
Filomat 39:1 (2025), 197–212
https://doi.org/10.2298/FIL2501197P

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this note, we define two distinct categories of fuzzy Z-proximal contractions and we use
these two fuzzy Z-proximal contractive inequalities as a tool to obtain best proximity point for a non-self
mapping which is defined between two distinct non-empty subsets of a strong fuzzy metric space. Further,
prove some proximity theorems by using these categories of fuzzyZ-proximal in a complete strong fuzzy
metric space. For the support of these innovative results we produce a few validation of examples. At last,
we provide a solution of a non-linear second-order ordinary differential equation with the help of fuzzy
Z-proximal contractive inequality provided that assumed space is strong fuzzy metric space.

1. Introduction and Preliminaries

The mathematician Lotfi A. Zadeh [18] made significant contributions to the field of fuzzy set theory
in his seminal paper in 1965. He introduced the concept of a membership function, which enhanced the
original crisp set theory. In theory of crisp set, a member either belongs or not belongs to a set. However,
with the introduction of membership functions, fuzzy set theory permits for partial membership, where
a member can have a degree of membership between 0 and 1. This concept of partial membership is a
generalization of the characteristic function used in crisp set theory.

Building upon the ideas of fuzzy set theory, Kramosil and Michálek [8] introduced the notion of a fuzzy
metric space. In a fuzzy metric space, the distance between two points is represented by a fuzzy number or
a membership function that assigns a degree of nearness between the points. This concept expanded the
traditional notion of metric spaces, where distances are typically crisp values. George and Veeramani further
improved upon the concept by defining a Hausdorff topology for fuzzy metric spaces which provides a
framework for studying the properties of fuzzy metric spaces and their associated distances. Another
significant development in the field of fuzzy set theory was the exploration of fixed point theory. Grabic
was the first mathematicians to experiment with fuzzy concepts in fixed point theory. He demonstrated
fuzzy versions of the Banach and Edelstein contraction theorems. These theorems establish conditions
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U. D. Patel et al. / Filomat 39:1 (2025), 197–212 198

under which mappings on a set have unique fixed points. By extending these theorems to the realm of
fuzzy sets, Grabic laid the foundation for further research in fuzzy fixed point theory.

Later, researchers began to question whether fixed point equations could still have solutions when con-
sidering non-self mappings. In the traditional context of fixed point theory, self-mappings were primarily
studied, where the mapping operated on elements within the same set. However, this limitation raised
the question of whether fixed points could be found when the mapping was non-self, meaning it operated
between different sets.

To address this doubt, mathematicians extended the scope of fixed point theory to non-self mappings.
They explored various conditions and properties under which best proximity points could still exist. This
expansion led to the development of best proximity point theory. Now we need to recognize the notion of
space introduced by George and Veeramani [3].

Definition 1.1. [3]. A fuzzy metric space is an ordered triple (E,Fz, ⋄) such that E is a non-empty set ⋄ is a
continuous triangular-norm and Fz is a fuzzy set on E × E × (0,+∞) satisfying the following conditions, for all
α, β, γ ∈ E and r, s > 0;

1. Fz(β, γ, r) > 0;
2. Fz(β, γ, r) = 1 if and only if γ = β;
3. Fz(β, γ, r) = Fz(γ, β, r);
4. Fz(β, α, r + s) ≥ Fz(β, γ, r) ⋄ Fz(γ, α, s);
5. Fz(β, γ, .) : (0,+∞)→ (0, 1] is continuous.

If we replace axiom (4) by (4)′ Fz(β, α,max{r, s}) ≥ Fz(β, γ, r) ⋄ Fz(γ, α, s), then (E,Fz, ⋄) is known as non-
Archimedean or strong fuzzy metric space. Since (4) implies (4)′, then each non-Archimedean fuzzy metric space
is a fuzzy metric space.

In this context, the existence of a fixed point for a non-self mappingH : L → M is not guaranteed where
L and M are two non-empty subsets of a strong fuzzy metric space. Therefore, it becomes essential to
investigate the existence of an element η that is as close toH(η) as possible. In other words, when the fixed
point equation H(η) = η has no solution, the goal is to find an approximate solution x that minimizes the
error in terms of the degree of nearness between η and Hη. Best proximity point theorems are aimed at
establishing the existence of such optimal approximate solutions, known as best proximity point, for the
fixed point equationH(η) = η when an exact solution does not exist. In this context, it is required that the
degree of membership Fz(η,Hη, r) should be at least Fz(L,M, r), where Fz(L,M, r) represents the degree
of nearness between these two sets L andM with respect to parameter r. A best proximity point theorem
ensures the absolute minimum error Fz(η,H(η), r) by providing an approximate solution η that satisfies the
condition Fz(η,Hη, r) = Fz(L,M, r).

Suppose L andM are the two non-empty subsets of a strong fuzzy metric spaces (E,Fz, ⋄). We denote
L0(r) andM0(r) by

L0(r) = {β ∈ L : Fz(β, γ, r) = Fz(L,M, r) for some γ ∈ M}
M0(r) = {γ ∈ M : Fz(β, γ, r) = Fz(L,M, r) for some β ∈ L}

}
(1.1)

where Fz(L,M, r) = sup{Fz(β, γ, r) : β ∈ L, γ ∈ M}.

Definition 1.2. [14] The pair (L,M) with L0 , 0 is said to have the fuzzy weak p-property if

Fz(β1, γ1, r) = Fz(L,M, r)
Fz(β2, γ2, r) = Fz(L,M, r)

}
implies Fz(β1, β2, r) ≥ Fz(γ1, γ2, r)

where β1, β2 ∈ L0 and γ1, γ2 ∈ M0.

