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Abstract. In this article, we examine the notion of uniformly S-SFT and study its properties. Let R be a
commutative ring and S a multiplicative subset of R. A ring R is said to be uniformly S-SFT if there exists
an element s in S such that for every ideal I of R, there exist a finitely generated sub-ideal | of I and a
positive integer n with the property that sa” € | for all a2 in I. Our investigation includes proving Cohen’s
Theorem for uniformly S-SFT rings and analyzing the behavior of uniformly S-SFT property under various
ring operations like Nagata’s idealization and amalgamation of algebras.

1. Introduction

Throughout this article, R is always a commutative ring with identity. Recall from [4] that R is called an
SFT ring if for any ideal I of R, there exist a finitely generated sub-ideal | of I and a positive integer n such
that 4" € | for any a € I. In [4], Arnold showed that if R is not an SFI-ring, then dim(R[[X]]) = co.

A subset S of ring R is a multiplicative subsetif 1 € S, 0 ¢ S, and for any s,t € S, the product st is also
in S. In the first part of this paper, we introduce the concept of uniformly S-SFT ring and study its basic
properties. Let R be a commutative ring. We say that R is a uniformly S-SFT ring if there exists ans € S
such that for any ideal I of R, there exist a finitely generated sub-ideal | of I and a positive integer n such
that sa” € | for all a € I. It is clear that if R is a SFT ring, then R is an uniformly S-SFT ring. However,
this implication is not reversible. Some counterexamples are given in Example 2.2 and Example 2.25. An
increasing sequence (Ix)rew of ideals of R is called S-root if there exist two positive integers n,m and ans € S
such that for each k > n if x € I, then sx™ € I,. Now, let s € S. We say that every increasing sequence
of ideals of R is S-root with respect to s if for every increasing sequence (Ix)ken of ideals of R there exist
two positive integers n,m such that for each k > n and for every x € I, sx™ € I,. We show that, if S is a
multiplicative subset of R, then R satisfies the uniformly S-SFT property if and only if there exists ans € S
such that every increasing sequence of ideals of R is S-root with respect to s. (Theorem 2.6). Cohen’s type
theorem is of importance in the analysis of Noetherian rings. In the 1950s, Cohen made a groundbreaking
discovery that states that a ring R is Noetherian if and only if each prime ideal of R can be generated

by a finite number of elements (see [6]). This result has since then been extensively used in the field.
More recently, in [4], ].T. Arnold expanded upon Cohen’s work by demonstrating that a similar statement
holds true for SFT rings. Specifically, a ring R is considered SFT if it satisfies the following condition: for
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every prime ideal P of R, there exist a finitely generated sub-ideal Q of P and a positive integer n such
that for any element a € P, a" € Q. In our research, we aim to build upon these findings by providing
a more comprehensive understanding of Cohen’s theorem and its applications to uniformly S-SFT rings.
First, recall that a multiplicative set S of a commutative ring R is called anti-Archimedean if for each s € §,
SN (Ny215"R) # 0, (see [1]). Let R be a ring and S an anti-Archimedean multiplicative subset of R, then R is
a uniformly S-SFT ring, if and only if there exists an s € S such that for every prime ideal P of R there exist
a finitely generated sub-ideal Q of P and a positive integer n such that sa” € Q for all a € P. We also give a

necessary and sufficient condition for a product of rings H R; to be uniformly S-SFT, where S = H S;. We
ieA ieA
demonstrate that the following assertions are equivalent:
1. Ris a uniformly 5-SFT ring.
2. Ais finite and for each i € A, R; is a uniformly S;-SFT ring.

Finally, we consider the uniformly S-SFT property over some ring constructions, specifically, Nagata’s
idealization ring R(+)M and the amalgamated algebras along an ideal A >/ ] (the concepts of the Nagata’s
idealization ring and amalgamated algebras along an ideal will be reviewed in Section 3). We prove that if
f : A — Bis aring homomorphism, | an ideal of B, S an anti-Archimedean multiplicative subset of A and
S" ={(s, f(5)) | s € S}, then A >/ | is a uniformly S’-SFT ring if and only if A is a uniformly S-SFT ring and
f(A) + ] is a uniformly f(S)-SFT ring (Theorem 3.3). Additionally, we show that if M is a unitary R-module,
N an R-submodule of M and S an anti-Archimedean multiplicative subset of R, then R is a uniformly S-SFT
ring if and only if R(+)M is a uniformly (5(+)N)-SFT ring (Theorem 3.7).

2. Uniformly S-SFT Rings

We start this section by introducing the following definition in order to generalize some known results
about rings satisfying the SFT property.

Definition 2.1. Let R be a commutative ring, S a multiplicative subset of R, and s an element of S. We say that an
ideal I of R is of strong finite type with respect to s if there exist a positive integer n and a finitely generated sub-ideal
J of I such that foranya € I, sa" € J.

We also define R to satisfies the uniformly S-SFT property if there exists an s € S such that each ideal of R is of
strong finite type with respect to s.

Example 2.2. Let F be a field, R = F[Xq, X3, ...]/(XiXj,i # j)and S = {X_lz | i € N}. Assume that R is an SFT ring.
Let I = (X1, Xy, ...) be an ideal of R. There exist a positive integer n and a finitely generated sub-ideal | of I such that
foranya €1, a" € |. Assume that | = (X_l, X, ..., ?k)for some k > 1. Since X1 €1, Xk+1n € ], a contradiction.

We show that R is uniformly S-SFT. Let P be an ideal of R. Then by [15, Example 3.1], X, P is a principal ideal.
Thus for any a € P, Xya € X, P C P, and hence R is a uniformly S-SFT ring.

Example 2.3. Let p be a prime integer, R = H Z|p"Z. Then R is not an SFT ring. Indeed, let I = ((e;),i € IN)

nelN*
with ¢; = (0,...,1,0,...). Assume that I is an SFT ideal, there exist a positive integer n and a finitely generated

sub-ideal | of I such that x" € | for all x € I. Assume that | = (e1, ..., ¢) for some k > 1. Thus e/, , € ] which is a
contradiction. Now, let s = (1,7,7,0,...). Note that s*> = (1,0, ﬁz,ﬁ, ), 8> =(1,0,0,0,..) and s* = s® for all k > 3.
Let S = {1,s,5% 8%}, Then S is a multiplicative subset of R. Let I be an ideal of R and a € I. Then sa € sl. An element
of sl is of the form (@1,a2,a3,0, ...) with @ € Z/p'Z. Then sl is a finitely generated ideal of R. It is also contained in I
which implies that sa € sI C I. Hence, R is uniformly S-SFT ring.

