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Abstract. We consider the singularity formation of strong solutions to the three-dimensional incompress-
ible fractional Navier-Stokes equations in the whole space. By making use of the Bony decomposition
technique, we prove that a unique local strong solution does not blow-up at time T if deformation tensor
belongs to nonhomogeneous Besov spaces. As a bi-product, the result improves some well-known results
on regularity for the particular case of classical Navier-Stokes equations.

1. Introduction

In this paper, we consider the Cauchy problem for the 3D fractional Navier-Stokes equations (FNSE for
short)

∂tu + (u · ∇)u + (−∆)αu + ∇p = 0, x ∈ R3, t > 0
∇ · u = 0, x ∈ R3, t > 0
u|t=0 = u0(x), x ∈ R3.

(1)

Here u = u(x, t) : R3
× [0,∞)→ R3 is the velocity and the scalar function p = p(x, t) : R3

× [0,∞)→ R is the
total kinetic pressure. The constant α is a positive parameter to measure the dissipations. Moreover, the
operator (−∆)α is defined as follows:

̂(−∆)α f (ξ) = |ξ|2α f̂ (ξ),

where f̂ denotes the fourier transform of the function f . More details on (−∆)α can be found in [21], as a
notation, we take Λ as (−∆)

1
2 .

It is well-known that the local and global-in time existence of strong solutions to the FNSE (1) were
established by Lions [16] for α ≥ 5

4 (also see [29]). In [29], Wu also showed that when α > 0, equations
(1) with u0 ∈ L2 possess a global weak solution and local in time strong solution for given initial value
u0 ∈ H1. Unfortunately, while such weak solutions are well suited to study in the sense that global-in-time
existence is guaranteed for all finite energy initial data, they are not known to be either smooth or unique,
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leaving major problems for the well-posedness theory. On one hand, Katz-Pavlovié [13] first showed that
if 1 < α < 5

4 , the Hausdorff dimension of the singular set at the time of first possible blow-up is at most
(5 − 4α). Recently, Tang-Yu [23] study the partial regularity of fractional Navier-Stokes equations (1) with
3
4 < α < 1, more precisely, they show that the suitable weak solution is regular away from a relatively closed
singular set whose (5 − 4α)-dimentional Hausdorff measure is zero. Further partial regularity results of
equations (1), we refer readers to [5, 20]. On the other hand, Zhou in [30] proved the following regularity
condition

u ∈ Lp
(
0,T; Lq

(
R3

))
;

2α
p
+

3
q
⩽ 2α − 1,

3
2α − 1

< q ⩽ ∞, 1 ≤ α ≤
3
2

or
Λαu ∈ Lp

(
0,T; Lq

(
R3

))
;

2α
p
+

3
q
⩽ 3α − 1,

3
3α − 1

< q ⩽
3
α − 1

, 1 ≤ α ≤
5
4
.

When α = 1, equations (1) reduces to the classical incompressible NSE. In 1934, Leray showed that
global existence of weak solutions to the 3D NSE, but are not known to be either smooth or unique.
Ladyzhenskaya-Prodi-Serrin [24, 25] showed that if

u ∈ Lq
(
0,T; Lp

(
R3

))
with

2
q
+

3
p
= 1 and 3 < p ≤ ∞, (2)

then the weak solution u is regular on (0,T]. Escauriaza-Seregin-Sverak in [8] extended Serrin type criteria
to the endpoint case, p = 3, q = ∞. Recently, Tao [22] further extended this regularity criterion giving a
quantitative lower bound on the rate of the blowup of the L3-norm. This result is very slightly supercritical-
in fact triple logarithmic- with respect to scaling, and is the first supercritical regularity criterion for the
NSE.

Two crucially important objects for the study of the NSE are the strain, which is the symmetric gradient
of the velocity, S = ∇symu, with Si j =

1
2 (∂iu j + ∂ jui), and the vorticity, which is a vector that represents the

antisymmetric part of the velocity and is given by ω = ∇ × u. Physically, the strain describes how a parcel
of the fluid is deformed, while the vorticity describes how a parcel of the fluid is rotated [18].