Shukla et al. [17] define group of function ζ : (0, 1] × (0, 1]→ R that satisfies

1. ζ(s1, s2) > s2 for every s1, s2 ∈ (0, 1);
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2. ζ(1, 1) = 1.

By using this group they introduced below class of fuzzyZ-contractive mapping with respect to ζ ∈ Z in
fuzzy metric space.
An operatorH : E → E is said to be aZ-fuzzy contractive mapping if there exists ζ ∈ Z such that

Fz(Hα,Hβ, r) ≥ ζ(Fz(Hα,Hβ, r),Fz(α, β, r)) (1.2)

for every α, β ∈ E,Hα , Hβ and r > 0.
By introducing this class, they were able to unify various groups of fuzzy contractive mappings, such as
Gregori and Sapena [6], Tirado, Mihet [9] based on the notion of George and Veeramani [3].

2. Main results

With this group of mappings ζ ∈ Z, we define a fuzzyZ-proximal contractive mapping and before that
require to define the following characteristic-S.

Definition 2.1. Suppose that ζ ∈ Z and a non-self map H : L → M where L andM are two non empty subsets
of a strong fuzzy metric space (E,Fz, ⋄). Then the quadruplet (E,Fz,H , ζ) has characteristic-S, if for any sequence
{ξn} in L0 satisfying Fz(ξn+1,Hξn, r) = Fz(L,M, r) such that

Fz(ξn+1, ξn+2, r) ≥ Fz(ξn, ξn+1, r)

for every n ∈N and r > 0 implies

lim
n→+∞

ζ(Fz(ξn+1, ξn+2, r),Fz(ξn, ξn+1, r)) = 1.

Theorem 2.2. Assume that two non-empty closed subsetsL andM of a complete strong fuzzy metric space (E,Fz, ⋄)
with L0(r) , ϕ andH : L →M. If the following assertions satisfying:

1. H(L0) ⊆ M0;
2. The mappingH is a fuzzyZ-contractive;
3. The pair (L,M) has a fuzzy weak p-property;
4. The quadruplet (E,Fz,H , ζ) has the characteristic-S.

Then there exists a member u ∈ L such that Fz(u,Hu, r) = Fz(L,M, r).

Proof. Consider ξ0 is any arbitrary member ofL0(r). SinceH(ξ0) ∈ H(L0(r)) ⊆ M0(r) there exists a member
ξ1 in L0(r) such that Fz(ξ1,Hξ0, r) = Fz(L,M, r). SinceHξ1 ∈ H(L0(r)) ⊆ M0(r) , it will follow that there is
a member ξ2 in L0(r) such that Fz(ξ2,Hξ1, r) = Fz(L,M, r).
Recursively, we can get a sequence {ξn} in L0(r) satisfying

Fz(ξn+1,Hξn, r) = Fz(L,M, r) (2.1)

for every n ∈ N and r > 0. Clearly, if for some n ∈ N, ξn+1 = ξn then from (2.1), nothing will remains to
prove. Therefore, ξn+1 , ξn for every n ∈ N. Consider cn(r) = Fz(ξn, ξn+1, r) for all n ∈ N and r > 0. From
(1.2) and using definition of ζ,

cn(r) = Fz(ξn, ξn+1, r) ≥ ζ(Fz(ξn, ξn+1, r),Fz(ξn−1, ξn, r)) > Fz(ξn−1, ξn, t) = cn−1(r)

for each r > 0. Therefore, the sequence is {cn(r)} is a non-decreasing which is converges to c(r) that is
lim

n→+∞
cn(r) = c(r).

We claim that c(r) = 1, for each r > 0. Take a contradiction such that 0 < c(s) < 1 for some s > 0, again by
(1.2)

cn(s) = Fz(ξn, ξn+1, s) ≥ ζ(Fz(ξn, ξn+1, s),Fz(ξn−1, ξn, s)) > Fz(ξn−1, ξn, s) = cn−1(s)
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applying limit n→ +∞ and applying characteristic-S,

lim
n→+∞

Fz(ξn, ξn+1, s) = 1.

This contradiction verifies the claim. Thus for every r > 0

lim
n→+∞

Fz(ξn, ξn+1, r) = 1. (2.2)

Next we claim that {ξn} is a Cauchy sequence. Assume that {ξn} is not a Cauchy sequence, then for each
ϵ ∈ (0, 1) and r > 0, there is k ∈N such that

Fz(ξmk , ξnk , r) ≤ 1 − ϵ (2.3)

for all mk > nk ≥ k. Assume that mk is the smallest integer greater than nk, satisfying (2.3)

Fz(ξmk−1, ξnk , r) > 1 − ϵ. (2.4)

Using (2.3),

1 − ϵ ≥ Fz(ξmk , ξnk , r) ≥ Fz(ξmk , ξmk−1 , r) ⋄ Fz(ξmk−1 , ξnk , r) > Fz(ξmk−1 , ξmk , r) ⋄ 1 − ϵ.

applying limit k→ +∞, we deduce
lim

k→+∞
Fz(ξmk , ξnk , r) = 1 − ϵ.

Further

Fz(ξmk+1 , ξnk+1 , r) ≥ Fz(ξmk+1 , ξmk , r) ⋄ Fz(ξmk , ξnk , r) ⋄ Fz(ξnk , ξnk+1, r).

