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Abstract. We introduce the sets of periodic, recurrent, w-limit and nonwandering points for a selfmap
defined on a nonempty set endowed with an Eilenberg-Jachymski collection. Then, under some appropriate
conditions, we show that these sets all coincide. Moreover, we establish fixed and periodic point theorems
for a new class of g-contractive mappings in i-dislocated metric spaces, and generalize some results
obtained by Edelstein, Matkowski and Bessenyei-Pales.

1. Introduction and preliminaries

The last two authors have developed in [1] new fixed point results for mappings defined on an EJ-space,
which is a nonempty set endowed with a structure not necessarily a base of uniformity. They studied the
existence of fixed points for a self map f: X — X, where X is a nonempty set endowed with an EJ-collection
R = (PR, B), where P is a partially ordered set, R is a family of binary relations on X indexed by P and
B is an auxiliary binary relation on X. Observe that the EJ-spaces generalize the uniform spaces, and
that the assumptions on R play an important role in developing new fixed point results. For some recent
developments on the minimal structure required by the fixed point theorems, see for instance [4, 8].

In this paper, we establish new results of dynamical systems and fixed point theory in appropriate
EJ-spaces. More precisely, we consider a nonempty set X endowed with an EJ-collection R = (P, R, B),
where P is a real interval, R is weakly nested and B = X x X. We first introduce the sets R-periodic,
R-recurrent, R-limit and R-nonwandering, and study the relationship between them. In particular, when
f is an R-contractive mapping, we show that Q(f, R) = A(f, R) = R(f, R) = P(f, R) (see Definitions 1.10 and
1.11). Then, we exhibit a bijection between a subclass of EJ-collections and the set of 1)-dislocated metrics
on a same set X, in order to understand their interconnection. Finally, we present new fixed and periodic
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point theorems in 1-dislocated metric spaces, which generalize some results of Edelstein [3], Matkowski
[6] and Bessenyei-Péles [2].

The paper is organized as follows. Section 1 presents some basic definitions and notations. Section 2
studies the connection between E]-spaces and 1-dislocated metric spaces. Section 3 contains proofs of the
main results. Some consequences in y-dislocated metric spaces are presented in Section 4.

Let X be a non-empty set and f be a self-mapping of X. Let IN, Ny and R, be the set of all positive
integers, the set of all non-negative integers and the set of non-negative real numbers, respectively. For
n € Ny, denote by f" the n-th iterate of f, where f° is the identity mapping. A point x € X is called periodic
of period n € N if f"x = x and fix # x for 1 <i < n; if n = 1, x is called a fixed point of f, that is, fx = x.
Denote by P(f) the set of periodic points of f and by Fix(f) the set of all fixed points of f. For any x € X,
the orbit of x under f is the set O(x, f) = { f'x:ne ]No}. A binary relation on X is a subset of X X X. In
particular, the diagonal relation on X is denoted by A := {(x, X):x€ X}. Let S be a binary relation on X and
denote its symmetric by S~ := { (y,x) e XXX :(x,y)€ S}. A composition of two binary relations S and Q is
given by

SoQ:= {(x, y) € X X X : there exists z € X such that (x,z) € Sand (z,y) € Q}.

Definition 1.1 ([1]). A poset P is said to be extended if it has a greatest element. We define the extension of a poset
P, and we denote it by P, the poset given by:

(i) P=P, if P is extended.

(ii) If P is not extended, then P=PuU {T}, where T is an extra element added to P with x < T for all x € P, that
is, T is the greatest element of P.

Denote by T the greatest element of P whether P is extended or not. The following definition generalizes
that of EJ-collection given in [1].

Definition 1.2. Let X be a nonempty set. An Eilenberg-Jachymski collection on X (shortly EJ-collection) is a
triple (P, R, B) satisfying the following assumptions:

(i) (P, <)isa poset.

(ii)) R= {R,\} 5 is a family of binary relations over X with

A€

Ry C A= {(xx) e XxX}.

(iii) B is a nonempty binary relation over X.
A nonempty set endowed with an EJ-collection is called an EJ-space.

In the sequel, we assume that X is a nonempty set, f: X — X is a mapping and [ is a closed subset of IR,

endowed with the dual order of R such that 0 € I. In this case, we have I = I, T = 0 and any EJ-collection
R = (I, R, X x X) can be identified with its family of binary relations

R= {RA}AeI'

Denote by J(I) the set of all families of binary relations indexed by I and satisfying (ii) of Definition 1.2.
Definition 1.3. Let I = I U {co} and Y IxT—Tbe a function. A family R € J(I) is said to be:
e Symmetric if R;' = R forall A € I

o Y-transitive if Ry o R, € Ry, forall A, u ef where Reo = 11 Ra-
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Definition 1.4. A family R € J(I) is said to be weakly-nested (resp. nested) if for every non-increasing sequence
{/\n}ne]N C I converges to A , we have

m Ry, €Ry  (resp. ﬂ Rj, = Ry).

nelN nelN
Remark 1.5. Note that if R € J(I) is nested, then

Aupel:A<u = RyCR,.
Definition 1.6. Let ¢: IxT—Tbea function. We define the following sets:
o J'(D):={ReJ(): Ro=XxX].
o T°(Ly) = {72 € J() : Ris symmetric and P-transitive }
o J(IY) = {Re T () : Risnested }
o JULy) = {R e (L) : Ris weakly-nested }
Clearly, we have J"(1,y) € I, ¢) € T, V).
Remark 1.7. Recall that a family R of binary relations indexed by I is said to be a base of uniformity for X if:
(i) ACRyforallA el
(ii) Forall A €1, there exists u € I such that R, C R;l.
(iii) Forall A € I, there exists u € I such that R, o R, C Rj.

(@iv) Forall A, A" € I there exists u € I such that R, € Ry N Ry.

For further details on uniform spaces, we refer the reader to [5, Chapter 6]. If R € J"(I,¢) and Ry = A, then R
contains a base of uniformity of X. However, if Ry # A or if Ro = A and R € J(1,1)), then R does not necessarily
contains a base of uniformity of X, since (i) may fail.