Let R be a commutative ring and S a multiplicative subset of R. We define R to be S-strongly finite type
ring (in short S-SFT ring ) if for each ideal I of R there exist an s € S, a finitely generated sub-ideal | of I and
positive integer m such that sa™ € | for any a € I [10].
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Remark 2.4. Let R be a ring and S a finite multiplicative subset of R. Then R is a uniformly S-SFT ring if and only
if Ris an S-SFT ring. Indeed, it is clear that if R is a uniformly S-SFT ring, then R is an S-SFT ring. Conversely, let
S ={s1,..,s;}and put s := s1 - - -5,. Assume that for any ideal I of R there exist a finitely generated sub-ideal | of I and
an positive integer n such that s;a" € | for somes; € Si € {1,...,r}. Then sa® =s1---s5,a" € s1-++5i-15i11- -] € J.
This implies that R is a uniformly S-SFT ring.

A ring extension A C B is called a root extension if for each element b € B, there exists a positive integer
n (depending on b) such that 0" € A. ([2]). Expanding on this notion, we introduce the following new
definition to ideals:

Definition 2.5. Let R be a commutative ring, S a multiplicative subset of R and (Ix)xen an increasing sequence of
ideals of R.

1. (Ix)ken is called S-root if there exist an s € S (depending on (Iy)ren) and two positive integers n, m such that
for each k greater than or equal to n and for every x € Iy, sx™ belongs to I,.

2. Lets € S. It is said that every increasing sequence of ideals of R is S-root with respect to s if for every increasing
sequence (I)ren of ideals of R there exist two positive integers n, m such that for each k > n and for every x € I,
sx™ € I,,.

3. In the specific case where S = {1}, the sequence (Ix)xen is termed a “root” sequence if there exist two positive
integers n and m, such that for all k > n, and for all x € I, X" is an element of L,,.

Theorem 2.6. Let R be a commutative ring and S a multiplicative subset of R. The following statements are
equivalent.

1. R satisfies the uniformly S-SFT property.
2. There exists an s € S such that every increasing sequence of ideals of R is S-root with respect to s.

Proof. (1)"="(2). Assume that R satisfies the uniformly S-SFT property. There exists an s € S such that for
any ideal I of R there exist a finitely generated sub-ideal | of I and a positive integer m such that sx™ € | for
all x € I. Let (I)sen be an increasing sequence of ideals of R. We prove that this increasing sequence is S-root
with respect to s. Put I = J,enIn. Then I is an ideal of R. Moreover by hypothesis there exist a finitely
generated sub-ideal | of I and a positive integer m such that sx™ € Jforall x € I. Put ] = aR + - -+ + a,R for
some ay, ..., a, € I. Note that for 1 < i < n, there exists an n; € N such thata; € I,,. Let ng = max{n;, 1 <i < n}.
Then | C I,,,. This implies that for all k > n, for any x € [ € I, sx™ € | C I,,. Hence the sequence (I;;)nen is
S-root with respect to s.

(2)"="(1). Lets € Sin (2). Assume that R is not uniformly S-SFT with respect to s. There exists an
ideal I of R such that for each finitely generated sub-ideal | of I and every positive integer m, there exists
an a9 € I such that sao’" ¢ J. Leta € I and define Iy = aR. For n = 1, there exists an a;;, € I such that
say, ¢ lo. Define Iy = aR + ay,R. For n = 2, there exists ayj, € I such that sagll ¢ I;. By induction, define
In1 =aR +ay,R+--- +a,-1;,,R. Since I is not of strong finite type ideal with respect to s, for any n = m
there exists an a,,;, , € I such that SH:ZI,,H ¢ I,,-1. Thus, we construct an increasing sequence of ideals (I,,)
of R. Therefore, the sequence (I,), is S-root with respect to s. There exist n,m € N such that for all k > n,

sx™ € I, for all x € Iy. Choose k > max{n, m}. Then, sa,’zlk = sal’(’}k a’lzl‘k’” € I, C Iy_1, a contradiction. [
-1 -1 -1

In the particular case when S = {1}, we find the following corollary.

Corollary 2.7. Let R be a commutative ring. Then the following statements are equivalent.

1. R satisfies the SFT property.
2. Every increasing sequence of ideals of R is root.

Example 2.8. Let R = (Z/4Z)[X1, X, 1and S = {gn,n € IN}. Then R is not uniformly S-SFT ring. Indeed, let
L €1, € -+ anascending chain of ideals of R with I = (2X1,2X>, ...,2X). Assume that there exist an s € S and two
positive integers m, k such that for every n > k if x € I,, then sx™ € Iy. Thus s2X" | € Iy, which is a contradiction.
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Proposition 2.9. Let R be a commutative ring and S be an at most countable multiplicative subset of R. Then the
following statements are equivalent.

1. R satisfies the S-SFT property.
2. Ewvery increasing sequence of ideals of R is S-root.

Proof. (1)"="(2). Assume that for any ideal I of R there exist a finitely generated sub-ideal | of I and a
positive integer m such that for all x € I, sx™ € ] for some s € S. Let (I,)sen be an increasing sequence of
ideals of R. We prove that this increasing sequence (I,;)nen is S-root. Put I = |J,,cn In. Then I is an ideal of
R. Moreover by hypotheses there exist an s € S, a finitely generated sub-ideal | of I and an positive integer
m such that sx™ € | forall x € I. Put ] = ;4R + - -- + a,R. Note that for 1 < i < n, there exist an n; € IN such
that a; € I,,. Let ny = max{n;,;1 <i < n}. Then | C I,,. This implies that for all k > ny, for any x € [y C I,
sx™ € | C I,,. Hence the sequence (I,;),en is S-root.

(2)"="(1). * Suppose that S = {s1, ..., s,} is finite and let s = 5; - - - s,,. Then by Remark 2.4, R is uniformly
S-SFT if and only if R is an S-SFT ring.

