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Abstract. In this paper we give a characterization of two-weighted inequalities for singular operators and
their commutators in generalized weighted Morrey spaces on spaces of homogeneous typeMp,φ

ω (X). We
prove the boundedness of the Calderón-Zygmund singular operators T and their commutators [b,T] from
the spacesMp,φ1

ωδ1
(X) to the spacesMp,φ2

ωδ2
(X), where 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). Finally we

give some examples for singular integral operators onMp,φ
ω (X) as applications of our results.

1. Introduction

As a generalization of Lebesgue spaces, the classical Morrey spaces were introduced by Charles Morrey
[33] in 1938 to study the local behavior of solutions to second-order elliptic partial differential equations.
Moreover, various Morrey spaces are defined in the process of study. Guliyev, Mizuhara and Nakai
[17, 32, 35] introduced generalized Morrey spaces Mp,φ(Rn) (see, also [18, 19, 40]).

Recently, Komori and Shirai [29] defined the weighted Morrey spaces Lp,κ
w (Rn) and studied the bounded-

ness of some classical operators such as the Hardy- Littlewood maximal operator, the Calderón-Zygmund
operator on these spaces. Also, Guliyev in [20] first introduced the generalized weighted Morrey spaces
Mp,φ

w (Rn) and studied the boundedness of the sublinear operators and their higher order commutators
generated by Calderón-Zygmund operators and Riesz potentials in these spaces (see, also [23], [27]). Note
that, Guliyev [20] gave the concept of generalized weighted Morrey space which could be viewed as an
extension of both Mp,φ

w (Rn) and Lp,κ
w (Rn).

R. Coifman and G. Weiss introduced certain topological measure spaces which are equipped with a
metric which is compatible with the given measure in a sense in the 1970s. These spaces are called spaces
of homogeneous type. In this work, we considerMp,φ

ω (X) generalized weighted Morrey spaces on spaces
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A. Aydoğdu et al. / Filomat 39:1 (2025), 213–228 214

of homogeneous type and give a characterization of two-weighted inequalities for singular operators and
their commutators in these spaces. Moreover, we give some examples for singular integral operators on
M

p,φ
ω (X).

2. Preliminaries

We say that X = (X, d, µ) is a space of homogeneous type in the sense of Coifman and Weiss [9] if d is
a quasi-metric on X and µ is a positive measure satisfying the doubling condition, i.e. X is a topological
space endowed with a quasi-metric d and a positive measure µ such that

d
(
x, y
)
= d

(
y, x
)
≥ 0 for all x, y ∈ X,

d
(
x, y
)
= 0 if and only if x = y ,

d
(
x, y
)
≤ Ck

[
d (x, z) + d

(
z, y
)]

for all x, y, z ∈ X,

the balls B(x, r) =
{
y ∈ X : d

(
x, y
)
< r
}
, r > 0, form a basis of neighborhoods of point x, µ is defined on a

σ-algebra of subsets of X which contains the balls, and

0 < µ (B(x, 2r)) < Cµ µ (B(x, r)) < ∞, (1)

where Ck,Cµ ≥ 1 are constants independent of x, y, z ∈ X and r > 0. As usual, the dilation of a ball B = B(x, r)
will be denoted by λB = B(x, λr) for every λ > 0.

Note that, we say
(
X, d, µ

)
satisfies a reverse doubling condition if there exist C′µ > 1,M > 1 such that for

all x ∈ X, r > rx = sup {r > 0 : B(x, r) = {x}} ,

µ (B(x,Mr)) ≥ C′µ µ (B(x, r)) . (2)

Let
(
X, d, µ

)
be a homogeneous space, 1 ≤ p < ∞, φ be a positive measurable function on (0,∞) and ω be

a non-negative measurable function on X. We denote byMp,φ
ω the generalized weighted Morrey space on

spaces of homogeneous type, the space of all functions f ∈ Lloc
p,ω(X) with finite norm

∥ f ∥
M

p,φ
ω
= sup

x∈X,r>0

1
φ(x, r)∥ω∥Lp(B(x,r))

∥ f ∥Lp,ω(B(x,r)),

where the supremum is taken over all balls B(x, r) in X and Lp,ω(B(x, r)) denotes the weighted Lp-space of
measurable functions f for which

∥ f ∥Lp,ω(B(x,r)) ≡ ∥ fχB(x,r)∥Lp,ω(X) =


∫

B(x,r)

| f (y)|pω(y)dµ
(
y
)

1
p

.