Definition 1.8. For R€ J(I)and ¢ € R\ {0}, let I, :=1N]0, &)and R, = {RA}AGI.'
o We say that R, is f-invariant if for all A € 1., we have
(x/y)ER/\\A - (fxrfy)eRA' (1)

o We say that f is R.-contractive if R, is f-invariant and there exists a mapping m: X X X X I — IN such that for
all A € 1., we have

(,y) ERA\NA = Fu<A: (fr¥ Ny, frevVy) e Ry, )
o We say that f is R-contractive, if (1) and (2) are satisfied for all A € I.
Remark 1.9. Any R-contractive mapping is also Re-contractive for all ¢ € R, \ {0).
Definition 1.10. Let R = {RA} € J(I). The wg-limit set of x € X under f will be denoted by:

k| s increasing,
Aki is convergent to 0,
(f™x,y) € Ry, Yk e N

wr(r, f) =1y e X:A{mf c N fA} el

The set of R-limit points of f is
A R) = wrx, ).

xeX



H. Abdelli et al. / Filomat 39:1 (2025), 295-311 298

Definition 1.11. Let R = {RA} e J(\).

If x € Fix(f) and (x, x) € Ry, we say that x is an R-fixed point of f.

If x € P(f) and (x,x) € Ry, we say that x is an R-periodic point of f.

If x € wg(x, f), we say that x is an R-recurrent point of f.

If there exist a sequence {xk} in X, a non-decreasing sequence of positive integers {nk} and two convergent sequences
{Ak} and {yk} in I to zero such that for all k, we have

(xk/ x) € R‘le ﬂnd (fnkxk/ x) € R/\k/
we say that x is an R-nonwandering point of f.

The sets of R-fixed, R-periodic, R-recurrent and R-nonwandering points of f will be denoted respectively by Fix(f, R),
P(f, ), R(f,R) and Q(f, R).

The following Lemma is a direct consequence of Definitions 1.10 and 1.11.

Lemma 1.12. The following inclusions hold:
Fix(f,R) € P(f,R) CR(f,R) € A(f,R) € Q(f, R).

Proof. The inclusions are obvious except the last one. Let x € X and y € A(f, R) be such that y € wg(x, f).
Consider the sequences {nk} and {Ak} given by Definition 1.10. As {nk} is an increasing sequence (up to

extraction of a subsequence, if necessary), we may assume that the sequence {mk}, defined by my = ny —ny_q
for all k > 0, is non-decreasing sequence of positive integers. Then for x; = f"'x, we have

(xr, y) €Ry, and (f™xx, ) € Ry,
Hence, y € Q(f,R). O

Definition 1.13. Let w:TxT—> Tbea mapping. We say that 6: XXX — I is a -dislocated metric if for all
x,Y,z € X, we have

(i) o(x,y) = 0implies x = y.
(i) o(x,y) = 6(y, x).
(i) 6(x, y) < P(d(x, 2), 6(z, ¥))-

We say that (X, 0) is a y-dislocated metric space. We denote by D(I, {) the set of all -dislocated metrics on X. If
I =R, and (A, u) = A + y, the pair (X, 6) is called dislocated metric space.

Question 1.1. Let 0: X X X — R, be a mapping satisfying (i) and (ii) of Definition 1.13. Is there a \ function for
which 6 is a Y-dislocated metric?

Remark 1.14. In case where 6 is a semi-metric on X, the response of Question 1.1 is positive, and 1 is the basic
triangular function introduced by Bessenyei and Piles [2].

We later show how to derive a y-dislocated metric from a family of binary relations in J*(I) N T*(I, ).
Definition 1.15. A function i: TxT — Tis said to be monotone if it is increasing in both of its arquments.

Definition 1.16. For 6 € D(I,¢) and ¢ € R, \ {0}.



H. Abdelli et al. / Filomat 39:1 (2025), 295-311 299

o We say that f is O0.-nonexpansive, if for all x # y, we have
ox,y)el. = O(fx, fy) <o(x, ). 3)

o We say that f is O.-contractive, if f is O.-nonexpansive and there exists m: X X X X I — IN such that for all x # y,
we have

5(x, y) el, = & fm(x,yré(xry))x, fm(x,yrb(xry))y) < o(x, y)' 4)

o Wesay that f is 0-contractive, if (3) and (4) are satisfied for all x,y € X such that x # y.

Remark 1.17. Any d-contractive mapping is also d.-contractive for all ¢ € R, \ {0}.

Definition 1.18. Let 6 € D(I, ¢). The ws-limit set of a point x € X under f will be denoted by:

ws(x, f) = {y cX- H{nk} cN {nk} is increasing }

lim 6(f™x,y) =0
k—+00
The set of 6-limit points of f is

A£,0) = Jwsx, .

xeX
Definition 1.19. Let 6 € D(I, ).

o Ifx € Fix(f) and 6(x, x) = 0, we say that x is a 6-fixed point of f.

o Ifx € P(f) and 6(x,x) = 0, we say that x is a 6-periodic point of f.

o Ifx € ws(x, f), we say that x is a 6-recurrent point of f.

o If there exist a sequence {xy} in X, a non-decreasing sequence of positive integers {nk} such that

]}im O(xx, x) = %im O(f™xy, x) =0,

we say that x is a 6-nonwandering point of f.

The sets of O-fixed, 6-periodic, 5-recurrent and d-nonwandering points of f will be denoted respectively by Fix(f, 0),
P(f, ), R(f, 0) and Q(f, 0).

The following lemma is a direct consequence of Definitions 1.18 and 1.19.

Lemma 1.20. The following inclusions hold:
Fix(f, ) € P(£,8) S R(£,8) € A(f, 8) € Qf, ).
Definition 1.21. Let 6 € D(I, ).

o A sequence {x,,} is said to be convergent to x € X if lim 6(x,,, x) = 0.
n—o0

o A sequence {xn} is said to be Cauchy if for all € > 0, there exists an integer N such that for all n,m > N, we have
O(Xp, Xm) < €.

o (X, 0) is complete if every Cauchy sequence is convergent.
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2. Connections between the sets J'(I), "I, ), T*U, ) and DU, V).