*Assume that S = (s,),»0 is a countable multiplicative subset of R. Suppose that R is not an S-SFT ring.
Then there exists an ideal I of R such that for every s € S, every positive integers m and every finitely
generated sub-ideal | of ], there exists an element a € I such that sa™ ¢ |. Let x € I and define ]y = xR, which
is a finitely generated sub-ideal of I. For n = 1 and s = s; € S, there exists an element x;,1;, € I such that
51Xs,1), € Jo. Define J1 = xR+x,,1j,R, whichis again a finitely generated sub-ideal of I. Forn = 2ands =s; € S,
there exists x;,2;, € I such that Slx;zh ¢ J1. Similarly, for n = 2 and s = s, € S, there exists x,2;, € I such that
52x§22]1 ¢ J1. By induction, assume [,,_1 = xR+ X517, R+ Xs,27, R+ X5,07, R+ - + X5, 1], , R+ - + X5, 1n-1j,,R. For
each s = s; € S and n = m, there exists x;,,, , € I such that s,-x;’m]”_l ¢ J,—1. Thus, we construct an increasing
sequence of ideals (J,;) of R, where each J, is finitely generated and J,—1 € J,. So J, is S-root. There exist
s, € S and positive integers 1, m such that for all k > n and x € Ji, s,x™ € J,. Choose k > max{r,n, m}. Then,
X kj., € Ix and hence s,x;’:k]kil € J,- Therefore,

srxlscrk]kfl = ergzk]k—lxlgr_ki}li—l € Ju € Ji-1s
which is a contradiction. [

Let R be a commutative ring with identity and S a multiplicative subset of R. We say that S is saturated
if for every a,b € R, if ab € S, then both a and b are in S. Additionally, the set S’ = {x € R | x divides s for
some s € S} is a saturated multiplicative subset of R called the saturation of S which includes S.

Theorem 2.10. Lef R be a ring and S a multiplicative subset of R.

1. Let T be a multiplicative subset of R such that S € T. If R is a uniformly S-SFT ring, then R is a
uniformly T-SFT ring.

2. Let S’ be the saturation of S in R. Then R is a uniformly S-SFT ring if and only if R is a uniformly
5’-SFT ring.

3. Let f : R — R’ be a surjective ring homomorphism and S a multiplicative subset of R such that f(S)
does not contain 0. If R is a uniformly S-SFT ring, then R’ is a uniformly f(S)-SFT ring.

Proof. (1). Obvious.

(2). If R is a uniformly S-SFT ring, then by (1), R is a uniformly S’-SFT ring. Conversely, assume that R is
a uniformly S’-SFT ring. There exists an s € S’ such that for any ideal I of R there exist a finitely generated
sub-ideal | of I and a positive integer #n such that for any a € I, sa” € J. Lett € S such that t = sr where r € R.
ta" = sra” € r] C |, and hence R is a uniformly S5-SFT ring.

(3). Assume that R is a uniformly S5-SFT ring. There exists an s € S such that each ideal of R is of strong
finite type with respect to s. Let | be an ideal of R’. Since f is a surjective homomorphism, | = f(I) for some
ideal I of R. Thus [ is of strong finite type with respect tos. Letb € |, then b = f(a) for somea € I. Sosa" € K
for some finitely generated sub-ideal K of [ and some positive integer n. This implies that f(sa") € f(K), thus
f(s)b" = f(sa") € f(K). Note that f(K) is a finitely generated sub-ideal of f(I) = J. Hence R’ is a uniformly
f(S)-SFT ring. O
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Remark 2.11. (1) Consider the multiplicative set S in Example 2.2, and let T = {1}. Then R is uniformly S-SFT.
Clearly T C S and R is not uniformly T-SFT.

(2) Note that the condition "f is surjective” in Theorem 2.10 (3) is necessary. Indeed, let R = K[X1, X», ...] be the
polynomial ring in countably infinite variables over a field K and S = U(K) = K — {0} (a multiplicative subset of K).
Let W : K — R defined by V(a) = a. Then W(S) = S. It is clear that \V is not surjective and K is a uniformly S-SFT
ring. But R is not uniformly S-SFT.

Let R be a ring, S a multiplicative subset of R, and I an ideal of R disjoint with S. Let s € S, we denote
by s the equivalence class of s in R/I. Let S = {5 | s € S}, then S is a multiplicative subset of R/I.

Corollary 2.12. Let R be a ring, S a multiplicative subset of R and I an ideal of R disjoint with S. If R satisfies the
uniformly S-SET property, then R/I satisfies the uniformly S-SFT property.

Let R be a ring and S a multiplicative subset of R. For any non-nilpotent element s € S, consider the
multiplicative subset (s) := {1,s, s%,...} of S. We denote by R; the localization of R at ¢s).

We next study the Cohen’s type theorem for uniformly S-SFT rings. To do this, we need the following
results.

Lemma 2.13. Let R be a ring, S a multiplicative subset of R and I an ideal of R. Let s a non-nilpotent element of S.
If Iis of strong finite type with respect to s, then I; is an SFT ideal of R;.

Proof. Suppose that [ is of strong finite type with respect to s. There exist a finitely generated sub-ideal |
of I and positive integer n such that for any x € I, sx" € |. Let b € I,. Then b = g for some a € I and some

n n
positive integer r. This implies that " = 438 Js. Note that J; is a finitely generated sub-ideal of I;.

g sm+1
Thus I is an SFT ideal of R;. [

Let R be aring and S a multiplicative subset of R. Recall that S is called anti-Archimedean if for each s € S,
S ﬂ(ﬂ s"R) # 0, see [1]. In [13], the authors showed that, a finite multiplicative set is an anti-Archimedean

nx1
set. For example, let R = Z/127Z and S = {1,2,4,8) ¢ U(R) is an anti-Archimedean multiplicative set of
R. It is clear that if R is a uniformly S-SFT ring, then for any ideal I of R, there exist an s € S, a finitely
generated sub-ideal of I and a positive integer n such that sa” € | for any a € I. Our next example show that
the converse of this implication is not true in general. First, we need the following proposition.

Proposition 2.14. Let R be a ring and S a multiplicative subset of R disjoint from Nil(R).