Moreover, by WMp,φ
ω we denote the weak generalized weighted Morrey space on spaces of homogeneous

type of all functions f ∈WLloc
p,ω(X) with finite norm

∥ f ∥WMp,φ
ω
= sup

x∈X,r>0

1
φ(x, r)∥ω∥Lp(B(x,r))

∥ f ∥WLp,ω(B(x,r)),

where WLp,ω(B(x, r)) denotes the weak weighted Lp-space of measurable functions f for which

∥ f ∥WLp,ω(B(x,r)) ≡ ∥ fχB(x,r)∥WLp,ω(X) = sup
t>0

t


∫

{y∈B(x,r):| f (y)|>t}

| f (y)|pω(y)dµ
(
y
)

1
p

.
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Note that if ω(x) = χB(x,r), then Mp,φ
ω (X) = Mp,φ(X) is the generalized Morrey space and if φ(x, r) =(

rλ
µ(B(x,r))

) 1
p , thenMp,φ

ω (X) = Lp,λ(X) is the classic Morrey space.
We now recall the definition of Hardy-Littlewood and Calderón-Zygmund operators on space of homo-

geneous type.
Let f be a locally integrable function on X. The so-called of Hardy-Littlewood maximal function is

defined by the formula

M f (x) = sup
r>0

1
µ (B (x, r))

∫
B(x,r)

| f (y)|dµ
(
y
)
,

where µ (B (x, r)) is measure of the ball B(x, r).
The study of maximal operators is one of the most important topics in harmonic analysis. These

significant non-linear operators, whose behavior are very informative in particular in differentiation theory,
provided the understanding and the inspiration for the development of the general class of singular and
potential operators.

Calderón-Zygmund type singular operator is defined as

T f (x) =
∫
X

K(x, y) f (y)dµ
(
y
)

for a.e. x < supp f ,

where K(x, y) is a ”standard singular kernel”, that is, a continuous function defined on {(x, y) ∈ X×X : x , y}
and satisfying the estimates: for all x , y,

|K(x, y)| ≤
C

µ
(
B
(
x, 2d

(
x, y
))) , (3)

and for all M > 1, r > 0, x0 ∈ X, x ∈ B (x0, r) , y < B (x0,Mr)

|K(x0, y) − K(x, y)| ≤
C

µ
(
B
(
x0, 2d

(
x0, y
))) d (x0, x)β

d
(
x0, y
)β , β > 0. (4)

Let

T∗ f (x) = sup
ε>0
|Tε f (x)|

be the maximal singular operator, where Tε f (x) is the usual truncation

Tε f (x) =
∫

{y∈X:d(x,y)≥ε}

K(x, y) f (y)dµ
(
y
)
.

It is well known that T∗ f exists almost everywhere whenever f is a step function. The almost everywhere
existence of the limit (of certain integral averages) was known for dense subset of L1 and the result was
extended to all of L1 by establishing control over the corresponding maximal operator.

Theorem 2.1. [4, 31] Let d be a quasi-metric on a set X. Then there exists a quasi-metric ϑ on X such that:
1) d and ϑ are equivalent, that is there exist constants C1,C2 such that for every x, y ∈ X

C1ϑ
(
x, y
)
≤ d
(
x, y
)
≤ C2ϑ

(
x, y
)
,

2) ϑ is ”locally Hölder continous”, more precisely there exist α ∈ (0, 1] and C3 > 0 such that for every x, y, z ∈ X∣∣∣ϑ (x, z) − ϑ
(
y, z
)∣∣∣ ≤ C3ϑ

(
x, y
)α [ϑ (x, z) + ϑ

(
y, z
)]1−α .
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By Theorem 2.1, we can endow X with a quasi-metric ϑ equivalent to d and locally Hölder of exponent
α. Consider the functionsΨ j : [0,∞) −→ [0, 1]

(
j = 1, 2

)
defined by

Ψ1 (t) =


0 , t ≤ 1
t − 1 , 1 < t < 2
1 , t ≥ 2.

Ψ2 (t) =


1 , t ≤ 2
3 − t , 2 < t < 3
0 , t ≥ 3.

For any ϵ ∈ (0, 1) set

Ψϵ (t) =


Ψ1

(
t
ϵ

)
, 0 ≤ t ≤ 2

Ψ2 (ϵt) , t ≥ 2

Kϵ(x, y) = K(x, y)Ψϵ
(
ϑ
(
x, y
))
.

Theorem 2.2. [4] Let
(
X, d, µ

)
be a homogeneous space, µ is a regular measure. Let K : X × X\

{
x , y

}
−→ R a

kernel satisfying the following conditions:
1) The condition (3).
2) The condition (4).
3) There exists Cr > 0 such that for every r,R, 0 < r < R < ∞, a.e. x∣∣∣∣∣∣∣∣∣∣

∫
r<d(x,y)<R

K(x, y)dµ
(
y
)∣∣∣∣∣∣∣∣∣∣ ≤ Cr. (5)

Theorem 2.3. [4] Let
(
X, d, µ

)
be a homogeneous space such that µ is a regular measure and, if X is unbounded,

the reverse doubling condition (2) holds. Let K be a kernel satisfying all the assumptions of Theorem 2.2. Moreover
assume that for a.e. x ∈ X there exists

lim
ϵ−→0

∫
d(x,y)<1

Kϵ(x, y)dµ
(
y
)
≡ b (x) . (6)

Throughout this paper we always assume that µ(X) = ∞, the space of compactly supported continuous
function is dense in L1(X, µ) and that X is N-homogeneous
(N > 0), i.e.