The vorticity has been studied fairly exhaustively for its role in the dynamics of the NSE. For example,
the Beale-Kato-Majda (BKM) regularity criterion [2], which holds for smooth solutions of both the Euler
and NSE, states that if Tmax < +∞, then∫ Tmax

0
∥ω(·, t)∥L∞dt = +∞. (3)

Beirão da Veiga [3] showed that any Leray-Hopf weak solution of NSE satisfies

ω ∈ Lq
(
0,T; Lp

(
R3

))
with

2
q
+

3
p
= 2 and

3
2
< p < ∞ (4)

is actually smooth. Skalák used the nonhomogeneous Besov spaces and proved in [26] that if

ω ∈ Lq
(
0,T; B

−
3
p
∞,∞

)
, (5)

where q ∈ [1,∞) and 2
q +

3
p = 2, then u is regular on (0,T]. There are many refined regularity criteria in

terms of partial components of vorticity appeared over years. The readers can be referred to, for example
[4, 6, 9–11] and the related references therein.

The relationship between strain (deformation tensor) and the singularity formation of NSE has been
investigated much less thoroughly, but strain can provide some insights that do not follow as clearly from
the vorticity. Motivated by [18, 26], in this paper we will consider the singularity formation of FNSE (1) via
strain (deformation tensor Si j =

1
2 (∂iu j + ∂ jui) in nonhomogeneous Besov spaces. The main result of this

paper state as follow:
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Theorem 1.1. Let 0 < α < 5
4 , u0 ∈ H3(R3) with ∇ · u0 = 0, and assume that u be a unique local strong solution to

FNSE (1). If S =
(
Si j

)
= 1

2

(
∂u j

∂xi
+ ∂ui
∂x j

)
satisfies the following condition

S ∈ L
2rα

2rα−3

(
0,T; B−

3
r
∞,∞

)
,

3
2α
< r ≤ ∞, 0 < T < ∞. (6)

Then the solution u can be extended beyond T > 0.

Remark 1.2. Our Theorem 1.1 greatly improves the result of [26] by using the deformation tensor S instead of the
Vorticity ω or the gradient of the velocity ∇u.

Remark 1.3. We remark here that the following continuous embeddings:

Lp ↪→ Ḃ0
r,∞ ↪→ Ḃ−

3
r
∞,∞, r ∈ [1,∞)

in the case of the homogeneous Besov spaces and

Lp ↪→ B0
r,∞ ↪→ B−

3
r
∞,∞, r ∈ [1,∞]

in the case of the nonhomogeneous Besov spaces. In particular, the homogeneous version of the Besov space is smaller
than the nonhomogeneous one, i.e.,

Ḃr
∞,∞ ⊂ Br

∞,∞, for all r < 0.

In view of these facts, Theorem 1 is the largest extension and extends/improves the corresponding result obtained
recently in [7, 14, 26] and some references therein.

Remark 1.4. By using the Littlewood-Paley decomposition technique, we can further extend our result to the general
Ḃ0

p,∞ space or the largest Vishik space (See [27, 28]). We will not go into details here and leave it to interested readers.

Remark 1.5. When α = 1, the FNSE reduces to the classical NSE, thus our results improves/extendeds some of the
classical and newly found results on NSE/FNSE regularity. In particular, Theorem 1.1 indicates that the singularity
formation via strain of fluid to the FNSE (1). In addition, NSE regularity criteria for single components of the
deformation tensor S is still an open problem, and we hope consider it in the near future.

2. Preliminaries

In this section, we recall some definitions and give several lemmas, which will be used in the proof of
theorem 1.1.

First we will introduce some notations. Let S(R3) be the Schwartz class of rapidly decreasing functions.
Given f ∈ S(R3), its Fourier transform F f = f̂ is defined as

f̂ (ξ) =
∫
R3

f (x)e−ix·ξdx.

Let (χ, φ) be a couple of smooth functions valued in [0, 1] such that χ is supported in B = {ξ ∈ R3 : |ξ| ≤ 4
3 },

φ is supported in C = {ξ ∈ R3 : 3
4 ≤ |ξ| ≤

8
3 } such that

χ(ξ) +
∑
j≥0

φ(2− jξ) = 1, ∀ξ ∈ R3,

∑
j∈Z

φ(2− jξ) = 1, ∀ξ ∈ R3
\ {0}.
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Denoting h = F −1φ and h̃ = F −1χ, and then we define the homogeneous dyadic blocks ∆̇ j and the
homogeneous low-frequency cut-off operator Ṡ j as follows:

∆̇ ju = φ(2− jD)u = 23 j
∫
R3

h(2 jy)u(x − y)dy,

and

Ṡ ju = χ(2− jD) = 23 j
∫
R3

h̃(2 jy)u(x − y)dy.