Taking limit as k→ +∞,

lim
k→+∞

Fz(ξmk+1, ξnk+1, r) = 1 − ϵ. (2.5)

Now by using the (1.2),

Fz(ξmk , ξnk , r) ≥ ζ(Fz(ξmk , ξnk , r),Fz(ξmk−1 , ξnk−1 , r)) > Fz(ξmk−1 , ξnk−1 , r).

applying limit k→ +∞, we get

1 − ϵ ≥ lim
k→+∞

ζ(Fz(ξmk , ξnk , r),Fz(ξmk−1 , ξnk−1 , r)) > 1 − ϵ,

with the use of characteristic-Swe get a contradiction. Therefore {ξn} is a Cauchy sequence. Completeness
property of the space (E,Fz, ⋄) ensure that sequence {ξn} converges to some u ∈ E, it means

lim
n→+∞

Fz(ξn,u, r) = 1 (2.6)

for all r > 0. SinceH is continuous,Hξn →Hu and by the continuity of Fz implies

lim
n→+∞

Fz(ξn+1,Hξn, r)→ Fz(u,Hu, r) = Fz(L,M, r). (2.7)

Therefore u is best proximity point forH . Next, demonstrate that u is unique forH . Assume that for any
r > 0, 0 < Fz(u,w, r) < 1, and w is another best proximity point of H , i.e. u , w, and it follows from the
condition thatH is fuzzyZ-contraction and fuzzy weak p-property,

Fz(u,Hu, r) = Fz(L,M, r) and Fz(w,Hw, r) = Fz(L,M, r) =⇒ Fz(u,w, r) ≥ Fz(Hu,Hw, r).

Now
Fz(u,w, r) ≥ Fz(Hu,Hw, r) ≥ ζ(Fz(Hu,Hw, r),Fz(u,w, r)) > Fz(u,w, r), (2.8)

which is contradiction. Thus Fz(u,w, r) = 1 for all r > 0, it means u = w.
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Corollary 2.3. Suppose (E,Fz, ⋄) is a strong fuzzy metric space andH : E → E be a continuous fuzzyZ-contraction.
The quadruplet (E,Fz,H , ζ) has characteristic-S. ThenH has a unique fixed point in E.

The key finding of this study is to transform the results given by Shukla et al. [17] for a non-self mapping
by defining two kinds of fuzzyZ-proximal contractive inequalities to obtain the best proximity point.

Definition 2.4. Suppose (E,Fz, ⋄) is a strong fuzzy metric space. A map H : L → M is known as a fuzzy
Z-proximal contractive of first kind, if there exists ζ ∈ Z such that

Fz(u1,Hx1, r) = Fz(L,M, r)
Fz(u2,Hx2, r) = Fz(L,M, r)

}
=⇒ Fz(u1,u2, r) ≥ ζ(Fz(u1,u2, r),Fz(x1, x2, r)) (2.9)

for every u1,u2, x1, x2 ∈ L and r > 0.

Definition 2.5. Suppose (E,Fz, ⋄) is a strong fuzzy metric space. A map H : L → M is known as a fuzzy Z-
proximal contractive of second kind, if there exists ζ ∈ Z such that

Fz(u1,Hx1, r) = Fz(L,M, r)
Fz(u2,Hx2, r) = Fz(L,M, r)

}
=⇒ Fz(Hu1,Hu2, r) ≥ ζ(Fz(Hu1,Hu2, r),Fz(Hx1,Hx2, r)) (2.10)

for every u1,u2, x1, x2 ∈ L and r > 0.

Now prove fuzzy Z-proximal contractive mapping for of first kind and prove best proximity point
results without help of fuzzy weak p-property. Also it will be required to define characteristic-Q1 to show
constructed sequence is a Cauchy sequence.

Definition 2.6. A mapping H : L → M said to have characteristic-Q1, if for a sequence {ξn} defined as
Fz(ξn+1,Hξn, r) = Fz(L,M, r) such that

lim
n→+∞

Fz(ξn, ξn+1, r) = 1

for every n ∈N. For any two subsequences {ξnk } and {ξmk } of sequence {ξn} where nk > mk > k and k ∈N. Then

Fz(ξnk ,Hξnk−1 , r) = Fz(L,M, r) and Fz(ξmk ,Hξmk−1 , r) = Fz(L,M, r)

holds.

Theorem 2.7. Assume that two non-empty closed subsetsL andM of a complete strong fuzzy metric space (E,Fz, ⋄)
with L0(r) , ϕ andH : L →M satisfying:

1. H is a fuzzyZ-proximal contractive mapping of first kind;
2. H(L0) ⊆ M0;
3. The quadruplet (E,Fz,H , ζ) has the characteristic-S and characteristic-Q1;
4. for any sequence {yn} inM0(r) and x ∈ L satisfying Fz(x, yn, r)→ Fz(L,M, r) as n→ +∞ then x ∈ L0(r).

Then there exists a member u in L such that Fz(u,Hu, r) = Fz(L,M, r) for all r > 0.