C1rN
≤ µ (B(x, r)) ≤ C2rN, (7)

where Ci ≥ 1 (i = 1, 2) are constants independent of x and r.
Now, conditions 3 and 4 can be rewritten respectively as: for all x , y

|K(x, y)| ≤
C

d
(
x, y
)N ,
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and for all M > 1, x0 ∈ X, x ∈ B (x0, r) and y < B (x0,Mr)

|K(x0, y) − K(x, y)| ≤ C
d (x0, x)β

d
(
x0, y
)β+N , β > 0. (8)

In this paper we aim to give a characterization of two-weighted inequalities for singular operators and
their commutators in generalized weighted Morrey spaces on spaces of homogeneous type. Two-weight
norm inequalities for fractional maximal operators and singular integrals on Lebesgue spaces were widely
studied (see, for example [10–12, 28, 30]). The weighted norm inequalities with different types of weights
on Morrey spaces were also studied (see, for example [24, 36, 39]). The two-weight norm inequality for the
Hardy-Littlewood maximal function on Morrey spaces was obtained in [42]. Two-weight norm inequalities
on weighted Morrey spaces for fractional maximal operators and fractional integral operators were obtained
in [38]. Also, two-weighted inequalities for maximal operator and its commutators in generalized weighted
Morrey spaces on spaces of homogeneous type were studied in [2] and [3], respectively.

In the sequel we use the letter C for a positive constant, independent of appropriate parameters and not
necessary the same at each occurrence. For every p ∈ [1,∞], we denote p′ the conjugate of p, i.e., 1

p +
1
p′ = 1.

M(R+),M+(R+) andM+(R+;↑)
stand for the set of Lebesgue-measurable functions onR+, and its subspaces of nonnegative and nonnegative
non-decreasing functions, respectively.

Let
(
X, d, µ

)
be space of N-homogeneous type as mentioned in Section 1. We now recall the definition of

Ap weight functions.

Definition 2.4. The weight function ω belongs to the class Ap(X) for 1 ≤ p < ∞, if

sup
x∈X,r>0

µ (B (x, r))−1
∫

B(x,r)

ωp(y)dµ
(
y
)

1
p
µ (B (x, r))−1

∫
B(x,r)

ω−p′ (y)dµ
(
y
)

1
p′

is finite and ω belongs to A1(X), if there exists a positive constant C such that for any x ∈ X and r > 0

µ (B (x, r))−1
∫

B(x,r)

ω(y)dµ
(
y
)
≤ C ess sup

y∈B(x,r)

1
ω(y)

.

The weight function (ω1, ω2) belongs to the class Ãp(X) for 1 < p < ∞, if

sup
x∈X,r>0

µ (B (x, r))−1
∫

B(x,r)

ωp
2(y)dµ

(
y
)

1
p
µ (B (x, r))−1

∫
B(x,r)

ω−p′

1 (y)dµ
(
y
)

1
p′

is finite.

The following theorem was proved in [34].

Theorem 2.5. Let 1 ≤ p < ∞.
1) Then the operator M is bounded in Lp,ω(X) if and only if ω ∈ Ap(X).
2) Then the operator M is bounded from L1,ω(X) to WL1,ω(X) if and only if ω ∈ A1(X).

Lemma 2.6. [37] Let 1 < p < ∞ and (ω1, ω2) ∈ Ãp(X), then (ω−1
2 , ω

−1
1 ) ∈ Ãp′ (X), with 1

p +
1
p′ = 1.

Lemma 2.7. [37] Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). If q−1
p−1 = δ, then (ω1, ω2) ∈ Ãq′ (X), with

1
p +

1
p′ = 1.
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Corollary 2.8. [37] Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X), then the operator M is bounded from Lp,ωδ1
(X)

to Lp,ωδ2
(X).

Let M♯ be the sharp maximal function defined by

M♯ f (x) = sup
r>0
µ (B (x, r))−1

∫
B(x,r)

| f (y) − fB(x,r)|dµ
(
y
)
,

where fB(x,r)(x) = µ (B (x, r))−1
∫

B(x,r)
f (y)dµ

(
y
)
.

Lemma 2.9. Let 1 < p < ∞ and ω ∈ Ap(X). Then

∥ fω∥Lp ≤ C∥ωM♯ f ∥Lp

with a constant C > 0 not depending on f .

Proposition A. [1] Let T be a Calderon-Zygmund operator. Then for arbitrary s; 0 < s < 1, there exists a
constant Cs > 0 such that

[(|T f |s)♯]
1
s (x) ≤ CsM f (x)

for all f ∈ C∞0 (X); x ∈ X.

Theorem 2.10. Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). Then the operators T and T∗ are bounded from
Lp,ωδ1

(X) to Lp,ωδ2
(X).

Proof. By the Proposition A, Lemma 2.9 and Theorem 2.5, we derive the operator T is bounded from
Lp,ωδ1

(X) to Lp,ωδ2
(X).