Informally, ∆̇ j is a frequency projection to the annulus {|ξ| ∼ 2 j
}, while Ṡ j is a frequency projection to the ball

{|ξ| ≲ 2 j
}. And one can easily verify that ∆̇ j∆̇k f = 0 if | j− k| ≥ 2. We also define ∆ j f = ∆̇ j f if j ≥ 0,∆−1 f = Ṡ0 f

and ∆ j f = 0 if j < −1. Let now p, r ∈ [1,∞] and s ∈ R.

Definition 2.1. The nonhomogeneous Besov space Bs
p,r is defined as

Bs
p,r =

{
f ∈ S′; ∥ f ∥Bs

p,r < ∞
}
,

where 
∥ f ∥Bs

p,r =

∑
j≥−1

2 jsr
∥∥∥∆ j f

∥∥∥r

p


1
r

, r < ∞,

∥ f ∥Bs
p,r = sup

j≥−1
2 js

∥∥∥∆ j f
∥∥∥

p , r = ∞.

Definition 2.2 (Homogeneous Besov spaces [1]). Let

S′h =
{

f ∈ S′; lim
j→−∞

∥∥∥Ṡ j f
∥∥∥
∞
= 0

}
.

The homogeneous Besov space Ḃs
p,r is defined as

Ḃs
p,r =

{
f ∈ S′h; ∥ f ∥Ḃs

p,r
< ∞

}
where 

∥ f ∥Ḃs
p,r
=

∑
j∈Z

2 jsr
∥∥∥∆̇ j f

∥∥∥r

p


1
r

, if r < ∞,

∥ f ∥Ḃs
p,r
= sup

j∈Z
2 js

∥∥∥∆̇ j f
∥∥∥

p , r = ∞.

The following Bony decomposition will be used in the next section. Let two tempered distributions f and
1, the Bony decomposition of the product f1 can be formally written as

f1 = T f1 + T1 f + R( f , 1)

where
T f1 =

∑
j≥1

Ṡ j−1 f∆ j1

and
R( f , 1) =

∑
j,k≥−1,| j−k|≤1

∆ j f∆k1.

The main continuity properties of the operators T and R are described in the following lemmas [1].
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Lemma 2.3. Let p, r, r1, r2 ∈ [1,∞], 1/r = 1/r1 + 1/r2, s ∈ R, t < 0 and s + t < 3/p. Then there exists a constant
c > 0 such that

∥Tuv∥Bs+t
p,r
≤ c∥u∥Bt

∞,r1
∥v∥Bs

p,r2

for every u ∈ Bt
∞,r1

and v ∈ Bs
p,r2

.

Lemma 2.4. Let p, p1, p2, r, r1, r2 ∈ [1,∞], 1
p =

1
p1
+ 1

p2
, 1

r =
1
r1
+ 1

r2
, s1, s2 ∈ R and s1 + s2 > 0. Then there exists a

constant C > 0 such that
∥R( f , 1)∥Bs1+s2

p,r
≤ C∥ f ∥Bs1

p1 ,r1
∥1∥Bs2

p2 ,r2

for every f ∈ Bs1
p1,r1

and 1 ∈ Bs2
p2,r2

.

Lemma 2.5 (logarithmic Sobolev inequality in Besov spaces[15]). Let p, ϱ, σ ∈ [1,∞], q ∈ [1,∞) and s > 3
q .

Then there exists a constant c such that

∥ f ∥L∞ ≤ c
(
1 + ∥ f ∥

Ḃ
3
p
p,ϱ

(
ln+ ∥ f ∥Bs

q,σ

)1− 1
ϱ

)
for all f ∈ Ḃ

3
p
p,ϱ ∩ Bs

q,σ.

Lemma 2.6 (Gagliardo-Nirenberg inequality[19]). Let 0 ≤ m, α ≤ l, then we have∥∥∥Λα f
∥∥∥

Lp(R3) ≤ C
∥∥∥Λm f

∥∥∥1−θ

Lq(R3)

∥∥∥Λl f
∥∥∥θ

Lr(R3) ,

where θ ∈ [0, 1] and α satisfies
α
3
−

1
p
=

(
m
3
−

1
q

)
(1 − θ) +

(
l
3
−

1
r

)
θ.

Here, when p = ∞, we require that 0 < θ < 1.

