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Abstract. The objective of this paper is to obtain generalised Wintgen inequalities for submanifolds that
are immersed in golden Riemannian manifolds endowed with semi-symmetric metric and semi-symmetric
non-metric connections by employing mathematical operators.

1. Introduction

Let M? represents any surface in the Euclidean space E*, then Wintgen inequality can be asserted as
follows [25]

IHI? = K + K, 1)

in above case, H stands for the squared norm of mean curvature, K, K+ indicates Gauss and normal
curvature of M?, respectively. In addition to this, equality sign holds in (1) provided ellipse of the curvature
becomes exactly a circle.

Further, the inequality (1) was investigated independently and generalized to the case of surfaces of any
co-dimension in real space forms by ([24],[15])

K —c < [HIP - 1K+,

Let p represent the normalized scalar curvature. Then, the generalized Wintgen inequality is reproduced
in [12] with
IHIP > p* —c+p,

here p* means the normalized normal scalar curvature. This one had been termed as DDVV conjecture. In
the recent years, DDVV inequalities appeared for various ambient manifolds and a survey can be found in

[6].
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On the other side, the semi-symmetric linear connection has been studied in different ways since its
introduction in 1924 [13] and that paved the way of studying differentiable manifolds with new settings.
Hayden [16] has the credit of defining semi-symmetric metric connection onto manifold endowed with Rie-
mannian metric. Imai [18], Yano [27] investigated several interesting properties of Riemannian manifold
equipped with semi-symmetric metric connection . Nakao [23] generalized the results of Imai and estab-
lished Gauss like and Codazzi-Mainardi like equations. In 1925, Agashe and Chafle ([2],[1]), investigated
Riemannian manifolds endowed with a semi-symmetric non-metric connection. Optimal inequalities have
also been derived for various manifolds with semi-symmetric connection (see [5]).

It is to be noted that polynomial structures were investigated on manifolds in the early 1970s due to
Goldberg, Yano and Petridis [14] and structure of golden type was discussed in [11] producing several
interesting results. Recently, submanifolds of slant type in golden Riemannian manifolds has been taken to
study in ([3],[8],[10], [19] etc.).

Here, the generalized Wintgen inequalities are investigated for golden Riemannian manifolds equipped
with semi-symmetric connections. We also investigate inequalities for different slant cases as application
of main theorems.

Following are proved:

Theorem 1.1 For any 0-slant submanifold S” isometrically immersed in locally golden product space form

—m
S endowed with semi-symmetric metric connection . We have

1 2 2
ps < ||W||2—2p+5(c1+cz){3—atr(p+ o 1)[trzqo—(trT+n)cosz 01}
1 4
+ —(cp —cy) 2tro —n) — —trp. 2
= @irp—n) = rp @)

Moreover, (2) satisfies equality case iff in view of some orthonormal frames {uy, ..., u,} and {41, ..., Um}, S
reduces to

& g 0 0 0
g & 0 0 0
0O 0 0, ... 0 O
Swa=| .. SR 3)
0O 0 O 0, 0
0O 0 O 0 O
0 +oO 0 0 0 0
0 -0 0 0 0
0 0 db ... 0 0
Snv2 = : : R S [ )
0 0 0 0 0
0 0 0 0 0,
03 0 O 0 0
0 03 O 0 0
0 0 6 ... 0 O
Sni3 = . . . . . . ’ Supa=-=5,=0, (5)
0O 0 O 03 0
0O 0 O 0 O3
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where 01, 0>, 03 and O are real functions on S.
Theorem 1.2 For any 0-slant submanifold S” isometrically immersed in locally golden product space

—m
form S endowed with a semi-symmetric non-metric connection. We have

ps < lH? - 20 + %(cp + cq){3 + m[trz(p — (T + n) cos® 6] — %tr(p}
- %trﬁ + %(CP —¢g) (4trQ —2n) — 4 (H). (6)

Moreover, (6) satisfies equality iff for some orthonormal frames {uy,...,u,} and {uy11, ..., Uy}, S takes the
form of

01 g 0 0 O
g 0 O 0 O
0O 0 0, ... 0 O
Swa=| . .. SR K )
0O 0 O 0, 0
0O 0 O 0 O
0, + O 0 0 0 O
0 -0 0 0 0
0 0 0 ... 0 0
Suv2 = : : SR SR ®)
0 0 0 0 0
0 0 0 0 0O,
o3 0 0 ... 0 O
0 0 0 ... 0 O
0O 0 03 ... 0 O
S43 = . . . . . . ’ Spoa=-=5,=0, (9)
0O 0 O ... 03 O
0O 0 O 0 03
where 81, 0,, 3 and O are real functions on S.