The boundedness of the operator T∗ follows from the known estimate

T∗ f (x) ≤ c[M(T f )(x) +M f (x)],

from Theorem 2.5 and Theorem 2.10.

Corollary 2.11. Let 1 < p < ∞ and ω ∈ Ap(X), then the singular integral operator T is bounded in Lp,ω(X).

Definition 2.12. We define the BMO(X) space as the set of all locally integrable functions f such that

∥ f ∥BMO = sup
x∈X, r>0

µ (B (x, r))−1
∫

B(x,r)

| f (y) − fB(x,r)|dµ
(
y
)
< ∞

or

∥ f ∥BMO = inf
C

sup
x∈X, r>0

µ (B (x, r))−1
∫

B(x,r)

| f (y) − C|dµ
(
y
)
< ∞.

Definition 2.13. We define the BMOp,ω(X) (1 ≤ p < ∞) space as the set of all locally integrable functions f such
that

∥ f ∥BMOp,ω = sup
x∈X, r>0

∥( f (·) − fB(x,r))χB(x,r)∥Lp,ω(X)

∥ω∥Lp(B(x,r))

or

∥ f ∥BMOp,ω = sup
x∈X, r>0

1
µ (B (x, r))

∥( f (·) − fB(x,r))χB(x,r)∥Lp,ω(X)∥ω
−1
∥Lp′ (B(x,r)) < ∞.
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Theorem 2.14. [26] Let 1 ≤ p < ∞ and ω be a Lebesgue measurable function. If ω ∈ Ap(X), then the norms
∥ · ∥BMOp,ω and ∥ · ∥BMO are mutually equivalent.

We will need the following lemma while proving our main theorems.

Lemma 2.15. [25] Let b ∈ BMO(X). Then there is a constant C > 0 such that∣∣∣bB(x,r) − bB(x,t)

∣∣∣ ≤ C∥b∥BMO ln
t
r

for 0 < 2r < t,

where C is independent of b, x, r, and t.

Let L∞,ω(R+) be the weighted L∞-space with the norm

∥1∥L∞,ω(R+) = ess sup
t>0

ω(t)1(t).

We denote

A =
{
φ ∈M+(R+; ↑) : lim

t→0+
φ(t) = 0

}
.

Let u be a continuous and non-negative function on R+. We define the supremal operator Su by

(Su1)(t) := ∥u 1∥L∞(0,t), t ∈ (0,∞).

The following theorem was proved in [5].

Theorem 2.16. [5] Suppose that v1 and v2 are nonnegative measurable functions such that 0 < ∥v1∥L∞(0,t) < ∞ for
every t > 0. Let u be a continuous nonnegative function on R. Then the operator Su is bounded from L∞,v1 (R+) to
L∞,v2 (R+) on the coneA if and only if∥∥∥∥v2Su

(
∥v1∥

−1
L∞(0,·)

)∥∥∥∥
L∞(R+)

< ∞.

We will use the following statement on the boundedness of the weighted Hardy operator

Hw1(t) :=

t∫
0

1(s)w(s)ds, H∗w1(t) :=

∞∫
t

1(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [21].

Theorem 2.17. [21] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood of the origin.
The inequality

sup
t>0

v2(t)H∗w1(t) ≤ C sup
t>0

v1(t)1(t)

holds for some C > 0 for all non-negative and non-decreasing 1 on (0,∞) if and only if

B := sup
t>0

v2(t)

∞∫
t

w(s)ds
ess sup

s<τ<∞
v1(τ)

< ∞.
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Theorem 2.18. [21, 22] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood of the
origin. The inequality

sup
t>0

v2(t)Hw1(t) ≤ C sup
t>0

v1(t)1(t) (9)

holds for some C > 0 for all non-negative and non-decreasing 1 on (0,∞) if and only if

B := sup
t>0

v2(t)

t∫
0

w(s)ds
sup0<τ<s v1(τ)

< ∞.

Moreover, the value C = B is the best constant for (9).

3. Two-weighted inequalities for singular integral operators and their commutators inMp,φ
ω (X)

Let T be a Calderón-Zygmund singular integral operator and b ∈ BMO(X). A well known result of
Coifman, Rochberg and Weiss [8] states that the commutator operator [b,T] f = T(b f ) − b T f is bounded on
Lp(X) for 1 < p < ∞. The commutator of Calderón-Zygmund operators plays an important role in studying
the regularity of solutions of elliptic partial differential equations of second order (see, for example, [6], [7],
[14], [15], [16]).

In this section we prove two-weighted inequalities for singular integral operators and their commutators
in generalized weighted Morrey spaces on spaces of homogeneous type. We start with the following lemma.

Lemma 3.1. [14] Let 1 < s < ∞, b ∈ BMO(X), then there exists C > 0 such that for all x ∈ X, the following
inequality holds

|[b,T] f |(x) ≤M(|[b,T] f |(x)) ≤ C∥b∥BMO

((
M|T f |s

) 1
s (x) +

(
M| f |s

) 1
s (x)
)
.