Lemma 2.7. [17] For all − 3
2 < α <

3
2 and for all u divergence free in the sense that ξ · û(ξ) = 0 almost everywhere,

∥S∥2Ḣα = ∥A∥
2
Ḣα =

1
2
∥ω∥2Ḣα =

1
2
∥∇ ⊗ u∥2Ḣα , (7)

where symmetric part S = Si j =
1
2

(
∂u j

∂xi
+ ∂ui
∂x j

)
, which we refer to as the strain tensor, anti-symmetric part A = Ai j =

1
2

(
∂u j

∂xi
−
∂ui
∂x j

)
, ω = ∇ × u.

3. The proof of Theorem 1.1

The proof is based on the establishment of a priori estimate for u that allows us to extend the smooth
solution beyond time T. We will establish corresponding prior estimates in two cases.

Testing the first equation of (1) by u, we see that

1
2

d
dt

∫
R3
|u|2dx +

∫
R3
|Λαu|2 dx = 0.

(I) Case 1: S ∈ L
2rα

2rα−3

(
0,T; B−

3
r
∞,∞

)
, 3

2α < r < ∞.

Taking ∇× on the first equation of (1), one has

∂tω + (u · ∇)ω + (−∆)αω − Sω = 0, (8)

taking the operator ∇sym

(
i.e.,S = ∇sym(u)i j =

1
2

(
∂u j

∂xi
+ ∂ui
∂x j

))
to the first equation of (1) to obtain

∂tS + (u · ∇)S + (−∆)αS + S2 +
1
4
ω ⊗ ω −

1
4
|ω|2I3 +Hess(p) = 0, (9)
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where more details can refer to [17]. Multiplying (8) by ω and integrating over R3, we have

1
2

d
dt
∥ω∥2L2 + ∥Λ

αω∥2L2 =

∫
R3

Sω · ωdx. (10)

Testing (9) by S and integrating by parts in R3 to obtain

1
2

d
dt
∥S∥2L2 + ∥Λ

αS∥2L2 = −

∫
R3

S2
· Sdx −

1
4

∫
R3
ω ⊗ ω · Sdx −

∫
R3

Hess(p) · Sdx

+
1
4

∫
R3
|ω|2I3 · Sdx

= −

∫
R3

S2
· Sdx −

1
4

∫
R3
ω ⊗ ω · Sdx,

(11)

where we used the facts that 〈
|ω|2I3,S

〉
L2
= 0, ⟨Hess(p),S⟩L2 = 0.

Thanks to Lemma 2.5, it follows from (10) that

d
dt
∥S∥2L2 + 2∥ΛαS∥2L2 =

∫
R3

Sω ⊗ ωdx. (12)

Combining (11) and (12), it yields that

d
dt
∥S∥2L2 + 2∥ΛαS∥2L2 = −

4
3

∫
R3

S2
· Sdx. (13)

To estimate the integral term − 4
3

∫
R3 S2

· Sdx, we will applying the Bony decomposition to

S2 = R(S,S) + 2TSS,

one concludes that ∫
R3

S2
· Sdx =

∫
R3

SR(S,S) + 2
∫
R3

STSS.

It follows from Lemma 2.4 and Lemma 2.6 (Gagliardo-Nirenberg’s inequality)that∫
R3

SR(S,S) ≤ ∥S∥
B−

3
r
∞,∞

∥R(S,S)∥
B

3
r

1,1

≤ C∥S∥
B−

3
r
∞

∥S∥2
B

3
2r
2,2

≤ C∥S∥
B−

3
r
∞,∞

∥S∥2
H

3
2r

≤ C∥S∥
B−

3
r
∞,∞

∥S∥2−
3
αr

L2 ∥ΛαS∥
3
αr

L2

≤ C∥S∥
2αr

2αr−3

B−
3
r
∞,∞

∥S∥2L2 + ϵ∥Λ
αS∥2L2 .

(14)

Applying Lemma 2.3 and the same tricks as (14) yields that

2
∫
R3

STSS ≤ C∥S∥
B

3
2r
2,2

∥TSS∥
B
−

3
2r

2,2

≤ C∥S∥
B

3
2r
2,2

∥S∥
B−

3
r
∞,∞

∥S∥
B

3
2r
2,2

≤ C∥S∥
2αr

2αr−3

B−
3
r
∞,∞

∥S∥2L2 + ϵ∥Λ
αS∥2L2 .