2. Preliminaries

2.1. Semi-Symmetric Metric Connection

Suppose (Em, g) represents Riemannian manifold and 7 stands for torsion tensor of linear connection
V* on § satisfying [27]

T (b2, 63) = y(L3)(L2) — y(€2)(63), (10)

V* in above situation is termed as semi-symmetric connection. Further, assume that 77 be any vector field
and y be 1-form associated with 7] by

y(t) = g(t, ).
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In addition to this, V* becomes semi-symmetric metric connection provided

Vig=0, (11)
and a semi-symmetric non-metric connection when

Vg #0. (12)
In [27], V* semi-symmetric metric connection on S was defined with

Vit = y(6)0 — g(6, &) + Ve by,
in above case, V represents the Levi-Civita connection of S. _
Fix curvature tensors of mathematical operators V and V* of S with R and R*. One can write [18]
R'(61,6)03 = R(€1, 6)0s + g(€1, 63)Kb, — B(6, £3)0
—g(€o, 3)Kt1 + B(t1, €3)0s, Ve e TS, (13)

in above situation f represents a (0, 2)-tensor field given as

B(t1,€2) = %V(ﬁ)f](fl,fz) + (Ve )b = y(6)y ()
and
g(Kglr ’52) = ﬁ(fll 62)

Consider that S be m-dimensional Riemannian manifold equipped with semi-symmetric metric connec-
tion and 8" be submanifold of S. Let us fix mathematical operators V and V for covariant differentiation in

connection with Levi-Civita connection in S and S, respectively. Represent with 5y the shape operator of
S with respect to N € I(T+S). One gets

Vi bo = Vi by + (L, 6)
and
VN = =Syl + Vi N,
in this case V* denotes connection in T+S. One also has
9(5nt, 6) = g(h(6y, £2), N).
Let us suppose that R* stands for the Riemannian curvature tensor on T+S. Hence, equation of Gauss is [4]

R(Ey, 62, 03,65) = R(Ly, 2, 63,C5) — g(h(1, Ls), h(Ca, €3)) (14)
+g(h(t1, £3), h(t2, £y)),

in above situation ¢y, 6,3, €4 € T'(TS), R and R indicate curvature tensors of S and S. For any normal
vector fields &; and &,, we write [26]

IR(b1, 62)E1, &) = gRA (L1, 62)Er, &) + g[Sz, Se,161, 62), (15)
in this case [S¢,, 5¢,] = 5¢,5:, — 5,5, - _
In view of (2.1), R* of Riemannian manifold S equipped with a semi-symmetric metric connection V* is
represented as
R'(t, L)z = R(ty, 6)l3 — B(t, 63)61 + (L, £3)E2
—g(fz, 53)K€1 + 9(51,53)K€2. (16)
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Consider local orthonormal frame {u1, ..., u,} and {t,41, ..., u,} of Sin S. Then one has

n

1
H = Z ~h(ui, ), (17)
and
WP =Y g(htus, ), h(ws, up)). (18)
1<i,j<n

Let © C T,S,p € S be the plane section and K (7) be sectional curvature of S connected with 7. Then one
can write

wp)= Y K Au) (19)
1<i<j<n
and
plp) = n(n_l) Y K nu). (20)
1<i<j<n

—m
Let S be Riemannian manifold endowed with semi-symmetric metric connection and S represents

n-dimensional submanifold in S. Also assume some orthonormal frames {ug,...,u,} and {41, ..., Uy} of
T,S and TS, respectively. Then one writes [21]

L 27t
= nn-1) (21)

In the similar way [28],

Ks = 411 Y (Tracel$,, 8.7, (22)

rs=n+1

where 5; stands for shape operator of S in the direction of &,
t=n+1,..,m
Next, we represent [22]

2
= — . 2
PS = 1) VKs (23)
Hence, we write
1
Ks = 5 Z (Trace[S,, S,])*
n+1<r<s<m

= ), ) 08, 8w u)

n+1<r<s<m 1<i<j<n

Now, one represents K as [22]

Ks= Y, Y. [Z(h;khjk R (24)

n+l1<r<s<m 1<i<j<n k=1
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2.2. Semi-Symmetric Non-Metric Connection

Assume (Sm, g) represents any Riemannian manifold and V* stands for linear connection on S and 7~ be
torsion tensor of V*. We have already seen that V* is semi-symmetric connection provided it satisfies (10)
and non-metric connection if

Vig#0.

