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A study on dual generalized Fibonacci matrices

Melih Gécen®*, Can Murat Dikmen?, Yusuf Kaya?, Yiiksel Soykan®
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Abstract. In this paper, we introduce the dual generalized Fibonacci matrices. As special cases, we deal
with dual Fibonacci and dual Lucas matrices. We present Binet’s formulas, generating functions and the
summation formulas for these matrices. Moreover, we give Catalan’s, Cassini’s, d'Ocagne’s, Gelin-Cesaro’s,
Melham’s identities and present matrices related with these sequences.

1. Introduction

In [17], it has been shown that there exist essentially three possible ways to generalize real numbers into
real algebras of dimension 2. In fact, each possible system can be reduced to one of the following:

e numbers x + yi with i* = —1 (complex numbers);
e numbers x + yh with h? = 1, (hyperbolic numbers);

e numbers x + y¢ with €2 = 0, (dual numbers).

There are also other generalizations (extensions) of real numbers into real algebras of higher dimension.
The hypercomplex numbers systems, [17], are extensions of real numbers. Some commutative examples
of hypercomplex number systems are complex numbers, hyperbolic numbers, [21], and dual numbers,
[12]. Some non-commutative examples of hypercomplex number systems are quaternions ([14],[15]),
octonions [4] and sedenions [22]. The algebras C (complex numbers), Hg (quaternions), O (octonions)
and 5 (sedenions) are real algebras obtained from the real numbers IR by a doubling procedure called the
Cayley-Dickson Process. This doubling process can be extended beyond the sedenions to form what are
known as the 2"-ions (see for example [5], [16], [18]).

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) ([14],[15]) as an extension
to the complex numbers. Hyperbolic numbers with complex coefficients are introduced by J. Cockle in
1848, [9]. H. H. Cheng and S. Thompson [7] introduced dual numbers with complex coefficients and called
complex dual numbers. Akar, Yiice and Sahin [1] introduced dual hyperbolic numbers.
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Here, we use the set of dual numbers. Dual numbers were first invented by W. K. Clifford [8] in 1873.
The dual numbers which extend to the real numbers has the form

z=x+¢y
where ¢ is the dual unit and €% = 0, ¢ # 0. The set

D={z=x+¢ey|ec¢R, SZ:O,x,yEIR}
is called dual number system and forms two dimensional commutative associative algebra over the real
numbers. The algebra of dual numbers is a commutative ring (with identity) with the following addition

and multiplication operations; for any two dual numbers z; and z;,

Z14+2z0 = (+ey)+(a+eyr) =@ +x)+e(+y2),
(x1 + €y1) X (X2 + €ya2) = x1x2 + € (X1Y2 + Y1X2) .

Z1 X Zp
The equality of two dual numbers z; = x; + €y and z; = x; + €}, is defined as;
z1 = zp if and only if x; = x; and y1 = y».

The division of two dual numbers provided x, # 0 is given by

a _nten _ (nrep)-ep) n o “aptymn
z2 Xoteyy (+ey)(a-—ceyp) 1 x2 ’

The conjugate of the dual number z = x + ¢y is defined by

z=z'=x-ey.

Note that for any dual numbers z, zp, z we have

Z1+20 = Z1 +2y,
Z1X20 = Z1 X2y,
lzZIP = zxz= Va2=.

More information on dual numbers may be found in [8] and ([14],[15]).

Now, we give background on dual matrices.

Let R, be the set of m X n real matrices. Let ID,,x, be the set of m X n matrices with dual number entries.
A dual matrix Z € ID,,x, can be written in the following form:

Z11 212ttt ZIn X11+teYynn Xp2t+tE&Yywp 0 Xipt EYmn
221 Z22 ottt ZIp Xo1+ €Y Xt €Y o Xopt EYou
Z = (Zij)mxn = . . . . = . . .