In this section, we point out some connections between the sets given in Definitions 1.6 and 1.13. More
precisely, we show that any element of J*(I) N J%(I, ¢) induces a y-dislocated metric on X. Moreover, we
compare the sets given in Definitions 1.10 and 1.11 to those of Definitions 1.18 and 1.19.

Proposition 2.1. Let R = {R;\} € J'(I). Then the mapping g : X x X — I given by:

5r(x, ) = inf{/\ el:(x,y) € RA},
satisfies the following properties:

(i) If R is weakly-nested, then for all x,y € X, we have (x,y) € Royx,y. In particular, if 6g(x,y) = 0, then x = y.
Moreover, if Ry = A, then dg(x, x) = 0 for all x € X.

(ii) If R is symmetric, then Or(x, y) = Or(y, x) for all x,y € X.
(iii) If R is weakly-nested and Y-transitive, then for all x,y,z € X, we have

dr(x, y) < P(6=(x,2), r(z, ).

In particular, if R € THI) N JTV(I, ¥), then dg € D(I, ).
Proof. Firstly, observe that the mapping ox is well defined, since Rc = X X X. Letx,y,z € X.

(i) By definition of og(x, y), there exists a non-increasing sequence {an}ne]N C {A €l:(xy) € R,\}, which
converges to Or(x, y). Since R is weakly-nested, then

(x,y) € ﬂ Ra,  Rog(y)-
nelN

In particular, if or(x, y) = 0, then (x,y) € Ry € A. Moreover, if Ry = A, then by definition of 6z, we have
or(x,x) = 0.

(ii) If Ris symmetric, then (x, y) € R, if and only if (y, x) € Ry. Thus, we have
{ler:yer)={rel:(yneRr,

which implies og(x, y) = o=(y, x).

(iii) Again since R is weakly-nested, it follows that (x,z) € Rsgz) and (z,¥) € Resgy). Then using the
Y-transitivity of R, we obtain (x, y) € Ry(sx(x,2),62(zy), Which implies 6g(x, y) < P(6r(x, ), 0r(z, ¥))-
O

Theorem 2.2. The mapping F: J'(I) N J%(I, ) = D, ¢), R +—> Og is onto. Moreover, the restriction of F to
TN N T"(1, ) is a bijection.

Proof. By Proposition 2.1, F is well defined. Let H be the restriction of F to J D) N g™, ¢). Thus, to
conclude, it suffices to show that H is a bijection. Let R = {RA}, R = {R;} € J' () N 9"(I,¢) such that

H(R) = H(R'), that is, 0g = 6. By nestedness, for all A 6’1\, we have
(xy) €ERy &= Or(x, ) <A &= Or(x,y) <A < (x,y) €ER),

so Ry = R). Hence R = R’ and therefore H is one-to-one. Let 6 € D(I,1)). Define the set of binary relations
R = {RA}AGT on X as follow:

Ry ={(x,y): 8(x, ) < A}.
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It is not difficult to see that R € J'(I) N J"(I, ). Now we shall prove that H(R) = 6. Indeed, it’s enough to
prove that 0g = 6. Let (x,y) € X X X,

dr(x,y) = inf{A€l:(x,y)€R,|
= inf{Ael:5(r,y) <A} 2 8(x,y)
Conversely, as (%, y) € Ry (), 50 by definition of &z, we get og(x, y) < 5(x, y). [
Proposition 2.3. For each R € 5*(I) N J°(I, ), we have
(i) wr(x, f) = wsy(x, f), forall x € X.

(i) Fix(f,R) = Fix(f, o).

(iii) P(f,R) = P(f, 65).

(iv) R(f,R) = R(f, 6g)-

(v) A(f,R) = A(f, br)-

(vi) Q(f, R) = Q(f, 6g).

Proof. Let R = {RA} e J') NI ¢). Let x € X and assume that y € wg(x, f). Consider {nk}keN be

an increasing sequence and {/\k} LN be a sequence convergent to 0 such that (f*x,y) € R, for all k € IN.
By definition of 0z, we have dg(f"x,y) < Ak, for all k € N. Then limy_, 0g(f"x,y) = 0, which implies
that y € ws,(x, f). Conversely, let y € ws,(x, f). Then there exists an increasing sequence {nk} such that
limy o Or(f™x,y) = 0. Consider the sequence {/\k}keN C I defined by Ax = 6x(f™x, y). Hence {/\k}keN cl,
converges to 0 and by Proposition 2.1-(i), we have (f"x, y) € Ry, for all k € N, that is, y € wg(x, f), which
proves (i). A point x € P(f, 0g) (resp. Fix(f, 6g)) if and only if x € P(f) (resp. x € Fix(f)) and or(x, x) = 0,
which is equivalent to x € P(f) (resp. x € Fix(f)) and (x, x) € Ry, thatis, x € P(f, R) (resp. x € Fix(f, R)), then
(ii) (resp. (iii)) holds. The assertions (iv) and (v) follow from (i). Finally, x € Q(f, 0g) if and only if there exist a

sequence {x;} in X and non-decreasing sequence of integers {nk} such that ]}im OR(xy, x) = %im Or(f™xx, x) =0,
which is equivalent to (xt,x) € Ry, and (f™xi, x) € Ry, where Ay = 6g(xk, x) and px = or(f™xx, x), that is,
x € Q(f, R), which proves (vi). O

Proposition 2.4. Let R € J(I) N J“(I,¢) and ¢ € R, \ {0} If f is Re-contractive, then f is (Og).-contractive. In
addition, if R is nested, then the converse is true.

Proof. Suppose that f is R.-contractive. Let x, y € X \ A satisfying 6x(x, y) € I,. From the weak-nestedness
of R, we have (x, y) € Ryg(x,y)\A. Then

(fX, fY) € Rogeyy and  (fresontiy, préuteeily) e R,
for some u < 0r(x, y). Hence by definition of 6, we obtain

Or(fX, fy) < Or(x,y) and Or(fmE¥oRCMy, fmEyrCy)y < 11 < Sr(x, ).
Thus f is (6g).-contractive.