In [1], V* semi-symmetric non-metric connection was described as
Vil = p(&)lr + Ve, b, Ve, b € T(TS),

in above equation, ¢ stands for a 1-form.
—m
Assume any Riemannian manifold S with semi-symmetric non-metric connection V*. Also suppose
that R* and R be curvature tensors of S with respect to mathematical operators V* and V, respectively. Thus

(1]

R(61, €2, 03, Ls) = R(E1, Lo, €3, £s) — (L2, 63)g(E1, L) + B(E1, £3)g(La, Cs), (25)
in this situation, B is (0, 2)-tensor field written as
B(tr, 62) = (V)2 — p(L1)P(L2). (26)

Let us also denote the trace of f by A.

—m ’ . . .
Now, let 8" be submanifold of S and mathematical operators V and V' be induced semi-symmetric
non-metric connection and Levi-Civita connection, respectively. Fix R and R’ for the curvature tensors on
S with respect to V and V'. The Gauss formulas are expressed as

Vi ly = Ve by + h(61,02),
Vilo =V, 6 +1 (6, 6),

in this case, h represents (0,2)-tensor on S, }' means the second fundamental form of S in S. One can also
note that [2]

h=H. (27)
For a semi-symmetric non-metric connection, one has [2]
R*(tlr t2/ t3/ t4) = R(tll t2/ t3/ t4) - g(h(tlr t4)/ h(tZI t3)) (28)
+g(h(t1, t3), h(tz, ts)) + g(E, h(t2, t3))g(t1, ta)
—g(E, h(t1,t3))g(t2, ta), Vi, by, t3, ts € T(TS),

E represents vector field satisfying
9(E, tr) = ¢(t).

One also writes

= ]
H = ; ~ (o ) (29)
and
T= Z R(M,‘,u]', Mj, ui). (30)
1<i<j<n

We also define

2
P = o)) Z K(ui Auy), (31)

1<i<j<n

in above case, K means the sectional curvature function on S. Similarly, we can write other formulas with
respect to semi-symmetric non-metric connection
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2.3. Golden Riemannian manifolds
Consider the Riemannian manifold (gm, g) and assume (1, 1)-tensor field £ on S. When [3, 11, 14]

Ot) = ml+aly+..+a, 00 + 0
= 0,

I being identity transformation and (for ¢; = £) I, L(p),, ..., L"*(p), L' (p) are linearly independent at
pE S. Then O({1) is said to be structure polynomial. In addition to this, O(f1) = é’% + I produces an almost
complex structure and O(¢;) = 3 — I results an almost product structure.

Additionally, ¢ ((1, 1)-tensor field) satisfying the equality [3, 14]

(p2 =@p+],
is known as golden structure on S. Moreover, g becomes @-compatible if
9@l &) = gl 0t) Vb, b €N(TS). (32)

A golden Riemannian manifold (S, g,¢) endows golden structure ¢ with ¢-compatible Riemannian
metric g [3, 11]. Setting @{; in place of ¢ in (32), one obtains

9ot pt) = g(@*h,6)
= glpbt, &) + g(t1, ) Ve, b € T(TS).

Let ¢ stands for golden structure and £ be almost product structure. Then £ produces

(p=%(\/§£+1)

and ¢ induces L [3, 11]
£=-L0p-1
AR

Further, (S, g, ®) is known as locally golden if with respect to Levi-Civita connection, ¢ becomes parallel.
Assume that (S, g) is a submanifold of (S, g, ¢). Then, we express

ply = Pl + Q6 V(YY) € I(TS)

in this case P, stands for tangential component and Q¢ represents normal components of ¢f,.

A submanifold (S, g) immersed in S, g, ®) is known as slant when any nonzero vector {1 € T, S, p€ S,
the angle 0(¢1) between T,S and ¢¢; is independent of p € S and ¢; € T,S. We have these cases for S:

e 0 =0 (p-invariant)
e 0 =7 (p-anti-invariant)

e proper slant when it is neither invariant nor anti-invariant.

Lemma 2.1 [3] For any submanifold (S", g) of Riemannian manifold with golden structure (gm, g,¢). We
have:

1. Sisslant & 3y € [0,1] satisfying P> = u(I + ¢). Additionally, u = cos?0, for slant angle 6.
2. Sisslant & 3y € [0,1] satisfying ¢? = %Pz. In this case, p = cos*0.

3. g(Pfl,sz) = COSZQ(g(f1,P€2) + g(fl,fz)).