1. If Ris a uniformly S-SFT ring, then there exists an s € S such that R, is an SFT ring.

2. If S is an anti-Archimedean multiplicative subset of R and Ry an SFT ring for some s € S, then R is a uniformly
S-SFT ring.

Proof. (1). Assume that R is a uniformly S-SFT ring. There exists an s € S such that any ideal I of R is
strongly of finite type with respect to s. We will show that R, is an SFT ring. Let F be an ideal of R, then
F = for some ideal I of R. Thus by Lemma 2.13, F = I; is an SFT ideal of R;, hence R; is an SFT ring.

(2). Suppose that R; is an SFT ring for some s € S. Taket € S ﬂ(ﬂ s"R). We will show that R is uniformly

n>1
S-SFT with respect to t. Let I be an ideal of R. Then I, is an SFT ideal of R;, so there existan n € IN and a
finitely generated sub-ideal | of I such that x* € J; for all x € I,. We will show that foralla € I, ta" € |. Let

n

a al o« e . e
a€l. Then T€ Js, thus T=% for some positive integer r and « € J. There exists a positive integer " such

thats”a" € |. Ast € S Nyen "R, t = 5" a, for some a4, € R. This implies that ta" = s"a"a, € ]. O



S. Guesmi, A. Hamed / Filomat 39:1 (2025), 97-111 102

Example 2.15. Let R = K[Xj, X, ...] be the polynomial ring in countably infinite variables over a field K. Set
S := R —{0}. It is clear that for any ideal I of R, there exist an s € S, a finitely generated sub-ideal | of I and a
positive integer n such that sa € | for any a € I. But R is not uniformly S-SFT. Indeed, let s € S. Assume that R,
is an SFT ring. Let n be the minimal integer such that X,, does not divide any monomial of s for any m > n. Then
s € K[X1, X, ..., Xu-1]- Let @ be the following mapping

(p : RS — K Xl/X2/ n 1] [XH/ X}’H—lr ]
1 ﬁ(Xl, X, 1)
= 2 2 K XK, Ko Z A (X X, )
i

is an isomorphism.

Assumethat K[X1, Xo, ..., Xy-11s[Xn, Xns1, ...] isan SFT ving. Then for anyideal [ of K[ X1, X5, ..., Xy—1]s[Xn, Xons1, .-

there exist a finitely generated sub-ideal | of I and positive integer r such that foranya € 1,a" € J. Let1 = (X, X441, ...)
the ideal of K[X1, X2, ..., Xn-11s[Xu, Xn+1, ...]. There exist a finitely generated sub-ideal | of I and positive integer n
such that for any a € I, a* € |. Assume that | = (Xy, Xy41, ..., Xk) for some k > n. Since Xx41 € I, then X, €7,
which is a contradiction. This implies that R is not SFT. Thus by Proposition 2.14, R is not uniformly S-SFT.

We are now ready to give the Cohen type theorem for uniformly S-SFT rings.

Theorem 2.16. Let R be a commutative ring and S an anti-Archimedean multiplicative subset of R such that
SN Nil(R) = 0. The following statements are equivalent.

1. Ris a uniformly S-SFT ring.
2. There exists an s € S such that every radical ideal of R is of strong finite type with respect to s.
3. There exists an s € S such that every prime ideal of R is of strong finite type with respect to s.

Proof. (1)=(2). Obvious.

(2)=(3). Follows from the fact that every prime ideal of R is a radical ideal of R.

(3)=(1). Suppose that R is not a uniformly S-SFT ring. By Proposition 2.14, for all s € S, R; is not an SFT
ring. Let s be such that there exists an s € S such that every prime ideal of R is of strong finite type with
respect to s. Since R; is not an SFT ring, there exists an ideal I; of R; which is not of strong finite type. Let

= {Q ideal of R such that Q; is not an SFT ideal of R;}. We have ¥ # 0, since I € ¥. Let (I1),ea be a chain
infF and L = U In. Now, we will show that L € ¥. Assume that L ¢ #. There exist a finitely generated

AeA
sub-ideal | of L and a positive integer n such that for any a € L,, a” € J,. Since | is finitely generated, there

exists a Ag € A such that ] C I),. Leta € (I,)s € Ls. Thena” € J; C (I;,)s, a contradiction. Hence, by Zorn’s
Lemma, there is a maximal element P of . We prove that the maximal element P of ¥ is a prime ideal of
R. Suppose that P is not prime. There exista,b € R\ P such thatab € P. We putl:= P +aR and | := P + bR.
Then IJ = P?> + (aR)P + (bR)P + (ab)R C P. Since P C I and P C ], by maximality of P there exist a finitely
generated sub-ideal I’ (respectively, J’) of I (respectively, of | ) and n,m € IN such that for any a € I, and
be;, wegeta® €I, and b € J,. Letx € P;. Then x € I; and x € J;, thus x" € I and x™ € J;. So x"™*" e L],
which implies that x"*™ € (I'J’); C Ps. Then P; is an SFT ideal. Thus P ¢ ¥, a contradiction. Hence P is a
prime ideal of R. Note that Ps is not an SFT ideal. Then by Lemma 2.13, P is not of strong finite type with
respect to s, a contradiction. [J

According to [17], a commutative ring R is called uniformly S-Noetherian if there exists an s € S such that
for any ideal I of R, there exists a finitely generated sub-ideal | of I such that sI C J. In [18], the authors
demonstrated that if S is an anti-Archimedean multiplicative subset of the ring R and T is a ring extension
of R such that T is an S-finite R-module, then R is a uniformly 5-Noetherian ring if and only if there exists
an s € S such that for every prime ideal P of R, PT is an S-finite ideal of T with respect to s. By analogy,
in Proposition 2.14 and Lemma 2.13, it is easy to show that if S is regular anti-Archimedean, then R; is a
Noetherian ring for some s € S implies that R is a uniformly S-Noetherian ring and if there exists an s € S
such that [ is finitely generated with respect to s, then I is a finitely generated ideal of R;. Next remark,
provides another proof of Cohen’s theorem.
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Remark 2.17. Let R be a commutative ring and S be a regular anti-Archimedean multiplicative subset of R. Then
the following statements are equivalent.