Theorem 3.2. Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). Then

∥T f ∥Lp,ωδ2
(B(x,r)) ≤ C∥ωδ2∥Lp(B(x,r))

∞∫
r

∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t

(10)

for every f ∈ Lp,ωδ1
(X), where C does not depend on f , x and r.

Proof. We represent f as

f = f1 + f2, f1(y) = f (y)χB(x,2kr)(y), f2(y) = f (y)χX\B(x,2kr)(y), r > 0, (11)

where k is the constant from the quasi-triangle inequality and have

∥T f ∥Lp,ωδ2
(B(x,r)) ≤ ∥T f1∥Lp,ωδ2

(B(x,r)) + ∥T f2∥Lp,ωδ2
(B(x,r)).

From Theorem 2.10 we obtain

∥T f1∥Lp,ωδ2
(B(x,r)) ≤ ∥T f1∥Lp,ωδ2

(X) ≤ C∥ f1∥Lp,ωδ1
(X) = C∥ f ∥Lp,ωδ1

(B(x,2kr)), (12)

where C does not depend on f . From (12) we get

∥T f1∥Lp,ωδ2
(B(x,r)) ≤ C∥ωδ2∥Lp(B(x,r))

∞∫
r

∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t
, (13)
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which is easily obtained from the fact that ∥ f ∥Lp,ωδ1
(B(x,2kr)) is non-decreasing in r, therefore ∥ f ∥Lp,ωδ1

(B(x,2kr)) on the

right-hand side of (12) is dominated by the right-hand side of (13). To estimate ∥T f2∥Lp,ωδ2
(B(x,r)), we observe

that

|T f2(y)| ≤ C
∫

X\B(x,2kr)

| f (z)|

d
(
y, z
)N dµ (z) ,

where y ∈ B(x, r) and the inequalities d
(
x, y
)
≤ r, d

(
y, z
)
≥ 2kr imply

1
2k

d
(
y, z
)
≤ d (x, z) ≤

(
k +

1
2

)
d
(
y, z
)
,

finally we get

|T f2(y)| ≤ C
∫

X\B(x,2kr)

| f (z)|

d (x, z)N dµ (z) .

To estimate T f2(y), for y ∈ B(x, r)∫
X\B(x,2kr)

| f (z)|

d (x, z)N dµ (z)

= −N
∫

X\B(x,2kr)

| f (z)|

∞∫
d(x,z)

t−N−1dtdµ (z)

≤ C

∞∫
2kr

t−N−1
∫

2kr≤d(x,z)≤t

| f (z)|dµ (z) dt

≤ C

∞∫
2r

t−N−1
∫

B(x,t)

| f (z)|dµ (z) dt

≤ C

∞∫
r

t−N−1
∥ω−δ1 χB(x,t)∥Lp′ (X)∥ f ∥Lp,ωδ1

(B(x,t))dt.

We prove the following inequality∫
X\B(x,2kr)

| f (z)|

d (x, z)N dµ (z) ≤ C

∞∫
r

t−N−1
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt. (14)

Hence by inequality (14), we get

∥T f2∥Lp,ωδ2
(B(x,r)) ≤ C∥χB(x,r)∥Lp,ωδ2

(X)

∞∫
r

t−N−1
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt

≤ C∥ωδ2∥Lp(B(x,r))

∞∫
r

∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t
. (15)

From (13) and (15) we arrive at (10).
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Theorem 3.3. Let 1 < p < ∞, 0 < δ < 1, (ω1, ω2) ∈ Ãp(X) and let the functions φ1(x, r) and φ2(x, r) satisfy the
condition

∞∫
r

ess inf
t<s<∞

φ1(x, s)∥ωδ1∥Lp(B(x,s))

∥ωδ2∥Lp(B(x,t))

dt
t
≤ Cφ2(x, r), (16)

where C does not depend on x ∈ X and r.
Then the operator T is bounded from the spaceMp,φ1

ωδ1
(X) to the spaceMp,φ2

ωδ2
(X).

Proof. Let f ∈ Mp,φ1

ωδ1
(X). By (16), Theorems 2.17 and 3.2 with v2 =

1
φ2(x,t) , 1 = ∥ f ∥Lp,ωδ1

(B(x,t)), w =

t−1
∥ωδ2∥

−1
Lp(B(x,t)) and v1 =

1
φ1(x,t)∥ωδ1∥Lp (B(x,t))

we get

∥T f ∥
M

p,φ2
ωδ2

(X) ≤ C sup
x∈X, r>0

∥ωδ2∥Lp(B(x,r))

φ2(x, r)∥ωδ2∥Lp(B(x,r))

∞∫
r

∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t

≤ C sup
x∈X, r>0

1
φ1(x, r)∥ωδ1∥Lp(B(x,r))

∥ f ∥Lp,ωδ1
(B(x,t))

= C∥ f ∥
M

p,φ1
ωδ1

(X),

which completes the proof.