Now, assume that R € TH(I)NJ"(I, ) and f is (6g).-contractive. Consider the mapping m’: XxXXI — [
defined by

, _ | m(x,y,6x(x,y)) forall A > 6g(x,y),
mx,y,A) = { 0 otherwise.
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Let A € I, and (x,y) € Ry\A. By definition of g, it follows that 0 < 6g(x,y) < A < €. Therefore, by the
nestedness of R, we have

Or(fx, fy) < 0r(x,y) <A = (fx, fy) € Ry,
and

OSR(frEdREy Frlsydriyy < ey, y) < A,
if and only if,

OR(f e, frENNy) < dm(x y) < A,
which implies that

(fre s, Oy € Ry,

where p = dg(f™ ®¥Vx, f'¥ D) Thus, f is R.-contractive. [

3. Main results

The first result of this section deals with the special case where 0 is an isolated point of I.

Theorem 3.1. Let R € J(I). If 0 is an isolated point of I, then
P(f,R) = R(f,R) = A(f,R) = Q(f, R).

Proof. Let R = {R;\} € J(I). From Lemma 1.12, we have P(f, R) € R(f,R) € A(f, R) € Q(f, R). To conclude,
we have to show that P(f,R) 2 Q(f,R). Indeed, for x € Q(f, R) there exist a sequence {xk= in X, a non-

decreasing sequence of positive integers {nk} and two sequences {/\k} and { yk} in I convergent to 0, such that
(xk, x) € Ry, and (f™x, x) € Ry, for all k. As, 0 is an isolated point of I, we deduce that ux = Ay = 0, for k
sufficiently large, thus (xx, x) € Ro and (f™xx, x) € Ro. Hence, x; = x, (x,x) € Rg and f"x = x, which means
thatx e P(f,R). O

Until the end of this section, we will assume that I contains a decreasing sequence convergent to zero and
Y is continuous at (0, 0) with 1(0,0) = 0.

Theorem 3.2. Let Re J“(l,¢)and ¢ € R, \ {O}. If Re is f-invariant, then
R(f,R) = A(f,R) = Q(f, R).

Proof. It suffices to prove that R(f,R) 2 Q(f,R). Let R = {R;\}, {xx} be a sequence in X, {nk} be a non-

decreasing sequence of positive integers and {/\k}, {yk} be two sequences in I convergent to 0 such that
(xx, x) € Ry, and (f"x, x) € R, By taking a subsequence if necessary, we may assume that Ay, i < ¢ for all
k. From the invariance assumption, we get (f"xx, f*x) € R),. Using the transitivity hypothesis, we obtain

(f™x,x) € Ry, where ay = (A, tx). By continuity of ¢ at (0, 0), we see that the sequence {ak is convergent
to 0. If {nk} contains an increasing subsequence, then we deduce that x € wg(x, f), that is, x € R(f, R).

Otherwise we may suppose that {nk} is constant with ny = ng for all k. Then (f™x,x) € R,,. Using the
weak-nestedness property, we get

(f"x,x) € mRak C Ro.

keIN

Hence f"x = x and (x, x) € Ry, thatis, x € P(f,R) CR(f,R). O
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The following example shows, under the hypotheses of Theorem 3.2, that in general P(f, R) and R(f, R) are
different.

Example 3.3. Let X = D! be the unit disc in R?, endowed by the euclidean metric d, and let I = R.. The family
R = {R"}AeTOf binary relations defined by
R, = {(x, y) e D' x D! 1 d(x,y) < A}, forallA el

is an element of J'(I) N J"(I,Y) C T (I, ¢), where and P(A, ) = A + . Let f be an irrational rotation. For all
¢ € R, \ {0}, R, is f-invariant and P(f,R) = P(f,d) = {(0,0)}. However, R(f,R) = R(f,d) = D',

Theorem 3.4. Let R € T%(I, ) and ¢ € R, \ {0} such that f is an R.-contractive mapping. If 0 is the unique cluster
point of I, then

P(f,R) = R(f,R) = A(f,R) = Q(f, R).
Theorem 3.5. Let R € J(1, ) and € € R, \ {0). Assume that,
(i) v is continuous at (0, x) forall x € L.
(i) P(0,x) <xforallx €L
(iii) f is Re-contractive.
Then, P(f,R) = R(f,R) = A(f,R) = Q(f, R).
To prove our results we need a few lemmas.

Lemma 3.6. Let q be a non-negative integer, R = {RA} € J(I)and ¢ € Ry \ {0} such that R, is f-invariant. Assume

that O(x, f) is infinite and y € wgr(x, f). Then the sequences {nk}keN and {/\k}ke]N given by Definition 1.10 can be
chosen so that

(F"*ix, fy) € Ry \A, k€N and 0<i<q ©

Proof. Observe that for all i > 0 there exists at most an integer m; such that f™x = f'y, otherwise the orbit
O(x, f) is finite. For M = max {mi :0<i< q}, we have f'x # flyforalln > Mand 0 <i <gq. As {nk} is
increasing, there exists ko such that n; +i > M for all k > kg and 0 < i < g. Consequently, (f**'x, f'y) ¢ A, for
allk > kgpand 0 < i < g. Now, as {/\k} converges to 0, there exists k; such that Ay < € for allk > k;. Then by the

f-invariance of R,, we obtain (f Mty fiy) € Ry, \ A for all k > k; = max {ko,kl} and 0 < i < g. Consequently,
the subsequences {nk} and {/\k}, for k > k; give the desired result. [

Lemma 3.7. Let x € X and R € J(I). If R is weakly-nested and O(x, f) is finite, then
wr(x, f) S P(f,R).

Proof. Assume thatR = {R,\}. If wr(x, f) = 0, we are done. Otherwise, let y € wr(x, f), so there exist {nk} cIN

and a sequence {)\k} C I which converges to 0 such that
(f"x,y) € Ry, kelN.

As O(x, f) is finite, without loss of generality, modulo a choice of a subsequence, we may assume that { f ”kx}
is constant, that is, f"™x = f"x for all k and f™x € P(f). Now, we have

(f™x,y) €Ry, keNN.