Zml  Zm2 Zmn mxn Xm1 + EYm1  Xm2 + EYm2 v Xmn + EYmn mxn

X11 X12 ot Xin Y Y2 - Y

X21 X222 ot Xop Y1 Y o Yo

= . . . . +&
Xml Xm2 - Xmn mxn yml ymZ e ymn mxn

= X+e&Y
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where

X11 X120 Xin
X1 X2 ottt Xon

X = ,
Xml Xm2 - Xmn mxn
Yin Y2 - Y
Yar Yo o Yo

Y = . . . .
Ym1 Ym2 - Ymn mxn

Therefore the set of dual matrices can be given as
Dyxn ={Z=A+¢B|e 2R, ¢ =0, A, B € Ryxn}-

For more information on dual matrices, see for example [10]. For m = n = 2, a dual matrix Z can be written
in the following form:

211 Z12
Z = (zi =
(z])2x2 21 Zm
_ X11 + Y11 X12 + EY12
Xo1 + €Y1 X2 + EY2
X X
_ Xz ), Y Y12
X21  X22 Y1 Y
= X+¢&Y
where
X =

X1 X12
X1 X2 )’
Yy = Yy Yz
Yy Yy |’
Now let us recall the definition of generalized Fibonacci numbers.
A generalized Fibonacci sequence {Wy},>0 = {W,(Wo, W1)},s0 is defined by the second-order recurrence
relations

Wy =Wy +Wyp, Wo=a, Wi=b, (n>2) (1)

with the initial values Wy, W1 not all being zero. The sequence {W,},>o can be extended to negative subscripts
by defining

W =-W_i1y + W2

forn =1,2,3,.... Therefore, recurrence (1) holds for all integer 7.
The first few generalized Fibonacci numbers with positive subscript and negative subscript are given in
the following Table 1.
Table 1. A few generalized Fibonacci numbers
n W, W_,
0 Wo
1 Wi —W() + W,
2 Wy + Wy 2Wo — W,
3 Wy + 2W, —3Wy + 2W;
4
5
6

2Wy + 3W, 5Wy —3W;
3Wo +5W;  —8Wy +5W;
5Wo +8W;  13W, — 8W;
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If we set Wy = 0, W; = 1 then {W,} is the well-known Fibonacci sequence and if we set Wy =2, W; =1
then {W,} is the well-known Lucas sequence. In other words, Fibonacci sequence {F,},>o (OEIS: A000045,
[20]) and Lucas sequence {L,},>o (OEIS: A000032, [20]) are defined by the second-order recurrence relations

F,=F,1+F,», Fy=0F =1 (2)
and

Ly=Ly1+Ls», Li=2L =1 3
The sequences {F,},>0 and {L,},>0 can be extended to negative subscripts by defining

Fo=-F 1) +F (n2
and

Ly =-L_ 1) +L (42

forn =1,2,3, ... respectively. Therefore, recurrences (2) and (3) hold for all integer n.
We can list some important properties of generalized Fibonacci numbers that are needed.

e Binet formula of generalized Fibonacci sequence can be calculated using its characteristic equation
which is given as

Z2-z-1=0.
The roots of characteristic equation are

a_1+x/§ 1-15

27 P 2
Using these roots and the recurrence relation, Binet formula can be given as
Aa" - Bp"
"= Tacp @
where A =W; - Wy and B = W; — Wya.
e Binet formula of Fibonacci and Lucas sequences are
a — ﬁn
F =
n a— ﬁ
and
Ly=a"+p"
respectively.
e The generating function for generalized Fibonacci numbers is
Wo + (W1 — Wo)z
= ) 5
9(2) T (5)
e The Cassini identity for generalized Fibonacci numbers is
W1 Wit — Wi = (WoW; — Wi — W)). (6)
[ ]
Ad" = aW, + Wy, )
Bg" = BW,+ W,_1. 8)

In this paper, we define the dual generalized Fibonacci matrices in the next section and give some
properties of them.
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2. Dual Generalized Fibonacci Matrices and their Generating Functions and Binet’s Formulas

In this section, we define dual generalized Fibonacci matrices and present generating functions and
Binet formulas for them. In [19] and [13], the authors defined and investigated dual Fibonacci and Lucas
numbers. In [2], the authors defined and investigated dual generalized Pell numbers. In [23], the authors
defined and studied dual generalized Fibonacci numbers. Aydin [3] studied dual generalized Jacobsthal
sequence and Cerda-Morales [6] studied dual third-order Jacobsthal numbers.