Theorem 3.4. Let 1 < p < ∞, 0 < δ < 1, b ∈ BMO(X) and (ω1, ω2) ∈ Ãp(X), ω1 ∈ Ap(X). Then the operator [b,T]
is bounded from Lp,ωδ1

(X) to Lp,ωδ2
(X).

Proof. Let f ∈ Lp,ωδ1
(X), b ∈ BMO(X) and (ω1, ω2) ∈ Ãp(X), ω1 ∈ Ap(X). From Lemma 3.1, Corollary 2.8

and Corollary 2.11 we have∥∥∥[b,T] f
∥∥∥

Lp,ωδ2
(X)
≤

∥∥∥M([b,T] f )
∥∥∥

Lp,ωδ2
(X)
≤ C∥b∥BMO

∥∥∥∥(M|T f |s
) 1

s +
(
M| f |s

) 1
s

∥∥∥∥
Lp,ωδ2

(X)

≤ C∥b∥BMO

∥∥∥∥(M|T f |s
) 1

s

∥∥∥∥
Lp,ωδ2

(X)
+
∥∥∥∥(M| f |s) 1

s

∥∥∥∥
Lp,ωδ2

(X)


≤ C∥b∥BMO

∥∥∥∥(|T f |s
) 1

s

∥∥∥∥
Lp,ωδ1

(X)
+
∥∥∥∥(| f |s) 1

s

∥∥∥∥
Lp,ωδ1

(X)

 ≤ C∥b∥BMO

∥∥∥ f
∥∥∥

Lp,ωδ1
(X)
.

We can easily get the following.

Theorem 3.5. Let 1 < p < ∞, 0 < δ < 1, b ∈ BMO(X) and (ω1, ω2) ∈ Ãp(X), ω1, ω2 ∈ Ap(X). Then

∥[b,T] f ∥Lp,ωδ2
(B(x,r)) ≤ C∥b∥BMO∥ω

δ
2∥Lp(B(x,r))

∞∫
r

(
1 + ln

t
r

) ∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t

(17)

for every f ∈ Lp,ωδ1
(X), where C does not depend on f , x and r.

Proof. We represent function f as in (11) and have

∥[b,T] f ∥Lp,ωδ2
(B(x,r)) ≤ ∥[b,T] f1∥Lp,ωδ2

(B(x,r)) + ∥[b,T] f2∥Lp,ωδ2
(B(x,r)).
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By Theorem 3.4 we obtain

∥[b,T] f1∥Lp,ωδ2
(B(x,r)) ≤ ∥[b,T] f1∥Lp,ωδ2

(X)

≤ C∥b∥BMO∥ f1∥Lp,ωδ1
(X) = C∥b∥BMO∥ f ∥Lp,ωδ1

(B(x,2kr)), (18)

where C does not depend on f . From (18) we obtain

∥[b,T] f1∥Lp,ωδ2
(B(x,r)) ≤ C∥b∥BMO∥ω

δ
2∥Lp(B(x,r))

∞∫
r

(
1 + ln

t
r

) ∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t

(19)

which is easily obtained from the fact that ∥ f ∥Lp,ωδ1
(B(x,2kr)) is non-decreasing in r, therefore ∥ f ∥Lp,ωδ1

(B(x,2kr)) on

the right-hand side of (18) is dominated by the right-hand side of (19). To estimate ∥[b,T] f2∥Lp,ωδ2
(B(x,r)), we

observe that

|[b,T] f2(y)| ≤ C
∫

X\B(x,2kr)

|b(y) − b(z)|

d
(
y, z
)N | f (z)| dµ (z) ,

where y ∈ B(x, r) and the inequalities d
(
x, y
)
≤ r, d

(
y, z
)
≥ 2kr imply

1
2k

d
(
y, z
)
≤ d (x, z) ≤

(
k +

1
2

)
d
(
y, z
)
,

and therefore

|[b,T] f2(y)| ≤ C
∫

X\B(x,2kr)

|b(y) − b(z)|

d (x, z)N | f (z)| dµ (z) .

To estimate [b,T] f2, we first prove the following auxiliary inequality

∫
X\B(x,2kr)

|b(y) − b(z)|

d (x, z)N | f (z)| dµ (z) ≤ C∥b∥BMO

∞∫
r

t−N−1
(
1 + ln

t
r

)
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt. (20)

To estimate [b,T] f2(y), we observe that for y ∈ B(x, r) we have

∫
X\B(x,2kr)

|b(y) − b(z)|

d (x, z)N | f (z)| dµ (z)

≤

∫
X\B(x,2kr)

|b(z) − bB(x,r)|

d (x, z)N | f (z)| dµ (z) +
∫

X\B(x,2kr)

|b(y) − bB(x,r)|

d (x, z)N | f (z)| dµ (z) = J1 + J2.
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By Lemma 2.15 ,we obtain

J1 =

∫
X\B(x,2kr)

|b(z) − bB(x,r)|

d (x, z)N | f (z)| dµ (z)