From the weak-nestedness of R, we deduce that (f™x,y) € Ro, so y € P(f,R). O
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Lemma 3.8. Let R = {RA} e J°LY), € € R, \ {0} and x € X. Assume that O(x, f) is infinite and wg(x, f) is
nonempty. Then there exists p € IN such that the set
L(x, €)= {ﬁ €l : Ame N, (f"7Px, f"x) € Rﬁ},
is nonempty and 0 ¢ Ly(x, €). If in addition,
(i) f is Re-invariant and there exists y € wg(x, f) such that y = fPy, then
inf £(x,€) = 0.

(ii) fis Re-contractive, then inf Ly(x, €) ¢ Ly(x, €).

Proof. Lety € wg(x, f), {nk} be an increasing sequence in IN and {/\k} C I be a convergent sequence to 0 such
that

(f™x,y) € R),, forallk e N.
Since ¢ is continuous at (0, 0) and ¢(0,0) = 0, then (A, Ak41) tends to zero. Thus, there exists g € IN such
that Y(Ay, Ag41) < €. Let £ = nyand p = ngyq1 — €. Then,

(f'%,y) € Ry, and (fPx,y) € Ry,

and by the symmetry and the y-transitivity of R, we deduce that (f**x, fx) € R,, where a = {(A,, Ag+1).
Hence, £,(x, €) # 0. If 0 € L,(x, ), then there exists m such that f"x = f"*Px, and therefore O(x, f) is finite,
which is a contradiction. Now, assume that y = Py and f is R.-invariant, then

(f™x,y) € Ry, (f"Px,y) € Ry,
Using the symmetry and the y-transitivity of R, we obtain

(f™x, f"*Px) € Ry -

Hence, {(Ax, Ax) € Ly(x, ) for all k € IN. Since, the sequence {A;} converges to zero, 1 is continuous at
(0,0) and ¥(0,0) = 0, we deduce that inf £,(x,¢) = 0. Finally, assume that f is R.-contractive and let
T =inf L,(x, ¢). If T € L,(x, €), then there exists m € IN such that (f"**x, f"'x) € R,. Using the R.-contractive
condition, we obtain a contradiction with the minimality of 7, so 7 ¢ L,(x,¢). O

Lemma 3.9. Under the hypotheses of Lemma 3.8, assume that f is R.-contractive. Then, for y € wr(x, f), there
exist a sequence {Ak} rey & 1 convergent to 0, and a sequence {ak} N © Ly(x, &) convergent to T = inf L,(x, ¢), for
some integer p such that

(f"y, ¥) € Ry peany, forallk € N. (6)

Proof. Lety € wg(x, f), {nk} be an increasing sequence in IN and {Ak} be a sequence in I convergent to 0 such
that

ke

(f™x,y) € Ry,, forallk e N.

By Lemma 3.8, there exists p € IN such that £,(x, ¢) is nonempty and 7 ¢ L,(x,¢). Therefore, there

exist a decreasing sequence {ak} C Ly(x, €) convergent to T and {mk}keN a sequence in IN such that

keN
(f™*Px, fx) € Ry,, for all k € IN. Up to extraction of a subsequence of {nk}

for all k. Since R, is f-invariant, then by applying """, we obtain
(f"*Px, fx) € Ry,. (7)

Using the symmetry and the y-transitivity, by applying Lemma 3.6 for i = 0 and i = p combined with (7),
we conclude that (6) holds. O

Lop Ve may assume that n; > my
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Proof. [Proof of Theorem 3.4] From Theorem 3.2, we have R(f, R) = A(f, R) = Q(f, R). Then, it suffices to
prove that A(f,R) € P(f, R), since the reverse inclusion is obvious. Let y € A(f,R), so there exists x € X
such that y € wg(x, ). According to Lemma 3.7, the result holds when O(x, f) is finite. Assume now that

O(x, f) is infinite. By Lemma 3.9, there exist an integer p, a sequence {/\k} C I, which converges to 0, and

keIN

a sequence {ak} C Ly(x, ) convergent to 7 := inf £,(x, ¢) such that

keN
(frly’ ]/) € Rl/’(/\k,ll}(/\k,ak))/ keNN.

By Lemma 3.8, T ¢ L,(x, €). According to the fact that {ak} C I is convergent to 7, then 7 is a cluster point of
I. Since 0 is the unique cluster point of I, then the sequence {azk= converges to 0. Using the continuity of i
at (0,0) and the weak-nestedness property, it follows that (f7y,y) € Ro C A, therefore y € P(f,R). O

Proof. [Proof of Theorem 3.5] By Theorem 3.2, it’s enough to show that A(f,R) € P(f,R). Indeed, let
y € A(f,R), so there exists x € X such that y € wg(x, f). If O(x, ) is finite, then by Lemma 3.7, we get
y € P(f,R). Assume that O(x, f) is infinite, by Lemma 3.9, we obtain (6). Let 7 = inf £,(x, ¢). If T = 0, up to
extraction of a subsequence, for vi = Y(Ag, P (A, ax)) for all k € IN, we can suppose that the sequence {vk} is
decreasing to zero. Then using the week-nestedness of R, we deduce that (f’y, y) € Ro, then y € P(f, R). If
T # 0, by lemma 3.8-(i), we have (y, f’y) ¢ A. By condition (i), the sequence v, converges to u = (0, (0, 7))
and by (ii), 4 < 7. Now, we distinguish two cases each of them leads to a contradiction.