1. Ris a uniformly S-Noetherian ring.
2. There exists an s € S such that every prime ideal of R is finitely generated with respect to s.

Proof. (2)=(1). Suppose that R is not uniformly S-Noetherian ring. Let s be such that every prime ideal of
R is finitely generated with respect to s. As R; is not Noetherian, thus there exists an ideal I; of Ry which
is not finitely generated. Let ¥ = {Q ideal of R such that Q is not finitely generated in R;}. We have

F # 0,sincel € F. Let (I1)en be a chainin ¥ and L = U I,. We show that L € F. Assume thatL ¢ ¥.
AEA
There exists a finitely generated sub-ideal | of L such that L; = J;. Since ] is finitely generated, there exists
Ag € Asuch that | C I,. Then (I,)s € Ls = Js € (I5,)s, a contradiction. Hence, by Zorn’s Lemma, there
is a maximal element P of #. We prove that the maximal element P of ¥ is a prime ideal of R. Suppose
that P is not a prime ideal of R. There exist a,b € R\ P such that ab € P. Since P C P + aR, by maximality
of P, (P + aR), is finitely generated in R;, then there exist p1,...,pn € P, 11,...,74 € R and a positive integer
g such that (P + aR); = (p1+ur1l ey p”+ar”) Let x € Py C (P + aR),. Then x = 220 FHe+ %’z—; for some

s
ai, ..., &, € Rand a positive integer k, thus {(5 5 + -+ 2 %) = x - By ... brdw ¢ p,. Since P c (P : a),

again by maximality of P, (P : a), is a finitely generated ideal of R;. So there exist y1, ...,y € (P : a)s such
that (P : a)s = (1, ..., y)Rs. Puty := 25 + ... + 2 Then y € (Ps: ) € (P : a)s. Then there exist a positive

1 sk T N

integer t and f, ..., f; € R, such that y =y S—, -+ 7/1 . This implies that
_Pha pran AP ﬂﬁl
Tes U Tae T Ty

Thus x € (sw . ’S’—;‘,ylg, 2 Vi) € Ps. So Ps € (sq Sy s;,yls“—,, ., Y13) € Ps, a contradiction. Hence P is a prime
ideal of R such that P; is not finitely generated 1deal of R;. So P is not a finitely generated with respect to s,
which is a contradiction. [J

Let R be a ring and S a multiplicative subset of R. Then R is called of uniformly S-Noetherian spectrum if
there exists an s € S such that for any ideal I of R, sI C /] for some finitely generated sub-ideal | of I (see

[12]).

Remark 2.18. Let R be a ring and S a multiplicative subset of R. If R is uniformly S-SFT, then R is of uniformly
S-Noetherian spectrum. Indeed, as R is uniformly S-SFT, there exists an s € S such that for any ideal I of R there
exist a finitely generated sub-ideal | of I and a positive integer n such that for any a € I, sa" € J. We show that R is
of uniformly S-Noetherian spectrum with respect to s. Let K be an ideal of R and x an element of K, then sx" € | for
some finitely generated sub-ideal | of K and some positive integer n. Thus s"x" € J; so sx € +/]. Hence sI C +/].

Example 2.19. Let F be a ﬁeld X = {X1, Xy, ...} a countably set of indeterminates over F, | = (X[!,n > 1)F[X],
R =F[X]/J and S = F\{0}. If P is a prime ideal of R, then there exists a prime ideal Q of F[X] such that | C Q; so for
alln € N*, X!} € Q which implies that X,, € Q for alln € IN*. Thus (X,,n > 1) C Q. Since (X,,,n > 1) is a maximal
ideal of F[X], (Xn,n > 1) = Q, hence P = (X, >1). So P = Nil(R). Then the only prime ideal of R is Nil(R) which
implies that R is of uniformly S-Noetherian spectrum. On the other hand, R is not uniformly S-SFT because for all
se€ S, I=(X1,X,..)is not a strongly finite type ideal with respect to s. Indeed, if not, there exist s € S and two

positive integers n, k such that for any x € I, sx" € (X_l, X,, ..., Yk). Thus s)_(:+k+1 € (71, X,, ...,X_k) a contradiction.

Proposition 2.20. Let Ry C R, be a ring extension such that for each finitely generated ideal I of Ry, IR, N Ry =1
and S a multiplicative subset of Ry. If Ry is uniformly S-SFT, then Ry is uniformly S-SFT.

Proof. Let I be a ideal of R;. Since the ring R, is uniformly S-SFT, there exists an s € S such that for any
ideal | of Ry, there exist a finitely generated sub-ideal K of | and a positive integer n such that for any x € J,
sx" € K. Since IR; an ideal of R,, there exist k > 1 and a finitely generated ideal K C IR; of R, such that
sx* € K for every x € IR,. Let F C I be a finitely generated ideal of Ry such that K C FR, and a € I. Hence
sak C KN Ry € FRy, N Ry = F which implies that the ring R; is uniformly S-SFT. O
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Let R be a commutative ring and P a prime ideal of R. Then R \ P is a multiplicative subset of R. We say
that R is a uniformly P-SFT ring if R is a uniformly (R\P)-SFT ring.

Theorem 2.21. The following assertions are equivalent for a commutative ring R.

1. Risan SFT ring.
2. Ris a uniformly P-SFT ring for any P € Spec(R).
3. Ris a uniformly M-SFT ring for any M € Max(R).

Proof. (1) = (2) = (3). These implications are trivial.

(3) = (1). By hypothesis, for any M € Max(R), there exists an sy; € R\M such that for any ideal I of R,
there exist a positive integer r and a finitely generated sub-ideal Fy; of I such that for any x € I, syx” € Fy.
Let ] be the ideal of R generated by the set {s) | M € Max(R)}. If ] # R, then | € M, for some M, € Max(R).
So sy € M), a contradiction. Thus | = R. Hence 1 = sy, a1 + - - - + sy, @, for some a, ..., &, € R. Now, let I be
an ideal of R. For each 1 < i < n, there exists a finitely generated sub-ideal F; of I and a positive integer r;

n n

such that for every x € I, sp;,x" € Fpy,. Putr := H riand F := Z Fy,. Then F is a finitely generated sub-ideal
i=1 i=1
of I. Moreover, for any x € I,

n
X'=1-x"=(spmon+ - +Sm,an)x Ssy X+ +5sp,x C ZFM" =F
i=1

Hence R is an SFT ring. [

Proposition 2.22. Let R be a commutative ring with identity and T C R a multiplicative subset of R consisting of
non-zero-divisors. Let S be another multiplicative subset of R. If R satisfies the uniformly S-SFT property, then T"'R
satisfies the uniformly S’-SFT property where " = {{,s € S}.