= −N
∫

X\B(x,2kr)

|b(z) − bB(x,r)|| f (z)|dµ (z)

∞∫
d(x,z)

t−N−1dt

≤ C

∞∫
2kr

t−N−1
∫

2kr≤d(x,z)≤t
|b(z) − bB(x,r)|| f (z)|dµ (z) dt

≤ C

∞∫
2r

t−N−1
∥b(·) − bB(x,t)∥Lp′ ,ω−δ1

(B(x,t))∥ f ∥Lp,ωδ1
(B(x,t))dt + C

∞∫
2r

t−N−1
|bB(x,r) − bB(x,t)|

∫
B(x,t)

| f (z)|dµ (z) dt

≤ C∥b∥BMO

∞∫
r

t−N−1
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt + C∥b∥BMO

∞∫
r

t−N−1 ln
t
r
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt.

To estimate J2, we have

J2 =|b(y) − bB(x,r)|

∫
X\B(x,2kr)

| f (z)|

d (x, z)N dµ (z)

≤ Cµ (B (x, r))−1
∫

B(x,r)

|b(y) − b(z)|dµ (z)

∞∫
2r

t−N−1
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt

≤ CMbχB(x,r)(y)

∞∫
r

t−N−1
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt,

where C does not depend on x, t.
Hence by inequality (20), we get

∥[b,T] f2∥Lp,ωδ2
(B(x,r)) ≤ C∥χB(x,r)∥Lp,ωδ2

(X)∥b∥BMO

∞∫
r

t−N−1
(
1 + ln

t
r

)
∥ω−δ1 ∥Lp′ (B(x,t))∥ f ∥Lp,ωδ1

(B(x,t))dt

≤ C∥b∥BMO∥ω
δ
2∥Lp(B(x,r))

∞∫
r

(
1 + ln

t
r

) ∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t
. (21)

From (19) and (21) we arrive at (17).

Theorem 3.6. Let 1 < p < ∞, 0 < δ < 1, b ∈ BMO(X) and (ω1, ω2) ∈ Ãp(X), ω1, ω2 ∈ Ap(X). Let the functions
φ1(x, r) and φ2(x, r) satisfy the condition

∞∫
r

(
1 + ln

t
r

) ess inf
t<s<∞

φ1(x, s)∥ωδ1∥Lp(B(x,s))

∥ωδ2∥Lp(B(x,t))

dt
t
≤ Cφ2(x, r), (22)

where C does not depend on x ∈ X and r.
Then the operator [b,T] is bounded from the spaceMp,φ1

ωδ1
(X) to the spaceMp,φ2

ωδ2
(X).



A. Aydoğdu et al. / Filomat 39:1 (2025), 213–228 225

Proof. Let f ∈ Mp,φ1

ωδ1
(X). By (22), Theorems 2.17 and 3.5 we obtain

∥[b,T] f ∥
M

p,φ2
ωδ2

(X)

≤ C∥b∥BMO sup
x∈X, r>0

∥ωδ2∥Lp(B(x,r))

φ2(x, r)∥ωδ2∥Lp(B(x,r))

∞∫
r

(
1 + ln

t
r

) ∥ f ∥Lp,ωδ1
(B(x,t))

∥ωδ2∥Lp(B(x,t))

dt
t

≤ C∥b∥BMO sup
x∈X, r>0

1
φ1(x, r)∥ωδ1∥Lp(B(x,r))

∥ f ∥Lp,ωδ1
(B(x,r)) = C∥b∥BMO∥ f ∥

M
p,φ1
ωδ1

(X),

which completes the proof.

4. Some examples for singular integral operators onMp,φ
ω (X)

In this section we give some applications of our main results. We apply the theorems of Section 3 to the
operators which are estimated from above by singular integral operators. Now we give some examples.

Example 1. [4, 13]
Let X = RN, µ is the Lebesgue measure, d the distance defined as follows. Let α1, α2, ..., αN be N ∈ R,

with 1 ≤ α1 ≤ α2 ≤ ... ≤ αN, for all x ∈ RN
\ {0} a unique positive solution ρ (x) , the following equation holds

N∑
k=1

x2
k

ρ2αk
= 1.

Set ρ (0) = 0 and define d
(
x, y
)
= ρ
(
x − y

)
. Introducing the polar type change of variables

x1 = ρα1 cosφ1... cosφN−2 cosφN−1
x2 = ρα2 cosφ1... sinφN−1
...
xN = ραN sinφ1

we find dx = ρα−1dρdσ,with α =
N∑

k=1
αk and dσ the surface measure on

∑
N−1
= {|x| = 1} .Hence for all r > 0, we

can estimate

µ (B (x, r)) = CN rα. (23)

Particularly (7) is satisfied and
(
RN, d, dx

)
is a homogeneous space. The unit ball related to d is the

Euclidean unit ball. Let

K
(
x, y
)
=
Ω
(
x − y

)
ρ
(
x − y

)α , (24)

where the function Ω has the following mixed homogeneity of degree zero, for all t > 0, x ∈ RN