Case 1. 7 # 0 and v} > , for infinitely many k € IN. By taking a subsequence if necessary, we may assume
that the sequence vy is non-increasing. Hence, from the weak-nestedness of R it follows that

(f'y.y) € R\ A,

and from (iii), we deduce that there exists 0 < y < u such that

(fr vtpy vy Yy e R,. (8)
Now, by Lemma 3.6, we can choose the sequences {nk} and {Ak}, so that

(f**ix, fly) € Ry, \ A, for 0 < i <m(fPy,y,u) +pand k € N. )

And from the condition (i), {1/1(/\10 P(Ag, )/))}keN converges to (0, ¢(0,)) such that ¢(0,¢(0,y)) <y < u.
Then, there exists kg € IN such that Y(Ay, P(Ak,¥)) < u < 7, for all k > kg. By the symmetry and the
Y-transitivity of R, it follows from (8) and (9) for i = m(f*y, y, ) + p that

( fl’lko+m(fpy/y’“)+px, fm(fvy,y/u)y) € Ry(, 7)- (10)
Combining (9) for i = m(f"y, y, u) and (10), we get

(fro mUTvya Py, i+ mYI ) € Ry v 7)-
07 07

So P(Ax,, Y(Aky, 7)) € Ly(x, €), and we have Y(Ay,, P(Ax,, 7)) < T, then we obtain a contradiction.
Case 2. 7 # 0 and there exists ky such that vy < u for all k > ko. As (f’y,y) € R,, for all k > ko. Then by (iii),
there exists p < vk, such that

( fm( TPy Yk 4P v, fm(f”yrww Y) € Rg.

By the symmetry and the y-transitivity of R, and using (5) of Lemma 3.6 for i = m(f"y,y,v,) and i =
m(f*y, y,v,) + p, we obtain

(f}’lk+ﬂl(fpyfy,vk())+px’ fnk+m(fpyry,vk0)x) c Rw(/\k,l,b(/\k,ﬁ))'

Then ¢(Ax, P(Ag, B)) € Ly(x, €) forallk > ko. Finally, from (i)-(ii), there exists k1 > ko such that (A, P(Ax,, B)) <
7, which is a contradiction. [
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Corollary 3.10. Under hypotheses of Theorem 3.4 or Theorem 3.5, assume that:
(i) Gr(f) € Ujer, Ra, where Gr(f) is the graph of f.

Then Q(f, R) = Fix(f, R). If in addition, the following conditions hold:

(i) f is R-contractive.

(iii) R € J'(I) and wg(x, f) is nonempty for some x € X.
Then, f has a unique R-fixed point.
Proof. By Theorem 3.4 or Theorem 3.5, we have Q(f, R) = P(f, R). Assume that there exists x € P(f, R) such
that the period of x is p > 1. By (i), there exists A € I, such that (x, fx) € R,. Then, the set

S = {)\ el : (ffx, f'x) € R, with0§k<r<p}.

is nonempty. Let @ := inf S and consider a non-increasing sequence {An} C S, which converges to a. By

definition of S, there exist two sequences {kn} and {rn} satisfying 0 < k, < r,, < p such that ( fk” x, ff"x) € Ry,
for all n. By taking a subsequence, we can suppose that k, = k and r, = r are constants. Using the weak-
nestedness of R, we deduce that ( ka, f"x) € R,. Then by the R,-contractive condition, it follows that o = 0
and hence ( ka, f"x) € Rg. Thus, we have

fix=f'x = frx= 0Ny —= x= [0 Ry,

which implies that p < r — k, a contradiction. Then p = 1 and x is a fixed point, that is, x € Fix(f, R).
Moreover, if wg(x, f) # 0 for some x € X then Fix(f, R) # 0. If, in addition, R € J'(I) and x,y € X are two
R-fixed points, then the set

T ={Ael:(xy) eRi},

is nonempty. Let  := inf 77, so by the weak-nestedness, we obtain (x, y) € Rg. Consequently, it follows from
the R-contractive condition that § = 0 and hencex=y. O

4. Some consequences in p-dislocated metric space.

4.1. Matkowski-Edelstein type results.

The following result is a consequence of Theorem 3.5 and extends [3, Theorem 2] of Edelstein to a class
of Y-dislocated metric spaces.

Theorem 4.1. Let 6 € D(I, ) and ¢ € R, \ {0} such that f is d.-contractive mapping. Assume that:
(i) ¢ is continuous at (0, x) forall x € L.
(i) ¥(0,x) <xforallx el
Then, Q(f,0) = P(f, 0). In addition, if O is a cluster point of I, then the following assertions hold:
(iii) Ifforall x € X, O(x, fx) < ¢, then Q(f, 6) = Fix(f, 0).
(iv) If f is O-contractive and there exists x € X such that w(x, f,0) # 0, then f has a unique O-fixed point.

Proof. Since 6 € D(I, ), by Theorem 2.2, there exists R € J YD) N g, ¢) such that 6 = 6g. If 0 is an isolated
point of I, then by Theorem 3.1, Q(f, R) = P(f, R). Otherwise, By Proposition 2.4, f is R.-contractive, and
according to Theorem 3.5, we obtain also Q(f,R) = P(f,R). So by applying Proposition 2.3, we get the
result. Moreover, if the hypothesis of (iii) is satisfied, then Gr(f) € (U, R1. We conclude by Corollary
3.10-(i) and Proposition 2.3 that Q(f, 6) = Fix(f, 6). Finally, if the hypothesis of (iv) is verified, we deduce
the result by Corollary 3.10-(iii). O
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Denote by ®(I) the set of all monotone functions ¢: [ — I satisfying

lirlln(p”(t) =0, foralltel.

Note that p(t) < tforall t € I\ {0}. Letty € [, 6 € D, ¢), p € 5(1) and define the following sets:
Ipp = {0} U {/\,7 =@"(f):ne ]No} and 7;7,:0 i= Iy, U {oo}.

Denote 11 : ’I?p,to X’I\fp,to - ’I\(p,to the mapping given by

A if there exists k such that Ar g < P(A, p) < A
p1(A,p)=4 0 ifyp(A,u)=0

tp otherwise.

We define a family of binary relations Rs 1) = {RA}AJ by
Pt

Re =Ry, =X xXand Ry = {(x,y) € Xx X : 6(x,y) < A}, forall A € Ip, \ {to).