Proof. Since R is a uniformly S-SFT ring, there exists an s € S such that each ideal of R is of strong finite
type with respect to s. Let ] = T~'I be an ideal of T~'R. There exist a finitely generated sub-ideal K of I and

a
a positive integer n such that for any x € I, sx" € K. Lety € |, theny = n for somea € I and t € T, thus

n
sa" € K. So iy” = ;’% € T7'K. Since K € I, T"'K € T~'I = ]. This shows that | is of strong finite type with

respect to £. So T"'R is a uniformly S’-SFT ring. [

The next Theorem give a necessary and sufficient condition for a product of rings H R; to be uniformly
ieA
S-SFT, where § = [ [ S
€A
Theorem 2.23. Let A C N and (R;)ica be a family of commutative rings. For each i € A, let S; be a multiplicative
subset of R;. Let R = H Riand S = H Si. Then the following assertions are equivalent:
ieA ieA
1. Ris a uniformly 5-SFT ring.
2. Ais finite and for each i € A, R; is a uniformly S;-SFT ring.

Proof. (1)=(2). Suppose that A is infinite. Since R is a uniformly S-SFT ring, there exists ans = (s1,5,...) € S

such that for any ideal | of R, there exist a finitely generated sub-ideal F of | and a positive integer r such

thatforanya € J,sa" € F. Let ] = (¢; | i € I), withe; = (1,1,..., 1 ,0,...). So there exists a finitely generated
——

i—place
sub-ideal F of | and a positive integer r such that foranya € [,sa" € F. Put F := (¢; | 1 < i < n). Since ;41 € J,
then se ., € F. Hence s, =0, a contradiction.
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Now, let ¢ be the Kt projection mapping, thatis, ¢x : R = Ry; @(x1, ..., Xk, ...) = Xx. Then @y is a surjective
homomorphism of rings. Since ¢(S) = Sk, by Theorem 2.10 (3), Ry is a uniformly Sy-SFT ring.

(2) = (1). To prove this implication, it is sufficient to show it in the case n = 2 and conclude by
inductionon n. Let R = Ry X Ry, and S = 51 X 5; be such that R; (respectively, R,) is a uniformly S1-SFT ring
(respectively, uniformly S,-SFT). Let s; € S1 (respectively, s, € Sy) such that each ideal of R; (respectively,
Ry), is of strong finite type with respect to s; (respectively, s;). Now, let I = I; X I be an ideal of R. For
each 1 <i <2, there exists a finitely generated sub-ideal J; of I; and positive integers 1, 7, such that for any
m €l,a ey, sia:" € Ji. Let y € I, then y = (a1, a,) for some a; € I; and a, € I,. We have

(51,52)(a1,a2)"" = (514]'",5,0)"™) € J1 X J.

Hence R is a uniformly S-SFT ring. O

In the particular case when S = {1}, we find this result.

Corollary 2.24. Let A € IN and (R;)iea be a family of commutative rings. Let R = H R;. Then the following
i€eA
assertions are equivalent:
1. Risa SFT ring.
2. Ais finite and for each i € A, R; is a SFT ring.

Example 2.25. Let Ry be a non SFT ring and R, be a uniformly S,-SFT ring, where S, is a multiplicative subset
of Ry. We consider R = Ry X Ry and S = (S1 U {0} X Sp), where Sy is a multiplicative subset of Ry. Then S is a
multiplicative subset of R. Since Ry is a uniformly S,-SFT ring, there exists s, € Sy such that for any ideal K of R,
there exists a finitely generated sub-ideal | of K and a positive integer n such that sx™ € | forany x € K. Let [ :== Iy XI,
be an ideal of R, where I is an ideal of Ry and I, is an ideal of Rp. Take s := (0,s;) € S. Then for any a = (a1,a;) € 1,
sa" = (0,82)(a1,a2)" = (0,s2a3) € {0} X ] for some sub-ideal | of I and some positive integer n. Note that {0} X |
is a finitely generated sub-ideal of I. This implies that R is uniformly S-SFT. However, as Ry is not an SFT ring by
Corollary 2.24, R is not an SFT ring.

3. Uniformly S-SFT properties on amalgamated algebras

In this section, we give a necessary and sufficient condition for the amalgamated algebra along an ideal
to be uniformly S-SFT. To do this, we first recall the definition of the amalgamated algebra introduced in

[71.

Definition 3.1. Let A and B be commutative rings with identity, f : A — B a ring homomorphism and | an ideal of
B. Then the sub-ring A »</ | of A X B is defined as follows:

Avsl [ ={(a,f(a)+])laeAand je]).
The ring A »<f | is called the amalgamation of A with B along ] with respect to f.

Let A and B be commutative rings with identity, f : A — B a ring homomorphism and | an ideal of B.
Then f(A) + ] is a sub-ring of B. For a multiplicative subset S of A, let S" = {(s, f(s))|s € S}. Then it is easy
to see that S’ is a multiplicative subset of A >/ ] and £(S) is a multiplicative subset of f(A) + J. For prime
ideals P and Q of A and B, respectively, we put

JFMf J:=={( f(p)+j)lpePandje]}; and
Q ={@ f(@)+j)lacAje]and f(a)+je Q.
Then the prime ideals of A >/ ] are exactly of the type P </ ] or éf for some prime ideals P of A and Q of B
which do not contain J. (See [8, Proposition 2.6(3)] or [11, Theorem 1.4]). Our next result give a necessary

and sufficient condition for the amalgamated algebra A »</ | to be uniformly S’-SFT. First, we need the
following Remark.
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Remark 3.2. Let A and B be commutative rings, f : A — B a ring homomorphism, | an ideal of B and S an
anti-Archimedean multiplicative subset of A. Then S’ = {(s, f(s))|s € S} is an anti-Archimedean multiplicative
subset of Av</ ]. Indeed, let s € S and t € S (e $"A). Then for all n € N, t = s"a,, for some a, € A. Thus

(£, f(B) = (s"an, f(s"an)) = (s"an, f(s")f(an)) = (s, f(5))" (@n, f(an)))

for all positive integers n. So (t, f(t)) € S N(Nuen (s, F(5))"A >/ ]).
It is clear that S N Nil(R) = 0 if and only if S’ N Nil(A </ ) = 0.