Proof. Sequence construction is similar to the Theorem 2.2. Consider bn(r) = Fz(ξn, ξn+1, r) for every n ∈N
and r > 0. From (2.9) and using definition of ζ,

bn(r) = Fz(ξn, ξn+1, r) ≥ ζ(Fz(ξn, ξn+1, r),Fz(ξn−1, ξn, r)) > Fz(ξn−1, ξn, r) = bn−1(r)

for each r > 0. Therefore, the sequence {bn(r)} is a increasing sequence. Let lim
n→+∞

bn(r) = b(r). We claim that

b(r) = 1, for each r > 0. Take a contradiction that 0 < b(s) < 1 for some s > 0 and then by (2.9)

bn(s) = Fz(ξn, ξn+1, s) ≥ ζ(Fz(ξn, ξn+1, s),Fz(ξn−1, ξn, s)) > Fz(ξn−1, ξn, s) = bn−1(s)
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applying limit n→ +∞ and characteristic-S,

lim
n→+∞

Fz(ξn, ξn+1, s) = b(s) = 1.

which contradict verifies the claim. Thus for each r > 0,

lim
n→+∞

Fz(ξn, ξn+1, r) = 1. (2.11)

Next, we claim that constructed sequence {ξn} is a Cauchy sequence. Assuming again a contradiction that
{ξn} is not a Cauchy sequence, then for each ϵ ∈ (0, 1) and r > 0, there exists a k ∈N such that

Fz(ξmk , ξnk , r) ≤ 1 − ϵ (2.12)

for each mk > nk ≥ k. Consider that mk is the smallest positive integer greater than nk, satisfying (2.12), so

Fz(ξmk−1, ξnk , r) > 1 − ϵ (2.13)

for all k ∈N. Using (2.3)

1 − ϵ ≥ Fz(ξmk , ξnk , r) ≥ Fz(ξmk , ξmk−1 , r) ⋄ Fz(ξmk−1 , ξnk , r) > Fz(ξmk−1 , ξmk , r) ⋄ 1 − ϵ.

applying limit k→ +∞,
lim

k→+∞
Fz(ξmk , ξnk , r) = 1 − ϵ. (2.14)

Further

Fz(ξmk+1 , ξnk+1 , r) ≥ Fz(ξmk+1 , ξmk , r) ⋄ Fz(ξmk , ξnk , r) ⋄ Fz(ξnk , ξnk+1, r).

applying limit k→ +∞,

lim
k→+∞

Fz(ξmk+1, ξnk+1, r) = 1 − ϵ. (2.15)

Using the characteristic-Q1,

Fz(ξmk ,Hξmk−1 , r) = Fz(L,M, r) and Fz(ξnk ,Hξnk−1 , r) = Fz(L,M, r)

implies

Fz(ξmk , ξnk , r) ≥ ζ(Fz(ξmk , ξnk , r),Fz(ξmk−1 , ξnk−1 , r)) > Fz(ξmk−1 , ξnk−1 , r)

applying limit k→ +∞,

1 − ϵ ≥ lim
k→+∞

ζ(Fz(ξmk , ξnk , r),Fz(ξmk−1 , ξnk−1 , r)) > 1 − ϵ,

which contradict characteristic-S. Thus {ξn} is a Cauchy sequence. With the completeness of the space
(E,Fz, ⋄) and L is a closed subset of E ensuring sequence {ξn} converges to some u ∈ L for every r > 0, that
is

lim
n→+∞

Fz(ξn,u, r) = 1.

Moreover,

Fz(L,M, r) = Fz(ξn+1,Hξn, r) ≥Fz(ξn+1,u, r) ⋄ Fz(u,Hξn, r)
≥Fz(ξn+1,u, r) ⋄ Fz(u, ξn+1, r) ⋄ Fz(ξn+1,Hξn, r)
≥Fz(ξn+1,u, r) ⋄ Fz(u,Hξn, r)
≥Fz(ξn+1,u, r) ⋄ Fz(u, ξn+1, r) ⋄ Fz(L,M, r)
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applying limit n→ +∞,

Fz(L,M, r) ≥ 1 ⋄ lim
n→+∞

Fz(u,Hξn, r) ≥ 1 ⋄ 1 ⋄ Fz(L,M, r) =⇒ lim
n→+∞

Fz(u,Hξn, r)→ Fz(L,M, r)

with assertion-4, u ∈ L0(r). SinceH(L0(r)) ⊆ M0(r) then there exists v ∈ L0(r) such that

Fz(v,Hu, r) = Fz(L,M, r). (2.16)

Combining (2.16) with (2.1),

Fz(v,Hu, r) = Fz(L,M, r)
Fz(ξn+1,Hξn, r) = Fz(L,M, r)

}
=⇒ Fz(v, ξn+1, r) ≥ ζ(Fz(v, ξn+1, r),Fz(u, ξn, r)) > Fz(u, ξn, r)

applying limit n→ +∞ and by characteristic-S, for every r > 0

lim
n→+∞

Fz(v, ξn+1, r) = 1.

Since limit should be unique for any sequence, so conclude v = u, that is

Fz(u,Hu, r) = Fz(v,Hu, r) = Fz(L,M, r).

Take a contrary, for any r > 0, 0 < Fz(u,w, r) < 1, and u , w, w is another best proximity point of H so
that Fz(u,Hu, r) = Fz(L,M, r) and Fz(w,Hw, r) = Fz(L,M, r) then Fz(u,w, r) ≥ ζ(Fz(u,w, r),Fz(u,w, r)) >
Fz(u,w, r), which is contradiction. Thus best proximity point for non-self map is unique.

Example 2.8. A fuzzy set Fz : E × E × (0,+∞)→ [0, 1], where E = R is defined by

Fz(β, η, r) =
( r

r + 1

)d(β,η)

for every r > 0 where d is a usual metric d(β, η) = |β1 − η1| + |β2 − η2| for all β = (β1, β2), η = (η1, η2) ∈ E. Thus
(E,Fz, ⋄) is complete strong fuzzy metric where ⋄ is product triangular-norm.
Define

L =
{
(0, 1 −

1
n

) : n ∈N
}
∪ {(0, 1)}

M =
{
(1, 1 −

1
n

); n ∈N
}
∪ {(1, 1)}

where d(L,M) = 1. Clearly L andM are non-empty closed subsets of E. DefineH : L →M by

H(l,m) =


(
1, 1 −

1
n + 1

)
; if (l,m) = (0, 1 −

1
n

)

(1, 1); if (l,m) = (0, 1).