Remark 4.2. Observe that if p(t) = 0 for some t > 0, then Iy, is finite. Otherwise, 0 is the unique cluster point of
Lot
Pho

Lemma4.3. Lettp € I\ {0}, ¢ € &) and 5 € D], V) such that 1 is monotone. Then,
1) Regpm) € Rt(l(p,to) N R (Lp by, P1)-
(ii) for 61 = F(Rsp,1)) and x,y € X, we have
01(x, y) = 0 if and only if 5(x, y) = 0.
In particular, P(f, 61) = P(f, 6) and Fix(f, 61) = Fix(f, ).
(iii) If for some x,y € X there exists a subsequence { f”kx} in O(x, f) such that kEIPoo o(fx,y) = 0, then
A(f, Ris,p.t0)) 18 nonempty.

Proof. It is clear from its definition that R(s ) is nested, symmetric and belongs to R'(I,,). To prove (i),
we have to show that Rs ¢ 1) is Y1-transitive. Let (x, y) € Ry and (y, z) € Ry, by monotony of ¢, we have

0(x,2) < PO, ), 6(y, 2)) < P(A, ).

If there exists k such that A1 < P(A, u) < Ag or P(A, u) = 0, then Y(A, u) < P1(A, 1) and we deduce that
(x,2) € Ry,(1,)- Otherwise, Y(A, u) > to, in this case ¢1(A, u) = to and we have (x,z) € R;, = X X X. To show
(ii), let x, y € X such that 61(x, y) = 0. Then,

0=inf{A € lps : (,y) € Ra} = inf{A € Loy, 1 6(x, ) < A} 2 5(x, y),

which implies that 6(x, y) = 0. Conversely, if 6(x, y) = 0, then (x, y) € Ry and hence 01(x, y) = 0, by definition
of 61. To prove (iii), since lirP O(f"™x,y) = 0, then by taking a subsequence if necessary, we may assume

that 6(f™x, y) < A, for all Ay € I, 5, that is, (f™x, y) € Ry, thus we conclude that y € W10 (x,f). O

Lemma 4.4. Let ty € I\ {0}, e € (0,tp), ¢ € (1) and 6 € DI, V) such that 1 is monotone.
(i) If f is a 6-nonexpansive mapping such that for all x € X there exists an integer p = p(x) satisfying

o(ffx, ffy) < (p(é(x, y)), forallye X, (11)

then f is R p,1)-contractive.
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(ii) If f is O.-nonexpansive mapping such that for all x € X there exists an integer p = p(x) satisfying

Oox,y) <e = O(fPx, ffy) < (p(é(x, y)), forally e X, (12)
then f is (R(spt))e-contractive.

Proof. We observe that if f is 6.-nonexpansive (resp. 6-nonexpansive), then (Re,p,))e (resp. Rsp,r)) is
f-invariant .

(i): For (x,y) € X X X, consider
(x0, yo) = (x, y) and (Xp+1, Yns1) = (fp(x”)Xn/ fp(x,,)yn)‘

Then obviously from (11), we get
O(Xns1, Yns1) < PO, Yn)) < -+ < @"(S(x, ).

Define then m(x/ y/ /\) = Z?:(g/y) P(Xj), forall A € I, where
n(x, y) = min {k eIN: " (d(x, v)) < fo}-

Note that, as lirp @"(t) = 0 for all f > 0, the integer n(x, y) is well defined. Now, assume that (x, y) € Ry \ A.

If A = ¢"(tp) for some positive integer 1, then n(x, y) = 0 and from (11), the monotony of ¢ and the definition
of R;, we obtain

SNy, freyd) gy = (PO, FFOY) < @(6(x, ) < @™ (k).

Thus, for u = ¢"*1(t), we have u < A and (f"®¥Vyx, frevNy) € R,. If A = to, then by definition of n(x, y),
we have

(", DY) < @3 (x, ) < k).
Then for i = @(ty), we have u < A and (f"®¥ Ny, frvdy) e Ry

(ii): Let (x,y) € XX X. If A > ¢, then take m(x,y,A) = 1 (or any other values in IN). Otherwise, we define

m(x,y,A) as in (i). Now, if (x,¥) € Ry \ A and A < ¢. Then there exists n such that A = ¢"(ty) and we have

n(x,y) = 0. From (12), the monotony of ¢ and the definition of R,, using the same argument as in (i), we

obtain (f"®¥ Ny, frvNy) € R, for pu = @™ (t). O
|

Theorem 4.5. Let e >0, ¢ € (D), 6 € D, V) such that (X, 0) is complete and f is O.-nonexpansive. Assume that:
(i) 1 is monotone and continuous at (0, 0) with (0, 0) = 0.

(ii) There exists xo € X such that Diam(O(xo, f)) < €, where
Diam(O(xo, ) = sup {8(y,2) : y,z € Olxo, f)}.
(iii) For all x € X there exists an integer p = p(x) such that for all y € X satisfying 6(x, y) < &, we have
5(f7x, f7y) < ¢(5(x, ). (13)

Then f has a 6-periodic point. Moreover,

(@) Ifsup {6(x, fx):xe X} < @(¢), then f has a 6-fixed point.
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(b) If f is 6-nonexpansive and (13) is satisfied for all x, y € X, then f has a unique 0-fixed point.

Proof. Fix a positive real to such that ty > ¢. By Lemma 4.3-(i), Rp,1) € R"'(p4, 1), and from Lemma
4.4-(ii), we see that f is (Rs¢,1))c-contractive. If 0 is the unique cluster point of I, 1, by Proposition 2.3-(iii),
Lemma 4.3-(ii) and Theorem 3.4, we have A(f, R0,4)) = P(f,0). If 0 is an isolated point of I, then by
Proposition 2.3-(iii), Lemma 4.3-(ii) and Theorem 3.1, we have also A(f, R,¢,1)) = P(f, 0). To conclude that

f has a 6-periodic point, it is enough to show that the set A(f, R(s,,1,)) is nonempty. Let {xn} be the sequence
defined by x,41 = f”("")xn. Now, we shall prove that {xn} is convergent. Denote p, = p(x,) and for k,n € IN

let sg, = Zf”k_l pi. By condition (i), we obtain

i=n
(S(Xn, xn+k) = 5(Xn, fsn'kxn) 6(fp"71xn—1r fsn’kfp"?lxn—l)
(P<5(xn—1/ fsn/kxn—l))

PO 02, 1 20 2))
@2(6(9@1—2; fsn'kxn—Z))

IANIAN I

IA

IN e

" (5(xo, fx0))
< @)

Then {x,,} is a Cauchy sequence. By completeness, the sequence {xn} is convergent. It follows from Lemma
4.3-(iii) that A(f, Rp,1)) # 0. Assume now that the assumption of (a) is satisfied. As ¢ < to, there exists a
non-negative integer n such that

" (ty) < € < ¢"(h).
Then, by monotony of ¢, we obtain
5(x, fx) < p(e) < ™ (ty), xeX.