The nth dual generalized Fibonacci matrix is

DW. = ( Wn+1 + 8Wn+2 Wn + 8Wn+1 ) — ( Wn+1 + S(Wn+1 + Wn) Wn + 8Wn+1 )
" W, + eW,1 W1+ W, W, + eW,1 Wy =W, + W,

with initial conditions

DW. _ W1 +€(W0+W1) W0+EW1
U W0+€W1 Wl—WO"'SWO g

DW. _ W0+W1+€(W0+2W1) W1+€(W0+W1)
L= W1 +E(W0+W1) Wy + eW; !

where ¢? = 0. As special cases, the nth dual Fibonacci matrix and the nth dual Lucas matrix are given as

DFn:( Foi1 +€Fn2 Fu+ €Fun )

F, + €F, 41 F,_1+¢F,
and

DLn — ( Ln+1 + gLn+2 Ln + 5Ln+1 )

L,+¢elL,s1 L,q+¢€L,
respectively. It can be easily shown that
DW, = DW,_1 + DW,_,. (10)
The sequence {DW,},>0 can be extended to negative subscripts by defining
DW_, = =DW_(,_1y + DW_(,,—3)
forn =1,2,3,... respectively. Therefore, recurrence (10) holds for all integer n. Note that

DW_n — ( W—n+1 + 5W—n+2 W—n + 5W—n+1 )

W_,+eW_,;1 W_o,.1+eW_,

Note also that

_ Whne  Wye . W1 W,
DWnE _( an Wn—lg )_ é( Wn Wn—l )

The first few dual generalized Fibonacci matrices with positive subscript and negative subscript are
given in the following Table 2 and Table 3.

Table 2. A few dual generalized Fibonacci matrices with positive subscript
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n DWn
0 W1+€(W0+W1) W0+€W1
Wy + eW; Wi — Wy + eWy
, (w0+w1+e(wo+2w1) W1+8(W0+W1))
W1+€(W0+W1) Wo + eW;
) (w0+2w1+s(2w0+3w1) wo+w1+s(w0+2w1))
Wo + Wi + e (W + 2Wh) Wi+ ¢ (Wo + Wh)
3 ( 2Wo + 3Wq + e (BWo +5W;)  Wo + 2W; + € W, + 3W4) )
Wo+2W; + ¢ (2W0 + 3W1) Wo+ Wi +¢ (W() + 2W1)
4 ( 3Wy + 5Wy + & GWy + 8Wp) 2Wy + 3W; + ¢ BW, + 5W4) )
2Wo+3W7 + ¢ (3W0 + 5W1) Wo+2W; + ¢ (2W0 + 3W1)

Table 3. A few dual generalized Fibonacci matrices with negative subscript

n DW_,
0 ( W1+€(W0+W1) Wo + eW; )
Wo + eW; Wi — Wy + eWp
1 ( Wy + eW; Wi — Wy + eWy )
W1 — Wy + eWy 2W0—W1—£(W0—W1)
) ( Wi — Wy + Wy 2Wo — Wi — e (Wy — Wy) )
2W0 -Wi—¢ (WO - Wl) 2Wq — 3W() — & (W1 - 2W0)

3 ( 2Wo =Wy —e(Wo = W1)  2W; = 3W, — e (W1 — 2Wp) )
2W1 - 3W0 - & (W1 - ZWO) 5W0 - 3W1 - & (3W0 - 2W1)
2W1 - 3W0 — & (W1 - ZWO) 5WQ - 3W1 — & (3W0 - 2W1)

( 5W0 - 3W1 — & (3W0 - 2W1) 5W1 - 8W0 — & (3W1 — 5W0) )

'S

For dual Fibonacci numbers (taking W, = F,, Fp = 0,F; = 1) we get

1+¢ ¢
DFy = ( € 1)’
DF, - (1+2§ 1fs),
1+¢ €

and for dual Lucas numbers (taking W,, = L,,, Lo = 2,L; = 1) we get

1+3e 2+¢
DLo (2+e -1+2¢ )

3+4e 1+3¢
Phi = (1+3e 2+e)

46

A few dual Fibonacci matrices and dual Lucas matrices with positive subscript and negative subscript are

given in the following Table 4 and Table 5.