ClearlyH(L0(r)) ⊆ M0(r), L0(r) = L andM0(r) =M. Define a function ζ : (0, 1] × (0, 1]→ R by

ζ(s1, s2) =


s1 + s2

2
; if s1 > s2

1 ; otherwise

Consider {ξn} = (0, 1 − 1
n ),n ∈N such that Fz(ξn+1,H(ξn), r) = Fz(L,M, r).

Fz(ξn, ξn+1, r) =Fz

((
0, 1 −

1
n

)
,
(
0, 1 −

1
n + 1

)
, r

)
=

( r
r + 1

)|1− 1
n−1+ 1

n+1 |
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=
( r

r + 1

)| 1
n+1−

1
n |

≤

( r
r + 1

)| 1
n+2−

1
n+1 |

= Fz

((
0, 1 −

1
n + 1

)
,
(
0, 1 −

1
n + 2

)
, r

)
= Fz(ξn+1, ξn+2, r)

implies

lim
n→+∞

ζ (Fz(ξn+1, ξn+2, r),Fz(ξn, ξn+1, r)) = lim
n→+∞

ζ

(( r
r + 1

)| 1
n+2−

1
n+1 |

,
( r

r + 1

)| 1
n+1−

1
n |
)

= lim
n→+∞


(

r
r+1

)| 1
n+2−

1
n+1 |
+

(
r

r+1

)| 1
n+1+

1
n |

2

 = 1.

Then quadruplet (E,Fz,H , ζ) where ζ ∈ Z has the characteristic-S. For any sequence {ξn} = (0, 1− 1
n ) where n ∈N

lim
n→∞
Fz(ξn, ξn+1, r) = lim

n→∞
Fz

((
0, 1 −

1
n

)
,
(
0, 1 −

1
n + 1

)
, r

)
= lim

n→∞

( r
r + 1

)| 1
n+1−

1
n |

= 1

then there exist two subsequences ξmk = ξ3k =
(
0, 1 −

1
3k

)
and ξnk = ξ2k =

(
0, 1 −

1
2k

)
of ξn where 3k > 2k > k,

k ∈N such that

Fz(ξmk ,Hξmk−1, r) =Fz

((
0, 1 −

1
3k

)
,H

(
0, 1 −

1
3k − 1

)
, r

)
=Fz

((
0, 1 −

1
3k

)
,
(
1, 1 −

1
3k

)
, r

)
=

r
r + 1

= Fz(L,M, r).

Fz(ξnk ,Hξnk−1, r) =Fz

((
0, 1 −

1
2k

)
,H

(
0, 1 −

1
2k − 1

)
, r

)
=Fz

((
0, 1 −

1
2k

)
,
(
1, 1 −

1
2k

)
, r

)
=

r
r + 1

= Fz(L,M, r).

Then quadruplet (E,Fz,H , ζ) has the characteristic-Q1. Assume that, Fz(l,Hm, r) = Fz(L,M, r) for some l,m ∈ L.
Then

(l,m) =
{
((0, 1), (0, 1)),

((
0, 1 −

1
n + 1

)
,
(
0, 1 −

1
n

))}
Now, we may calculate the following cases:

1. If (l1,m1) =
((

0, 1 −
1

n1 + 1

)
,
(
0, 1 −

1
n1

))
and (l2,m2) =

((
0, 1 −

1
n2 + 1

)
,
(
0, 1 −

1
n2

))
for all n1,n2 ∈N.

Fz(l1,Hm1, r) = Fz

((
0, 1 −

1
n1 + 1

)
,H

(
0, 1 −

1
n1

)
, r

)
= Fz

((
0, 1 −

1
n1 + 1

)
,
(
1, 1 −

1
n1 + 1

)
, r

)
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=
r

r + 1
= Fz(L,M, r).

Fz(l2,Hm2, r) = Fz

((
0, 1 −

1
n2 + 1

)
,H

(
0, 1 −

1
n2

)
, r

)
= Fz

((
0, 1 −

1
n2 + 1

)
,
(
1, 1 −

1
n2 + 1

)
, r

)
=

r
r + 1

= Fz(L,M, r).

implies

ζ(Fz(l1, l2, r),Fz(m1,m2, r))

=
(
Fz

((
0, 1 −

1
n1 + 1

)
,
(
0, 1 −

1
n2 + 1

)
, r

)
,Fz

((
0, 1 −

1
n1

)
,
(
0, 1 −

1
n2

)
, r

))
=ζ

(( r
r + 1

)| 1
n2+1−

1
n1+1 |

,
( r

r + 1

)| 1
n2
−

1
n1
|
)

=


(

r
r+1

)| 1
n2+1−

1
n1+1 |

+
(

r
r+1

)| 1
n2
−

1
n1
|

2


≤

( r
r + 1

)| 1
n2+1−

1
n1+1 |

=Fz

((
0, 1 −

1
n1 + 1

)
,
(
0, 1 −

1
n2 + 1

)
, r

)
= Fz(l1, l2, r)

2. If (l1,m1) = ((0, 1), (0, 1)) and (l2,m2) =
((

0, 1 − 1
n2+1

)
,
(
0, 1 − 1

n2

))
for all n1 ∈N, we have

Fz(l1,Hm2, r) = Fz((0, 1),H(0, 1), r)
= Fz((0, 1), (1, 1), r)

=
( r

r + 1

)
= Fz(L,M, r).

