if
x ∈ [−2,−1] and T(x) = 1 if x ∈ [1, 2]. If for three pairwise distinct points x, y, z we have x, y, z ∈ [−2,−1] or
x, y, z ∈ [1, 2], then clearly (18) holds. If x ∈ [−2,−1] and y, z ∈ [1, 2] or x, y ∈ [−2,−1] and z ∈ [1, 2] then (18)
also holds, since d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz) = 2 + 2 + 0 = 4 and d(x, y) + d(y, z) + d(z, x) > 4 because
at least one of the points x, y, z does not equal −1 or 1. It remains to note that inequality (3) does not hold
since d(−1, 1) = d(T(−1),T(1)) = 2.

Example 3.6. Let us construct an example of a mapping T in a finite metric space contracting perimeters of triangles
in the sense of Edelstein, which is not a contractive mapping. Let (X, d) be a metric space such that X = {x, y, z},
d(x, y) = d(y, z) = d(x, z) = 1, and let T : X → X be such that Tx = x, Ty = y and Tz = x. One can easily see
that (18) holds and (3) does not hold since x and y are fixed points.

Example 3.7. Let us construct an example of a mapping T : X→ X contracting perimeters of triangles in the sense
of Edelstein that is not a contractive mapping and that is not a mapping contracting perimeters of triangles for a
metric space X with |X| = ℵ0. Let X = {x∗, x0, x′0, x1, x′1, . . .} and let ε be a positive real number.
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Define the metric d on X as follows:

d(x, y) =



1
i2 , if x = xi−1 or x = x′i−1,

and y = xi, or y = x′i , i = 1, 2, 3, . . . ,
ε
i2 , if x = xi, y = x′i

or x = xi−1, y = x′i−1, i = 1, 3, 5, . . . ,
d(xi, xi+1) + · · · + d(x j−1, x j), if x = xi or x = x′i

and y = x j or y = x′j, i + 1 < j,
π2

6 − d(x0, xi), if x = xi or x = x′i and y = x∗,
0, if x = y,

see Figure 1.

1
12

1
22

1
32

1
42

1
52

1
62

ε ε ε
32

ε
32

ε
52

ε
52

ε
72

x′0 x′1 x′2 x′3 x′4 x′5 x′6

x0 x1 x2 x3 x4 x5 x6 x∗

Figure 1: The points of the space (X, d) with distances between them.

The reader can easily verify that for sufficiently small ε the metric d is well defined. For this recall only the
well-known fact

∑
∞

i=1
1
i2 =

π2

6 . Moreover, the space is complete with the single accumulation point x∗.
Define a mapping T : X → X as Txi = xi+1, Tx′i = x′i+1 for all i = 0, 1, . . . and Tx∗ = x∗. Since d(xi, x′i ) =

d(Txi,Tx′i ), i = 0, 2, 4, . . ., using (3), we see that T is not a contractive mapping. Suppose that there exists 0 ⩽ α < 1
such that (1) holds for all pairwise distinct x, y, z ∈ X. Let x = xi, y = xi+1, z = xi+2. Consider the ratio

d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz)
d(x, y) + d(y, z) + d(x, z)

=
d(xi+1, xi+2) + d(xi+2, xi+3) + d(xi+1, xi+3)

d(xi, xi+1) + d(xi+1, xi+2) + d(xi, xi+2)

=

(
2

(i + 2)2 +
2

(i + 3)2

)
:
(

2
(i + 1)2 +

2
(i + 2)2

)
→ 1

as i → ∞, which contradicts to (1). Thus, T is not a mapping contracting perimeters of triangles. Verifying
inequality (18) for all pairwise distinct x, y, z ∈ X is almost evident. Thus, T is a mapping contractive perimeters of
triangles in the sense of Edelstein.
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