Table 4. Dual Fibonacci matrices



M. Gaocen et al. / Filomat 39:1 (2025), 41-54

n DF, DF_,
0 (1+£ e) (1+€ s)
£ 1 I3 1
, (1+2g 1+e) (e 1 )
1+¢ £ 1 -1+¢
) (2+3£ 1+2€) ( 1 —1+€)
1+2e 1+¢ -1+ —-e+2
3 (3+5€ 2+ 3¢ “1+e¢ —e+2)
2+3¢ 1+42¢ —&+2 =-3+42¢
4 5+8¢ 3+5¢ 2—¢ =3+2¢
3+5e 2+ 3¢ -3+2¢ 5-3¢
5 (8+138 5+8£) (—3+2£ 5—3¢ )
5+8¢& 3+5¢ 5-3e -8+5¢

Table 5. Dual Lucas matrices

n Ln L—n

2+¢ —-1+2¢

0 (1+3e 2+s) (1+3e 2+¢

2+¢ —-1+42¢

|

1 3+4e 1+3¢ +2+¢ —-1+2¢
1+3e 2+¢ -1+2¢ 3-¢
5 7e+4 4+ 3 -1+2¢ 3-¢
4e+3 3e+1 3—-¢ —4+3¢
7+1le 4+7¢ 3—-¢ —4+3¢
3 ( 4+7¢ 3+4¢ —4+3¢ 7-4e
4 11+18¢ 7 +1l¢ —4+3¢ 7-4e
7+11le 4+7¢ 7—4e -11+7¢
5 18 +29¢ 11+ 18¢ 7—4e¢ =11+7¢
11+18¢ 7 +11¢ 1147 18-11¢

47

Now, we will state Binet’s formula for the dual generalized Fibonacci matrices and in the rest of the

paper, we fix the following notations:
al 1

(1+€0é)( 1 Ol_l )/

— ﬁl 1

P asa(h )

Note that we have the following identities:

a

— 0 0

ap = (0 o)’
~mon o\ om—1pn—1 0
a = (ap)a™p :( 0)

— _ a+2+2Q@Ba+1) [ a+l «a

“a = a+1 a

- B+2+2eBB+1) [ g+1

o= B+1 B 1

— a+2+3¢Ba+1)( 4a+3 3a+1
“ = 2a +1 B3a+1 a+2 |’
—  P+2+3e¢@B+1) [ 48+3 3B+1
Fo= 26 +1 38+1 p+2

for all integers m # 0,1 # 0,
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Theorem 2.1. (Binet’s Formula) For any integer n, the nth dual generalized Fibonacci matrix is
Ada — BEp
a-p
Proof. Using Binet’s formula
Aa" — Bp"
a-p
of the generalized Fibonacci numbers, we obtain

W1+ eWnio Wy + W )

DW, = (11)

W, =

DWu = ( Wi+ eWiet Wiy + €W,

_ 1 a1, Bl
= a—ﬁ(A(1+€a)( 1 ol )a -B(1 +eﬁ)( 1 g B
1 _ —
= ——(Aaa" - BBp"
S5 ATa" ~ B
This proves (11). O
As special cases, for any integer 7, the Binet’s Formula of nth dual Fibonacci number is

w
a—p
and the Binet’s Formula of nth dual Lucas number is

DL, = aa" + pp".

DF, =

Next, we present generating function.

Theorem 2.2. The generating function for the dual generalized Fibonacci matrices is

i DW.a = DW, + (DW; — DW)x
o " 1—x—x2 '

Proof. Let

g(x) = Z DW,x"
n=0

be generating function of the dual generalized Fibonacci matrices. Then, using the definition of the dual
generalized Fibonacci matrices, and substracting xg(x) and x*g(x) from g(x), we obtain (note the shift in the

index 7 in the third line)
Z DW,x" —x Z DW,x" — x? Z DW,,x"
n=0 n=0 n=0

= i DW,x" — i DW,x"*! — i DW, x"*?
n=0 n=0 n=0

= i DW,x"™ — i DW,_1x" — i DW,,_x"
n=0 n=1 n=2

= (DW, + DW;x) — DWox + Z(DWn — DW,_1 — DW,_o)x"
n=2

= (DWO + DW1x) — DWyx = DWy + (DW1 — DW())X.

(1 -x-x")g(x)
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Note that we used the recurrence relation DW, = DW,,_; + DW,,_,. Rearranging above equation, we get

DWy + (DW7 — DWp)x

gx) = T
]
As special cases, the generating functions for the dual Fibonacci and dual Lucas matrices are
l+e ¢ 4 € 1
= . e 1 1 -1+¢)*
ZDan - 1-x—2a2
n=0
and
1+3¢ 2+¢ + 2+¢  -1+2¢
°° 24¢ —1+2¢ ~1+2¢ 3-¢ |
Y DLx" = -
1-x-x
n=0
respectively.