(15)
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Putting (14) and (15) into (13), we get

d
dt
∥S∥2L2 + ∥Λ

αS∥2L2 ≤ C∥S∥
2αr

2αr−3

B−
3
r
∞,∞

∥S∥2L2 . (16)

Therefore Gronwall’s inequality implies that for all 0 < t ≤ T and 3
2α < r < ∞, one has

sup
0<t≤T
∥S∥2L2 +

∫ T

0
∥ΛαS∥2L2 dt ≤ ∥S0∥

2
L2 exp C

∫ T

0
∥S∥

2αr
2αr−3

B−
3
r
∞,∞

dt. (17)

(II) Case 2: S ∈ L1
(
0,T; B0

∞,∞

)
.

ApplyingΛ3
(
Λ := (−∆)

1
2

)
to equations (1) and multiplying the resulting equations byΛ3u, it yields that

1
2

d
dt

∥∥∥Λ3u(t)
∥∥∥2

L2 +
∥∥∥Λ3+αu

∥∥∥2

L2 = −

∫
R3

[
Λ3,u · ∇

]
u ·Λ3u dx, (18)

here and in what follows
[
Λs, f

]
1 := Λs( f1)− fΛs1 stands for the standard commutator notation. Moreover,

we have used the following identitiy ∫
R2

u · ∇Λ3u ·Λ3udx = 0.

We now resort to the following bilinear commutator estimate [12]∥∥∥[Λs, f
]
1
∥∥∥

Lp ≤ C
(
∥∇ f ∥Lp1

∥∥∥Λs−11
∥∥∥

Lp2
+

∥∥∥Λs f
∥∥∥

Lp3
∥1∥Lp4

)
, (19)

with s > 0 and p2, p3 ∈ (1,∞) such that

1
p
=

1
p1
+

1
p2
=

1
p3
+

1
p4

According to inequality (19), we infer that

−

∫
R3

[
Λ3,u · ∇

]
u ·Λ3u dx ≤

∥∥∥∥[Λ3,u · ∇
]

u
∥∥∥∥

L2

∥∥∥Λ3u
∥∥∥

L2

≤ C∥∇u∥L∞
∥∥∥Λ3u

∥∥∥2

L2

(20)

Substituting (20) into (18), we obtain

d
dt
∥Λ3u∥2L2 + 2∥Λ3+αu∥2L2 ≤ C∥∇u∥L∞

∥∥∥Λ3u
∥∥∥2

L2
(21)

Taking into account (21), and using Lemma 2.5 with p = ϱ = ∞ and q = σ = s = 2, we get

∥∇u∥∞ ≤C
(
1 + ∥∇u∥Ḃ0

∞,∞
ln+ ∥∇u∥B2

2,2

)
≤C

(
1 + ∥∇u∥Ḃ0

∞,∞
ln+ C

(
1 +

∥∥∥∇3u
∥∥∥

2

))
.

(22)

Since
S = ∇symu ⇐⇒ ∇u = −2∇div(−∆)−1S,

we have
(
I − Ṡ2

)
∇u = (−∆)−1

∇div
(
I − Ṡ2

)
S and

∥∇u∥Ḃ0
∞,∞
≤ C +

∥∥∥∥(I − Ṡ2

)
∇u

∥∥∥∥
Ḃ0
∞,∞

≤ C +
∥∥∥∥(I − Ṡ2

)
S
∥∥∥∥

Ḃ0
∞,∞

≤ C + C sup
j≥1

∥∥∥∆̇ jS
∥∥∥

L∞ ≤ C + C∥S∥B0
∞,∞
,
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where we used some facts in Besov spaces (see [26]). The following H3-bound is an easy consequence of
Gronwall’s inequality

max
0≤t≤T

∥u(t)∥H3 < ∞.

Thus, the proof of Theorem 1.1 is immediately complete.

Acknowledgments

We wish to thank the reviewer for a careful reading of the paper and useful comments that helped to
clarify and correct its original version.

References

[1] H. Bahouri, J. Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, 2011.
[2] J.T. Beale, T. Kato, A. Majda. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathe-

matical Physics. 94(1)(1984), 61–66.
[3] H. Beirao da Viega, A new regularity class for the Navier-Stokes equations in Rn, Chinese Annals of Mathematics Series B. 16 (1995),

407–412.
[4] C.S. Cao, E.S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,

Archive for Rational Mechanics and Analysis. 202 (3)(2011) 919-932.
[5] Y. K. Chen, C.H. Wei. Partial regularity of solutions to the fractional Navier-Stokes equations, Discrete & Continuous Dynamical

Systems-A. 36 (10)(2016), 5309.
[6] J.Y. Chemin, P. Zhang, On the critical one component regularity for 3D Navier-Stokes system, Annales Scientifiques De L École Normale
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