Theorem 3.3. Let A and B be commutative rings, f : A — B a ring homomorphism, | an ideal of B and S an
anti-Archimedean multiplicative subset of A such that SONil(R) = @ and f(S)N] = 0. Then the following statements
are equivalent.

1. A</ Jisauniformly S’-SFT ring.
2. Ais a uniformly S-SFT ring and f(A) + | is a uniformly f(S)-SFT ring.

Proof. (1) = (2). LetPs: A b/ > Aand Pg: Avsf | — f(A) + ] be the canonical epimorphisms.

Suppose that A »</ ] is a uniformly S’-SFT ring. Note that P4(A »</ J) = A, P4(S’) = S, Pg(A </ |) =
f(A)+]and Pp(S’) = f(S). Thus by Theorem 2.10 (3), A is a uniformly S-SFT ring and f(A) + ] is a uniformly
f(S)-SFT ring.

(2) = (1) Suppose that A is a uniformly S-SFT ring and f(A) + ] is a uniformly f(S)-SFT ring. There exist
51,52 € S such that for any ideal I of A and for any ideal F of f(A) + J, there existay, ...,a, € I and by, ...,b, € F
such that foranya e ,b € F, 514" € (ay,...,a,) and f(sz)bk2 € (b1, ..., by) for some positive integers ki, k».

Since f(A) + ] is an uniformly f(S)-SFT ring, (f(A) + J)/] is a uniformly f(S)-SFT ring by Corollary 2.12;
so there exists an s3 € S such that for any ideal P of (f(A) + ])/], there exist a finitely generated sub-ideal P’
of P and a positive integer ko such that for any p € P, f(s3)p* € P".

Now, let s = 515583 € S. Since S is anti-Archimedean, S ﬂ(ﬂ s"A) # 0. Lett eSS ﬂ(ﬂ s"A). According

n>1 n>1
to Theorem 2.16, it suffices to show that for each prime ideal P of A »</ ], there exist a finitely generated
sub-ideal L of # and a positive integer m such that (t, f(t))(a, f(a) + b)™ € L for any (a, f(a) + b) € P.

Case 1: P = éf = (@ f(a)+j),aecAje]and f(a) +j € Q) where Q is a prime ideal of B. Let
Qo = (Q+ )N f(A)+]. Then Qp is an ideal of (f(A) + J)/]; so there exist a finitely generated sub-ideal
Qp == 1f@) +b;|i=1,..,n}of Qo and a positive integer ko such that for any p € Qo, f(s3)pk0 € Q) Let Lo be
the ideal of A >/ | generated by the set {(a;, f(a;) + b;) | i = 1,...,n}.

Note that I := f~}(J) N PA(Gf) is an ideal of A. There exist a finitely generated sub-ideal I := (a1, ..., )
of I and a positive integer ki such that for any a € I, s10 € Iy. For eachi € {1, ..., m}, take any element ; € |
such that f(a;) + i € Q. Let L; be the ideal of A paf ] generated by the set {(a;, f(a)) + i) |i=1,...,m}.

Note that Q; := QN Jis an ideal of f(A) + J. There exist a finitely generated sub-ideal Q] := (y1, ..., ) of
(1 and a positive integer k; such that for any b € Qy, f (sp)b € Q] Let L be the ideal of A b/ | generated
by theset {(0,y:) |i=1,..,p}.

Now, Let (g, f(a) + b) be an element of @f. Then f(a) + b € (Q +]) N (f(A) + ) which implies that
f@+be@+)N(FA) +]) = Qo. Then

FEF@+ b = Y (Fla) + b)(F(ci) + )
i=1

for somecy,...,c, € Aand dy,...,d, € ]. Let

X = flss)(fla) + b)Y = ) (flai) + b)(f(c)) + ).
i=1
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Then X € |. We have

X

F&)(Fl@) + b = Y (F@) + b)(f(cs) +d)
i=1

n ko*l n
f(ssd) = Y aic) + Y Ch floaa)b ™ = Y bif(cy) +dif (@) + bid.
i=1 i=0 i=1
This implies that f((s3a%) — Z aici) € J. Let
i=1

n
Y = Sg(lko - Z a;Cj.
i=1

Then Y € f71(J), hence we obtain
(s3, f(s3))(a, f(a) + by (53, f(s3)(f(a) + b))

(Y + ) ey, X+ Y (F@) + b)(f(c) + i)
i=1 i=1

(V,X)+ Y (@i, f@) +b)ei, f(c) + ).

i=1

Since for alli € {1, ..., n}, f(a;)) + b € Q,

21 =Y (c fle) + da, fla) +b) € Q.
i=1

ko n
Thus (Y,X) € Q. Lete = f(s3) ¥ Ci F@ 6 — Y (F@d; + bif (@) + bidi); so (%,X) = (¥, f(¥) + ). Since

i=1 i=1
m

Y € f(J)and (\,X) € @f, Y e PA(éf), andsoYel=fYn PA(Gf). Therefore s; Y = Z a;r; for some
i=1
r,...,tm € A. Hence we obtain

1, FENX X = (1, fen)(Y, F(Y) + o)
= YR, fEN(F) + o))
= (&Y, fE) R+ )
= Q) am ) (@) +Bf ) + f2)
i=1

i=1

= ) (i (@) + B)Cri, fr) + (O, o),
i=1

k1 m
where ji = f(s1) ) Ci f(V'7e and jo = j1 = ) Bif (r).
Let i=1 ) i=1
Zy =Y (i f)) e, f(@) + ) € L.
i=1
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Since (o, f(a;) +Bi) € éf forallie{l,.. m}, Z, € éf, so (0, 2) € éf. Therefore we can find a positive integer
P

k> such that f(sz Z yi(f(xi) + ;) for some x1, ..., x, € Aand yy, ..., yp € ]. Then
i=1