3. Some Identities

We now present a few special identities for the dual generalized Fibonacci sequence {DW,}. The
following theorem presents the Catalan’s identity for the dual generalized Fibonacci numbers.

Theorem 3.1. (Catalan’s identity) For all integers n and m, the following identity holds

0 0
DW,4mDW,,_, — DW? =( 0 0 )

Proof. Using the Binet Formula

A~n_B~n
pw, = Aaa” ~BpF"
a—p

we get
m _ gmy2
g2 A" G

pran @ =p)
00
(55)
sinceb?ﬁ:(g 00

As special cases of the above theorem, we give Catalan’s identity of dual Fibonacci and dual Lucas
matrices.

DW,1nDW,_,, — DW?

0

Corollary 3.2. (Catalan’s identity for the dual Fibonacci and Lucas matrices) For all integers n and m, the following
identities hold

(v 3)

DFn+mDFn—m - DF%

Il
OO OO
OO OO

DLnerDLnfm - DL%,
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Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the dual generalized Fibonacci
matrices.

Corollary 3.3. (Cassini’s identity) For all integers n, the following identity holds

00
DW,;1DW,_; - DW? :( 00 )

As special cases of Cassini’s identity, we give Cassini’s identity of dual Fibonacci and dual Lucas
matrices.

Corollary 3.4. (Cassini’s identity of dual Fibonacci and Lucas matrices) For all integers n, the following identities

o
(57)

The d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities can also be obtained by using the Binet’s formula
of the dual generalized Fibonacci matrices:

DF,.1DF, 1 - DF?

Il
oo OO
oo OO

DL,1DL, 1 — DL?

_ Ada” - Bpp"

= T

The next theorem presents d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities of the dual generalized
Fibonacci matrix sequence {DW,,}.

DW,

Theorem 3.5. Let n and m be any integers. Then the following identities are true:

(a) (d'Ocagne’s identity)

DW,,s,1DW,, — DW,,DW,41 = (

o o
o o
N —

(b) (Gelin-Cesaro’s identity)

0
DWn+2DWn+1DWn—1DWn—2 - DW3 = ( 0

o O
S~—

(c) (Melham'’s identity)

0 0
DW,.1 DW,s2DW,i 6 — DW3,; = ( 0 0 )

Proof.

(a) We obtain (a) since

AB (anﬁm _ amﬁn)-
@p

DWm+1DWn - DWmDWn+1 =

and sinceb?ﬁ:( 8 8 )
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(b) We get (b) since

_ ABa"B" (a® + B + 3ap)(A%a%a®" + B*B2B™)

. L
DWn+2DWn+1DWn_1DWn_2 — DWn = (a ~ ﬁ)z (Xzﬂz 06‘3
and EE:( 8 8 )
(c) We obtain (c) since
3 (ap)™! 2 p7 2\ =%
DW,s1DW,is2DWirss = DW, 5 = ~AB—— ; (Aa(1 + pya™*? - BR(1 + a)p™*?) ap

andsince?iﬁz( 8 8 ).D

As special cases of the above theorem, we give the d’Ocagne’s, Gelin-Cesaro’s and Melham” identities
of dual Fibonacci and dual Lucas matrices. Firstly, we present the d’Ocagne’s, Gelin-Cesaro’s and Melham’
identities of dual Fibonacci matrices.

Corollary 3.6. Let n and m be any integers. Then, for the dual Fibonacci matrices, the following identities are true:

(@) (d’Ocagne’s identity)

DF,,,1DF,, — DF,,DF ;1 = (

o O
o O
~——

(b) (Gelin-Cesaro’s identity)

DFMQDFMJDquDFwQ"DFﬁZ(

o O
o O
~——

(c) (Melham'’s identity)

0 0
WMWMWMJﬁH{OO)

Secondly, we present the d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities of dual Lucas matrices.
Corollary 3.7. Let n and m be any integers. Then, for the dual Lucas matrices, the following identities are true:

(a) (d’Ocagne’s identity)

DL,;41DL,;, — DL,,DL;41 = (

o O
[e>ien)
~———

(b) (Gelin-Cesaro’s identity)
4 0 0
DLn+2DLn+1DLn—1DLn—2_DLn= 0o ol
(c) (Melham'’s identity)

00
mmmmmm—mg=“)”.
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4. Linear Sums

In this section, we give the summation formulas of the dual generalized Fibonacci matrices with positive
and negative subscripts. Next, we present the formulas which give the summation of the dual generalized
Fibonacci matrices.