Fz(l2,Hm2, r) = Fz

((
0, 1 −

1
n2 + 1

)
,H

(
0, 1 −

1
n2

)
, r

)
= Fz

((
0, 1 −

1
n2 + 1

)
,
(
1, 1 −

1
n2 + 1

)
, r

)
=

( r
r + 1

)
= Fz(L,M, r).

implies

ζ(Fz(l1, l2, r),Fz(m1,m2, r)) = ζ

(( r
r + 1

) 1
n2+1

,
( r

r + 1

) 1
n2

)

=


(

r
r+1

) 1
n2+1
+

(
r

r+1

) 1
n2

2


≤

( r
r + 1

) 1
n2+1

= Fz

(
(0, 1),

(
0, 1 −

1
n2 + 1

)
, r

)
= Fz(l1, l2, r).

This showsH is a fuzzyZ- proximal contraction of first kind and we may see graphical behaviour of this inequality
by the figure 1 where r = 2 and m,n ∈N.
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Figure 1:

3. If (l1, l2) = (m1,m2) = ((0, 1), (0, 1)), we have

Fz(l1,Hm1, r) = Fz((0, 1),H(0, 1), r)
= Fz((0, 1), (1, 1), r)

=
( r

r + 1

)
= Fz(L,M, r).

Fz(l2,Hm2, r) = Fz((0, 1),H(0, 1), r)
= Fz((0, 1), (1, 1), r)

=
( r

r + 1

)
= Fz(L,M, r).

implies

ζ(Fz(l1, l2, r),Fz(m1,m2, r)) = ζ

(( r
r + 1

)0
,
( r

r + 1

)0
)

=1 = Fz((0, 1), (0, 1), t) = Fz(l1, l2, r).

ThusH is fuzzyZ-Proximal contraction of first kind. Thus, we conclude that all the assertions of Theorem (2.7) are
hold so, there exists unique (0, 1) ∈ L such that Fz((0, 1),H(0, 1), r) = Fz(L,M, r) for all r > 0.

Theorem 2.9. Assume that two non-empty closed subsetsL andM of a complete strong fuzzy metric space (E,Fz, ⋄)
with L0(r) , ϕ andH : L →M satisfying:

1. a continuous mapH is a fuzzyZ- proximal contractive of kind first withH(L0(r)) ⊆ M0(r);

2. The quadruplet (E,Fz,H , ζ) has characteristic-S;
Then there exists a unique member u in L such that Fz(u,Hu, r) = Fz(L,M, r) for all r > 0.

Proof. Sequence construction is {ξn} is similar to that in Theorem (2.2). We must show the sequence is
Cauchy sequence, proof of that part is similar to the Theorem (2.7). The completeness property of the
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space (E,Fz, ⋄) and L being a closed subset of E, then there exists u ∈ L such that lim
n→+∞

ξn = u. SinceH is

continuous,Hξn →Hu and the continuity of Fz implies Fz(ξn+1,Hξn, r)→ Fz(u,Hu, r). From (2.1)

Fz(u,Hu, r) = Fz(L,M, r).

Uniqueness part is similar to Theorem (2.7).

Now, we shall define characteristic-Q2 which is essential to prove the result for fuzzyZ-proximal contraction
of the second kind.

Definition 2.10. The quadruplet (E,Fz,H , ζ) has characteristic-Q2, if for any sequence {ξn} in L0 satisfying
Fz(ξn+1,Hξn, r) = Fz(L,M, r) for every r > 0 such that

Fz(Hξn+1,Hξn+2, r) ≥ Fz(Hξn,Hξn+1, r)

implies
lim

n→+∞
ζ(Fz(Hξn+1,Hξn+2, r),Fz(Hξn,Hξn+1, r)) = 1.

Theorem 2.11. Assume that two non-empty closed subsets L and M of a complete strong fuzzy metric space
(E,Fz, ⋄) with L0(r) , ϕ. Assume L is approximately compact with respect toM andH : L →M satisfying:

1. a continuous mapH is a fuzzyZ- proximal contractive of kind second withH(L0(r)) ⊆ M0(r);
2. The quadruplet (E,Fz,H , ζ) has the characteristic-Q2.

Then there exists a unique member u in L such that Fz(u,Hu, r) = Fz(L,M, r) for every r > 0.

Proof. Define bn(r) = Fz(Hξn,Hξn+1, r) for all n ∈ N ∪ {0} and r > 0. From (2.10), definition of ζ and
characteristic-Q2, we may

bn(r) = Fz(Hξn,Hξn+1, r) ≥ ζ(Fz(Hξn,Hξn+1, r),Fz(Hξn−1,Hξn, r)
> Fz(Hξn−1,Hξn, r) = bn−1(r) (2.17)

for every r > 0. This implies {bn(r)} is increasing sequence must be convergences to some b(r) as n → +∞
for every r > 0, that is

lim
n→+∞

bn(r) = b(r).