4. g(Qfl,sz) = Sil’lZQ(g(Pfl,fg) + g(fl,fz)), Vfl,fz € F(TS)
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Now, consider real-space forms S, and S,. For locally golden product space form S = Sp(cp) x
S,(¢cy), 9, ¢), one has the Riemannian curvature tensor R [9]:

(V5 - 1), + (FV5 - 1),
10
+ gl G)pty — g(6, G)pla]
(F V5 +3)c, + (= V5 +3)c,

+ 0 [g(€2, £3)61 — g(£1, €3) 0] (33)

[g(pta, E3)pty — g(pty, £3)pla].

R(t, 62)3

[g(pta, £3)1 — g(ply, t3)t2

Cp+Cq

T 5

Further, if S is equipped with semi-symmetric metric connection. Then curvature tensor of Sis

(F V5 +3)c, + (= V5 +3)c,
10
(=V5-1)c, + (FV5-1)c
+ = gple, )6 = g(pls, )2
+ g(b, )by — g(br, L)L) (34)
= Bl &)ty — g(62, (3)Kby
Cp + Cq
= [9(pla, L)ty — g(pt, G3)pla]

+ Bl G3)l + g6y, G)KE,

R'(61,0)03

[g(L2, €3)01 — g(r, €3)L5]

+

where (16) and (33) have been used.

S is equipped with semi-symmetric non-metric connection. Then taking into use (25) and (33), one
expresses

FV5+3)c, + (= V5 + 3)c,
10
(V5 - 1), + (FV5 - 1),

+ T [9(pta, £3)61 — g(@ply, €3)n

+ (o, )ty — (b1, &)pla] + B(L1, €3)g(La, Lr) (35)
Ccy + C,
%[g(qofz,m(pa — (@b, 3)pts]

= Bz, ta3)g(t1, Ly).

R (61, 6)3

[g(£2, €3)01 — g(61, €3)Es]
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3. Main Proofs

Theorem 1:
Proof: In the light of (34), one obtains

V5 +3)c, + (V5 +3
Y, Ry = 0 B,

1<i<j<n

— gui, uj)g(uj,u;)]
+V5-1 FV5-1

* : )CleE)(+ i [g(puj, uj)g(ui, u;)
= g(pui, up)guj, wi) + g(uj, uj)g(eu;, u;)
= glui, up)g(puj, u;)]

¢+
+ 5 [9(puj, uj)g(pui, ui) — gleui, uj)g(pu;, u;)]
= Bluj, up)g(ui, ui) + B(ui, uj)g(uj, u;)
= g(uj, up)g(Kuj, u;) + g(h(ui, uj), h(uj, u;))
= g(h(ui, ui), h(uj, uy)) + g(ui, uj)g(Kuj, u;)

where Gauss equation has been used. With the help of Lemma 2.3, one obtains

1 nn-1) 4
Z R(uj, uj,uj,u;) = Z(Clﬂ +¢q) 5 {6_ Ztr(P
1<i<j<n
2 2
T 1)[” @ = (irT + ) cos” 0]} + By
1(71 -1)

1 T(CP —¢g) (4trp — 2n) — 2(n — 1)trp,

here Bi = Y31 Lisicjen [5H% = (hE)?]
We also know that

2t = Z R(ui, uj, uj, u;),

1<i<j<n
that produces

1 n(n—1) 4 4
2T = Z(Cp +¢4) 5 {6 + — [trz(p — (trT + n) cos® 0] — Etr(p}

1(n-1)

1 NG (cp — cq) (4trep — 2n) — 2(n — 1)trp + By.

Let Ay = Y01 leiqsn(hg - h?j)z and Ay = Y01 Zlgi</'gn hﬁh?j, then
RIHPE = Y () )
a=n+1 i=1
1 2n
= n—1A1+n—1A2'

One can also note [20]

1
By < Az + —Ay,
2n

63

(36)

(37)

(38)

(39)

(40)

(41)



M. A. Choudhary et al. / Filomat 39:1 (2025), 55-66

inwhere By = { ¥y 1zacpemn Lasicjenl Lic (3G, — )P and As = Lol Yo gicjen ()2

Taking into consideration (40), (41) and (24), it results

n—1y¢, 2_ .2
Br < —— [ HI? ~n*py).
Finally, taking help of (23) and (39), we reach to

1 4
on = lHIF < E(Cp + cq){6 + [tr?p — (trT + n) cos® O] — Etr(p}

4
nn-1)

4 (cp — cq) (4trep — 2n) — 2p,

- —trf+
LB

1
251
in this equation (42) has been used and thereby establishing the required result.