It comes out that, for I. =1, N (0, €), we have

Gr(f) g R({)"H(t[)) Q U R/\.
Ael,

Thus we conclude by Proposition 2.3-(ii) and Corollary 3.10-(i) that A(f, R(s,t)) is equal to Fix(f, 6) and
hence f has a 0-fixed point. Finally, if the hypothesis of (b) holds, then from Lemma 4.4-(i), we deduce that
fis Ris,p,4)-contractive. Since Rsp,1) € R (I 1,), we conclude that f has a unique 6-fixed point, by Corollary
3.10. O

4.2. Some fixed point results

If I is bounded, then the condition (ii) of Theorem 4.5 is obviously satisfied. In the context where I is not
bounded, we state the following upshot.

Corollary 4.6. Let 6 € D(I, ) such that (X,0) is complete, p € ®(I) and f be a 5-nonexpansive mapping. If the
following conditions hold:

(i) ¢ is monotone and continuous at (0,0) with Y (0,0) = 0.

(ii) Forall h € I there exists c € I, ¢ > h such that

t>c = t>yh, pt).
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(iii) For all x € X there exists an integer p = p(x) such that for all y € X, we have
5(f"x, f'y) < p(5(x, ).

Then f has a unique d-fixed point.

Proof. Note that the conditions (i) and (b) of Theorem 4.5 are satisfied. Let x € X, to conclude, we have
to show that Diam (O(x, f )) < M, for some M > 0. If I is bounded, then obviously Diam (O(x, f )) is finite.
Otherwise, define

U = (S(x,ka) and h = max {uo, T
where p = p(x). By (i), it follows that there exists ¢ > h such that
t>c = t>yh,et)).

Assume that there exists k > p such that u; > c. Let j > p be the smallest integer such that u; > c. Consider
g > 0and 0 <r < psuch that j = pg + r. Hence, by (iii), the monotony of ¢ and ¢,

uj=0(x, flx) < 110(5(;;/ £7x), 8(f'x, fpf(q—l)pwx))
< P(8(x, frx), p(8(x, FI 1))
= (up, Plugrpsr))
< ll’(hr (P(Mj)),

that is, u; < ¢(h,(p(u j)) which a contraction. Then u; < ¢ for all j > 0. Therefore, 6(x, f/x) < ¢ forall j > 0.
Now, by the monotony of 1, for all 7, j, we have

8(f'x, fix) < (ui, uj) < e, o).
Thus, the orbit of x is bounded. [

Remark 4.7. In Corollary 4.6 , if 0 is a dislocated metric, then the condition (ii) is equivalent to tlim t—(t) = +o0.
—+00

Consequently, the next results extend Matkowski fixed point [7, Theorem 2], to the context of dislocated metric spaces,
under some additional conditions.

Corollary 4.8. Let (X, 0) be a complete dislocated metric space, f be a 6-nonexpansive mapping and ¢ € ®(R,.).
Assume that:

(1) tl_i)rglot— P(t) = +oo.

(ii) for all x € X there exists an integer p = p(x) such that for all y € X, we have
3(f'x, fry) < p(5(x, ).

Then f has a unique 6-fixed point.

It has been proved in [2] that any semimetric 4: X X X — IR, has a monotone triangular function

P R, xR, - R,. The following result generalizes [2, Theorem 1] to the context of i)-dislocated metric
space.

Corollary 4.9. Let ¢ € (D), 6 € D(, Y) such that (X, 0) is complete. Assume that:

(i) ¢ is monotone and continuous at (0,0) with Y (0,0) = 0.
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(i) 8(fx, fy) < @(6(x, v)) for all x,y € X.
Then f has a unique d-fixed point.

Proof. From Theorem 4.5, it suffices to shows that the orbit of some x € X is bounded. Let x € X, xo = x and
Xn+1 = fX,, then from the monotony of 1, we deduce

S(knsks xn) < @"(8(f*x0,%0)), 1,k €N. (14)
Let ¢ > 0, by continuity of ¢ there exist an integer n, and 7n(¢) > 0 such that

" (e) < n(e) and P(u,v) < ¢, for all u,v < n(e).
Similarly, there exists 1y > 0 such that

(p"“(é(xo,kao)) < min{n(s), e}, forallk=0,...,n,. (15)

Let B(x,,, €) the ball of center x,, and radius ¢. Then from (14) and (15), we have x,,+x € B(xy,, ¢) for all
k=0,...,n.—1. For z € B(xy,, €), we have

6(F"z,xm) < Y802, " Xny), O(F" Xy X))
< (0" (0 xu,)), @ O(f"x0,%0)))
< Y(ne)ne) <e

In particular, f”é‘(B(x,,O, E)) C B(xy,, €). Now, for any positive integer m = gn, + k, 0 < k < n,, we have

Xng+m = fmxﬂo = fqngkaﬂo = fquﬂﬁk € fqng (B(xnof E)) < B(xﬂo/ 8)-
Consequently, 8(Xpg+m, Xn,) < €, for all m > 0, so x,, is a Cauchy sequence. Then O(x, f) is bounded. O

Finally, if (X, 6) is a complete dislocated metric space, then the condition (i) of Corollary 4.9 is obviously
satisfied, and we obtain a generalized version of the Matkowski result [6, Theorem 1.2] to the context of
dislocated metric space.

Corollary 4.10. Let ¢ € D(R,) and (X,0) be a complete dislocated metric space. Assume that

o(fx, fy) < (p(é(x, y)), forall x,yeX.

Then f has a unique fixed point.
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