To show b(r) = 1 for every r > 0. Instead, let us take 0 < b(r0) < 1 for some r0 > 0 and then by (2.10)

bn(r0) = Fz(Hξn,Hξn+1, r0) ≥ ζ(Fz(Hξn,Hξn+1, r0),Fz(Hξn−1,Hξn, r0))
> Fz(Hξn−1,Hξn, r0) = bn−1(r0) (2.18)

applying limit n→ +∞ in equation (2.17),

lim
n→+∞

Fz(Hξn,Hξn+1, r0) = 1,

which contradict our assumption, so b(r0) = 1 for every r0 > 0. For next, with the similar process of Theorem
(2.7), we can receive that {Hξn} is a Cauchy sequence inM. Since the space (E,Fz, ⋄) is complete andM is
a closed subset of E, there exists z ∈ M such that lim

n→+∞
Hξn = z.

Furthermore,

Fz(z,L, r) ≥Fz(z, ξn+1, r)
≥Fz(z,Hξn, r) ⋄ Fz(Hξn, ξn+1, r)
=Fz(z,Hξn, r) ⋄ Fz(L,M, r)
≥Fz(z,Hξn, r) ⋄ Fz(z,L, r)
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applying limit as n→ +∞,

lim
n→+∞

Fz(z,Hξn, r) = Fz(L,M, r)

Since L is approximately compact with respect toM, there exists a subsequence {ξnk } of {ξn} converging to
element u in L. Therefore

Fz(u, z, r) = lim
k→+∞

Fz(ξnk ,Hξnk−1, r) = Fz(z,L, r).

This implies u ∈ L0(r), since lim
k→+∞

ξnk = u. By continuity ofH and z is convergent point of {Hξn}, It means

lim
k→+∞

Hξnk = Hu = z.

Therefore

Fz(u,Hu, r) = lim
k→+∞

Fz(ξnk ,Hξnk , r) = Fz(L,M, r).

Example 2.12. Consider a fuzzy set Fz : R ×R × (0,+∞)→ (0, 1] defines by

Fz(β, γ, r) =
r

r + d(β, γ)

where d is usual metric onR. Then (R,Fz, ⋄) is an complete strong fuzzy metric space where ⋄ is product triangular-
norm. A function ζ : (0, 1] × (0, 1]→ R defined by ζ(s1, s2) = ψ(s2) where ψ : (0, 1]→ (0, 1] such that s < ψ(s) for
all s ∈ (0, 1) and ψ(1) = 1. Consider

L = {(µ,−1) : µ ∈ R+} and M = {(ν, 1) : ν ∈ R+}

A mapH : L →M defined by, for each (µ,−1) ∈ L

H(µ,−1) =
(
µ

µ + 1
, 1

)
,

whereH(L0) ⊆ M0 and L0(r) = L andM0(r) =M. Consider {ξn} = ( 1
n1
,−1) for every n1 ∈N,

H(ξn) = H(
1
n1
,−1) =

 1
n1

1
n1
+ 1

, 1

 = ( 1
n1 + 1

, 1
)
.

Now,

Fz(ξn+1,Hξn, r) = Fz

(( 1
n1 + 1

,−1
)
,H

( 1
n1
,−1

)
, r

)
= Fz

(( 1
n1 + 1

,−1
)
,
( 1

n1 + 1
, 1

)
, r

)
=

r
r + | 1

n1+1 −
1

n1+1 | + 2

=
r

r + 2
= Fz(L,M, r).
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Now, {ξn} and {ξn+1} be any sequences such that

Fz(Hξn,Hξn+1, r) = Fz

(
H

( 1
n1
,−1

)
,H

( 1
n1 + 1

,−1
)
, r

)
= Fz

(( 1
n1 + 1

, 1
)
,
( 1

n1 + 2
, 1

)
, r

)
=

r
r + | 1

n1+1 −
1

n1+2 |

≤
r

r + | 1
n1+2 −

1
n1+3 |

= Fz(Hξn+1,Hξn+2, r)

implies

lim
n→+∞

ζ

 r
r + | 1

n1+1 −
1

n1+2 |
,

r
r + | 1

n1
−

1
n1+1 |

 = lim
n→+∞

ψ

 r
r + | 1

n1
−

1
n1+1 |

 = 1.

Thus characteristic-Q2 holds. Consider for some u1,u2, x1, x2 ∈ L such that u1 =
(
µ1

µ1+1 ,−1
)
,u2 =

(
µ2

µ2+1 ,−1
)
, x1 =

(µ1,−1), x2 = (µ2,−1), we get

Fz(u1,Hx1, r) = Fz

((
µ1

µ1 + 1
,−1

)
,H(µ1,−1), r

)
= Fz

((
µ1

µ1 + 1
,−1

)
,

(
µ1

µ1 + 1
, 1

)
, r

)
=

r
r + 2

= Fz(L,M, r).

Fz(u2,Hx2, r) = Fz

((
µ2

µ2 + 1
,−1

)
,H(µ2,−1), r

)
= Fz

((
µ2

µ2 + 1
,−1

)
,

(
µ2

µ2 + 1
, 1

)
, r

)
=

r
r + 2

= Fz(L,M, r).

Now, By the fuzzyZ-proximal contraction of second kind,

Fz(Hu1,Hu2, r) = Fz

(
H

(
µ1

µ1 + 1
,−1

)
,H

(
µ2

µ2 + 1
,−1

)
, r

)
= Fz

((
µ1

2µ1 + 1
, 1

)
,

(
µ2

2µ2 + 1
, 1

)
, r

)
=

r
r + | µ1

2µ1+1 −
µ2

2µ2+1 |

≥ ζ

 r
r + | µ1

2µ1+1 −
µ2

2µ2+1 |
,

r
r + | µ1

µ1+1 −
µ2

µ2+1 |


= ψ

 r
r + | µ1

µ1+1 −
µ2

µ2+1 |


>

r
r + | µ1

µ1+1 −
µ2

µ2+1 |

= Fz(Hx1,Hx2, r).