Ω (tα1 x1, tα2 x2, ..., tαN xN) = Ω (x1, x2, ..., xN) (25)

and the Hölder condition holds i.e. there exist C > 0, β ∈ (0, 1] such that for all x, y ∈
∑

N−1

|Ω (x) −Ω (x)| ≤ C
∣∣∣x − y

∣∣∣β . (26)

It is easy to check that the following condition (8) is fullfilled:
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If α, β are as above, there exists a constant C such that for all x0 ∈ RN, x ∈ B (x0, r) , y < B (x0, 2r)

|K(x0, y) − K(x, y)| ≤ C
d (x0, x)β

d
(
x0, y
)β+α . (27)

The condition (3) follows the definition of K and from (23). Furthermore, if we suppose that Ω holds
the vanishing property∫

∑
N−1

Ω (x) dσ (x) = 0, (28)

then conditions (5) and (6) are trivial. Furthermore, by Theorem 2.2, 2.3, for all p ∈ (1,∞) it is well defined

T f (x) = lim
ϵ−→0

∫
Kϵ(x, y) f

(
y
)

d
(
y
)
,

where the limit exists in Lp sense and T is continuous.
Kernels of the above kind arise for instance considering parabolic operators with constants coefficients

L =
n∑

j,k=1

a jk∂
2
ξ jξk
− ∂t,

where a jk is a positive and symmetric matrix. Here x≡ (ξ, t) ∈ Rn+1
≡ RN (we set N = n + 1). Let Γ0 be the

fundamental solution for L, with pole at the origin, and let

K
(
x, y
)
=
(
∂2
ξ jξk
Γ0
) (

x − y
)
, for any j, k = 1, 2, ...,n. (29)

Then K is a kernel as in (24)- (25), with α1 = α2 = ... = αn = 1, αn+1 = 2. For any test function u we can write

u (x) =
∫
Rn+1

Γ0 (x − y
)

Lu
(
y
)

dy

and, differentiating twice the above formula with respect to ξwe find

∂2
ξ jξk

u (x) = P.V.
∫
Rn+1

∂2
ξ jξk
Γ0 (x − y

)
Lu
(
y
)

dy + CLu (x) .

Furthermore, the Lp-continuity of the singular integral implies Lp -estimates for the second derivatives of
u, in terms of Lu and u.

Corollary 4.1. Let 1 < p < ∞, 0 < δ < 1, (ω1, ω2) ∈ Ãp(X), ω1, ω2 ∈ Ap(X) and the functions φ1(x, r), φ2(x, r)
satisfy the condition (16) . Then the singular integral operator T given with the kernel K

(
x, y
)

given with equation
(29) is bounded from the spaceMp,φ1

ωδ1
(X) to the spaceMp,φ2

ωδ2
(X).

Example 2. [4, 41]
Let 0 ≤ γ < n, X = Rn, dµ = |x|−γ dx and d the eucledean distance. It is well known that for −n < α <

n
(
p − 1

)
, |x|α ∈ Ap (Rn), hence for 1 ≤ p < ∞, 0 ≤ γ < n, |x|−γ ∈ Ap (Rn) . Particularly dµ is doubling, so that

X is a homogeneous space, one can prove that dµ satisfies also a reverse doubling condition. Note that dµ
is not translation invariant. Now, let

K
(
x, y
)
=
Ω
(
x − y

)∣∣∣x − y
∣∣∣n (|x|γ − ∣∣∣y∣∣∣γ) (30)
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where Ω is a homogeneous function of degree zero satisfying (26) - (27). In this case (7) does not hold, but
the following inequalities can be easily verified

µ
(
B
(
x, 2d

(
x, y
)))
≤


C
∣∣∣x − y

∣∣∣n |x|−γ ,
∣∣∣x − y

∣∣∣ < |x|2
C
∣∣∣x − y

∣∣∣n−γ ,
∣∣∣x − y

∣∣∣ > |x|2 . (31)

By (30) and (31), we can see that K satisfies condition (3). Moreover, one can prove that K satisfies condition
(4) with exponent β

′

= min
(
β, γ
)

(β is the same number appearing in (27)). Finally, also (5) and (6) can be
proved, the last one following from analogous result for classical Calderón-Zygmund integrals on Rn. So
also in this case, by Theorems 2.2, 2.3 the kernel K defines a unique Calderón-Zygmund operator, for which
the commutator estimate holds.

Corollary 4.2. Let 1 < p < ∞, 0 < δ < 1, (ω1, ω2) ∈ Ãp(X), ω1, ω2 ∈ Ap(X) and the functions φ1(x, r), φ2(x, r)
satisfy the condition (16) . Then the singular integral operator T given with the kernel K

(
x, y
)

given with equation
(30) is bounded from the spaceMp,φ1

ωδ1
(X) to the spaceMp,φ2

ωδ2
(X).
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