Theorem 4.1. For n > 0, dual generalized Fibonacci matrices have the following formulas:
@ Y.;_oDWy =DW,,, — DW;.

(b) Y.i_o DWy = DWa,11 — DW; + DW,,.

(¢) Y.y—o DWori1 = DWoyir — DW,.

Proof. Use mathematical induction onn. O
As a first special case of the above theorem, we have the following summation formulas for dual
Fibonacci matrices:

Corollary 4.2. For n > 0, dual Fibonacci matrices have the following properties:

n _ _ Fn+3_1+5(Fn+4_2) Fn+2_]-+5(Fn+3_1)
(a’Zk—ODFk‘DF"”‘DF“(Fn+z—1+e(Fn+3—1) Frate(Fua—1) )

(b) ZZ:O DFy. = DFyye1 — DF; + DFy = ( Fonio + € (Fanez — 1) Fopi1 =1+ €Fp,40 )

Fous1 =1+ €Fonn  Fou+ 1+ ¢&(Foun — 1)

F -1+e(F -1) F +e(F -1
(©) Y/ DFys1 = DFysn — DF, :( 2n+3 €(Fonea = 1) Fopso + & (Fansz — 1) )

Fouio + € (Fonez — 1) Fonr1 =1+ €Foupn

As a second special case of the above theorem, we have the following summation formulas for dual
Lucas matrices:

Corollary 4.3. For n > 0, dual Lucas matrices have the following properties.

(a) Zn DLk_DL Z_DLl _( Ln+3_3+5(Ln+4_4) Ln+2_1+s(Ln+3_3) )
k=0 - n+ - .

Ln+2 -1+¢ (Ln+3 - 3) Ln+1 -2+¢ (Ln+2 - 1)

(b) ZZ:O DLy = DLyye1 — DLy + DLy = ( Loniz =2+ €(Lonss — 1) Lops1 + 1+ e (Loysn — 2) )

Loy +1+e(Lopsn —2) Loy =3+ ¢e(Lopr +1)

L —1+e(L -3) L —-2+e(L -1
() Y/ DLags1 = DLynss — DLo = ( 2n+3 € (Lonta = 3)  Lonsz € (Lones — 1) )

Lopio =2+ e (Lonsz — 1) Lot + 1+ €(Lons2 — 2)

5. Determinant, Inverse, Eigenvalues and Eigenvectors of Dual Generalized Fibonacci Matrices

Note that we get

W2, = Wa = Wy Wy = =W2 + Wi Wost = W Wiso — W, Wi
by using the identities

Wn+2 = Wn+1 + Wn/

Wit = Wy =W,

Next, we present determinant, inverse, eigenvalues and eigenvectors of DW,,.
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Theorem 5.1. For all integers n the following properties hold:
(a) Determinant of DW,, is

det(DW,) = (e +1)(=W; + W1 Wi1)
(e + W2, | = W2 = W,.qW,).

+1

(b) Inverse of DW,, is

DW= 1 ( Wiy + Wy =Wy = eWiiy )
(e + 1)(=W2 + W,,.1W,11) Wy —eWnp1 Wisa + eWpo
_ 1 Wn+1 - Wn + €Wn _Wn - 5Wn+1
B (e + 1)(W§+1 - W,% - WnaWp) ( Wy — eWpq Wii1 + e(Wii1 + W) )

provided that ( + 1)(W2,, = W2 = Wya W) = (¢ + (= W3 + W,y Wye) # 0.

(c) Eigenvalues of DW,, are given as

@Was1 + (V5 = DW,) + (V5 + )Wy +2W,)

A= 5
( ‘/54+ 1)(5 + 2 “; Vg)(zw,,ﬂ + (V- 1)W,)
and
h o= Wt V5 = DW,) + e((= V5 + W1 +2W,)

2

-

(d) Eigenvalues of DW, associated to eigenvalues A1 and A,, respectively, are

1+ 5
H = 2
1
and
1-5
Ha = 2
1
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