HenceH is fuzzyZ-proximal contraction of second kind, so there exists a unique (0,−1) ∈ L such that
Fz((0,−1),H(0,−1), r)) = Fz(L,M, r) for all r > 0.
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3. Application

In this section, we solve the following boundary value problem. Consider a problem

−
d2w
dv2 = h(v,w(v)), v ∈ [0, 1] (3.1)

with w(0) = w(1) = 0, boundary values, where function h : [0, 1] ×R→ R is a continuous. The problem
(3.1) is equivalent to the following integral equation

w(v) =
∫ 1

0
G(v, s) · h(s,w(s))ds, (3.2)

where v ∈ [0, 1], G(v, s) is a green function defined as

G(v, s) =
{

s(1 − v); 0 ≤ s < v
v(1 − s); v < s ≤ 1.

Consider E = C([0, 1],R) is a set of all positive continuous real-valued functions defined in [0, 1]. Define

a fuzzy set Fz : E2
× (0,+∞) → [0, 1] such as Fz(w1(v),w2(v), r) =

r
r + d(w1,w2)

for every r > 0, where

d(w1(v),w2(v)) = maxv∈[0,1] |w1(v) − w2(v)| for every w1,w2 ∈ E. Then (E,Fz, ⋄) is a complete strong fuzzy
metric spaces where ⋄ is a continuous triangular-norm.
Consider ζ ∈ Z such that

ζ (s1, s2) =


s1 + s2

2
, i f s1 > s2,

1, otherwise.

Now we insert an existence solution to find a unique solution of a non-linear ordinary differential equation
of second order.

Theorem 3.1. Suppose that

1. for every w1(v),w2(v) ∈ [0, 1], λ > 1 and v ∈ [0, 1]

|h(v,w1(v)) − h(v,w2(v))| ≤
1
λ
|w1(v) − w2(v)|

2. a sequence {wn(v)} in E is non-increasing and convergent in (E, d), for each v ∈ [0, 1].

Then the integral equation (3.2) has a unique solution in E.

Proof. Define a mappingH : E → E as

H(w(v)) =
∫ 1

0
G(v, s) · h(s,w(s))ds where v, s ∈ [0, 1].

Take

d(Hw1,Hw2) =max
v∈[0,1]

∣∣∣Hw1(v) −Hw2(v)
∣∣∣

=max
v∈[0,1]

∣∣∣∣∣∣
∫ 1

0
G(v, s) · h(s,w1(s))ds −

∫ 1

0
G(v, s) · h(s,w2(s))ds

∣∣∣∣∣∣
≤max

v∈[0,1]

∫ 1

0
G(v, s)ds · |h(s,w1(s)) − h(s,w2(s))|

≤max
v∈[0,1]

∫ 1

0
G(v, s)ds · max

s∈[0,1]

∣∣∣∣∣w1(s) − w2(s)
λ

∣∣∣∣∣
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=
1
λ

d(w1,w2) · max
v∈[0,1]

∫ 1

0
G(v, s)ds.

We may verify
∫ 1

0 G(v, s)ds =
v
2
−

v2

2
and maxv∈[0,1]

∫ 1

0 G(v, s)ds =
1
8

. This implies

d(Hw1,Hw2) ≤
1

8λ
d(w1,w2).

Now

ζ(Fz(Hw1(v),Hw2(v), r),Fz(w1(v),w2(v), r)) = ζ

 8r

8r + d(w1(v),w2(v))
λ

,
r

r + d(w1(v),w2(v))


=


8r

8r+ d(w1(v),w2(v))
λ

+ r
r+d(w1(v),w2(v))

2


≤

8r

8r + d(w1(v),w2(v))
λ

= Fz(Hw1(v),Hw2(v), r).

Thus H is fuzzy Z-proximal contraction. If {wn(v)} be any sequence in E and using assumption (2), we
have

Fz(wn+1(v),wn+2(v), r) =
(

r
r + d(wn+1(v),wn+2(v))

)
≥

(
r

r + d(wn(v),wn+1(v))

)
= Fz(wn(v),wn+1(v), r)

implies

lim
n→+∞

ζ (Fz(wn+1(v),wn+2(v), r),Fz(wn(v),wn+1(v), r))

= lim
n→+∞

ζ

(
r

r + d(wn+1(v),wn+2(v))
,

r
r + d(wn(v),wn+1(v))

)

= lim
n→+∞



8r

8r+
d(wn(v),wn+1(v))

λ

+
r

r + d(wn(v),wn+1(v))

2


= 1.

The quadruplet (E,Fz,H , ζ) satisfies the characteristic-S. Hence, the mappingH satisfy all the conditions
of Corollary (2.3). Thus integral equation (3.2) has a unique solution in E.

4. Conclusion

This note introduces two distinct categories of fuzzy Z-proximal contractions which serve as a tool
for finding the best proximity point for a non-self mapping defined between two non-empty subsets of a
strong fuzzy metric space. To demonstrate the validity of the proposed results, a few validation examples
are provided. Additionally, the note includes a solution to a non-linear second-order ordinary differential
equation by employing the fuzzyZ-proximal contractive inequality, assuming the space is a strong fuzzy
metric space. We will also able to unify the various fuzzy proximal contractive mappings with the help
of our results with regards to best proximity. This idea can be extend in different ways for more than one
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non-self mappings with weaker relativity in the context of generalized fuzzy spaces, b-fuzzy metric spaces,
fuzzy metric-like spaces, PM spaces, etc.
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