Proof of Theorem 1:
Proof: Using (25),(28) and (35), one writes

2 R(ui,u]-,uj,u,-) = n(l _n)a(ﬂ) + }I(Cp q)n(n ){6— %t?’(P
1<i<j<n
4
A )[trz(p — (#T +n) cos? 0]} + By
i (n\/_ —¢g) (4trgp — 2n) — (n — 1)trﬁ,

wherein Lemma 2.3 has also been considered.
It is also known that

Z R(ui, uj, uj, u;),

1<i<j<n
that produces
— 1(n-1)
2t = n(l—n) (7{)+— (cy — ¢g) (4trep — 2n)
¢ N @
1 n(n 1) 4 9 9 4
+ 4(cp cq) { + n(n—l)[tr @ — (trT + n) cos” 0] ntr(p}
+ (1- n)trﬁ + Bj.
One can write
PIHIE = —— A+ —o s,
n-1 n-1

One can also note [20]
B, < iAl + As.
2n
Taking into consideration (46), (46) and (22), it results

By

H? - nps].

Let Wy = %trﬁ and W, = 45(7—( ). Then, taking help of (20) and (45), we reach to

_wHpE < L SR PR 2014
ps—IIHI? < 1O(cp+cq){6+n(n_l)[tr(p (trT + n) cos? 0] ntrqo}
1
+ c, —¢y) (4trep — 2n) — Wy — W — 2p,
2\/571(77 q) (4trep —2n) = Wy = Wr = 2p

where (47) has been used and thereby establishing the required result.

64

(42)

(43)

(44)

(45)

(46)

(47)
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4. Some Applications of main theorems

As an application of Theorem 1, one obtains these generalized Wintgen inequalities.
Corollary 4.1 For any invariant submanifold S" isometrically immersed in S". We have

2 1 _ % 2 20 _
ps < IHIP=2p+z(a+ 0){3 e+ e 1)[tr ¢ - (trT + )]}
1 4
+ E(CP - Cq) (21’7’(,0 - n) - ;t?’ﬁ (48)

Moreover, for some orthonormal frames {u1, ..., u,} and {u,1, ..., u,;} and some real functions 81, 3, 83 and
o on §, the equality in (48) holds iff 5 looks like (3), (4) and (5).

Corollary 4.2 For any anti-invariant submanifold S" isometrically immersed in S". We have

2 1 2 2 2
ps < |HI 2p+5(c1+cz){3 ntr(p+n(n_1)tr(p}

L(c;7 —cg) (2trgp —n) — %trﬁ. (49)

V5n

In addition to this, for some orthonormal frames {u,...,u,} and {u,41,...,u,} and some real functions
01,072,803 and O on S, the equality in (49) holds iff § appears to be like (3), (4) and (5).
As an application of Theorem 1, one obtains these generalized Wintgen inequalities.

Corollary 4.3 For any invariant submanifold S" immersed in S". We have

1 2
ps < IHIP-2p+ E(CF’ + cq){3 + [trPp — (trT + n)] - Etrcp}

2
nn—1)

\/_LS(CP —¢g) (4trep — 2n) — Wy — Wi (50)
n

Moreover, (50) satisfies equality iff for some orthonormal frames {uy, ..., u,} and {#y41,...,u,} and some
real functions 01, 8,83 and © on S, $ takes the form of (7), (8) and (9).

Corollary 4.4 For any anti-invariant submanifold S" isometrically immersed in S". We have

2 _ 1 2 2 _Z
ps < |IHI 2p+5(cp+cq){3+n(n_l)tr(p ntrqo}

+ %(CP —cg) (4trgp — 2n) — Wy — W, (51)

Moreover, (51) satisfies equality iff for some orthonormal frames {uy, ..., u,} and {uy41, ..., u,} and some
real functions 01, 3;, 83 and O on S, $ takes the form of (7), (8) and (9).
Some More Applications:

e Theorems 1 and 1 generalize main result of [7].

e Putting 0 = 0 and 6 = 7 in Theorems 1 and 1, we can write other results of this article.

e We can also discuss these results for other structures defined on Riemannian manifold S [17].
1. forp =2,q =1, thesilverratio oy =1 + V2,
2. the bronze ratio 037 = %ﬁ r=349=1),

3. for p = 4,4 = 1, the subtle mean 04, = 2 + V5,
4. the copperratioo1, =2 (p=1,9 = 2) etc.
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