4
(52, ()0, ) = Y (i, f25) + 4)(0, ) € L.
i=1

Putk := kokik, and t := Skck = (515253)]{(_,1(.
& fO)Na, f@) + B = (615259 Co flls15250) ) [(@, @) + )] "

= (s, f((s152)'sE00) [0, Flsa)a, fla) + by ] ™
= (515285 R0, f((s192) 55 R 00) [(Y, X) + 24197
= (51525 G, f((5152)F sy 2 0)) [((Y, X)+ Zl)kl]kz

ky k2
— (Sk kZSIESk k1kzc f(Sk kzsgsk klszk)) (Sllf(sl))z C;clzll(yf X)kl*i

= (s, fETRGS ) (s, FEY, X0 + Za]
[

k—ky _k k—k1k k—ky k _k—kk
= (s 25’553 "Gk, f(5) 2szs 2C0) Z2+(0 j2) +Z3]

= (sFhskskhbg fshhgkst kg, ))zc (Za + Z3)/(0, j)

HsEeskhkgy f(skagkhik ck»(sz,f(sz»km, jo)ke.

1 2
with Zz = (s1, f(s1)) Z CLZQ(Y, X))k~ e Ly. Note that Z, € L; and Z3 € Lo; so Z C;;Z(Zz + Z3)(0, jz)kz—i €
i=1 i=1
Lo + L1. As (52, f(52))(0, j2)*2 € Ly, (52, f(52))(0, j2)*2 € L,. Therefore

(t, f(H)(a, f(@) + b)* € (Lo + Ly + Ly).

Note that Ly + L; + L, is a finitely generated sub-ideal of @f.

Case 2: P = P>/ | for some prime ideal P of A.
There exist py, ...,pn € P, by, ..., b, € [ such thatforanya € P,b € |, s14™ € (p1, ..., pn) and f(s2)b7 € (by, ..., by) for
some positive integers 1, q. Put t = s*C; in (Case 1). Leta € Pand j € J.

(t, f(B)a, f(a) + )" (t, f()((a, f@) + (0, j))"*

m+q

(t, f(t))z Chraq(@, F@)' (0, jy"1-

m+q

(& FE Z%Aﬂ F@Y©, )"+ Y Chusgla, f@) O, 1)

i=m+1

m+q

Z%q(t £, @O, 10,0+ Y Chusalt, £, F@)" (@, F@) (0, "

i=m+1

Z Chrrg(@, @), j)" Z(O, ba(f(Xa) + ¥a)
i=0 a=1
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m+q
+ ), Chugla, f@) (0, j)"1- ZZwﬁ, Flpsrs)
i=m+1 p=1

€ ((0,ba), (ps, fpp)) 1 <a<r1<B<n).

So (t, f(H))(a, f(a) + )" € ((0,ba), (pg, f(pp)), 1 <a<1,1 < B <n). Sinceag € Pforall1 <p <nandb, €] for
all1 < a <r, then ((0,ba), (pp, f(pp)), 1 <a<r1<p<n)CP. O

The amalgamated duplication of a ring R along an ideal I is a ring that is defined as the following sub-ring
of R X R (as a particular case of the amalgamation) [9]:

ReaI={(r,r+i)reR,iel}.

Let S’ = {(s,s) | s € S}, where S is an anti-Archimedean multiplicative subset of R. Then S’ is an anti-
Archimedean multiplicative subset of R »< I. Combining Theorem 3.3 and Theorem 2.23, we obtain the
following Corollaries.

Corollary 3.4. The following statements are equivalent for a commutative ring R.

1. Ris a uniformly S-SFT ring.
2. Rl is a uniformly S'-SFT ring.
3. R x Ris a uniformly S X S-SFT ring.

Corollary 3.5. Let R be a ring, I an ideal of R, s : R v R/I be the canonical homomorphism, and | an ideal of R/1.
Then R »<° | is a uniformly S-SFT-ring if and only if R is a uniformly S-SFT-ring.

Proof. We have s(R) + | = R/I + ] = R/I. By Theorem 2.10(3), if R is an uniformly S-SFT-ring, sois R/I. O

Let R be a commutative ring with identity and M a unitary R-module. Then the Nagata’s idealization of
M in R (or trivial extension of R by M) is the commutative ring

R(+)M :={(r,m)|r € R and m € M}

Endowed with the usual addition and the multiplication defined by (r1, m1)(r2, m2) = (r1r2, rimy + romy) for
all (r1,m), (r2, mp) € R(+)M. It is clear that (1, 0) is the identity of R(+)M. It was shown that if Q is a prime
ideal of R(+)M, then Q = P(+)M for some prime ideal P of R. Conversely if P is a prime ideal of R, then
P(+)M is a prime ideal of R(+)M [14, Theorem 25.1(3)] (or [3, Theorem 3.2(2)]).

It is clear that if S is a multiplicative subset of R and N a submodule of M, then S(+)N is a multiplicative
subset of R(+)M. Our next result give a necessary and sufficient condition for the Nagata’s idealization
R(+)M to be uniformly (S(+)N)-SFT ring. First, we need the following Remark.

Remark 3.6. Let R be a commutative ring with identity and M a unitary R-module. If S is an anti-Archimedean
multiplicative subset of R, then (S(+){0}) is an anti-Archimedean multiplicative subset of R(+)M. Indeed, let s € S
and t € S((Nyen S"R). Then for alln € N, t = s"a,, for some a, € R. Thus for alln € N,

(t,0) = (s"an, 0) = (s,0)"(an, 0).

So (t,0) € S(+){0} (N(s, 0)"R(+)M)
It is clear that S N Nil(R) = 0 if and only if (S5(+){0}) N Nil(R(+)M) =

Theorem 3.7. Let R be a commutative ring with identity, S an anti-Archimedean multiplicative subset of R disjoint
from Nil(R) and M a unitary R-module. Then the following statements are equivalent.

1. R s a uniformly S-SFT ring.
2. R(+)M is an (S(+){0})-SFT ring.
3. R(+)M is an (S(+)N)-SFT ring.
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Proof. (1) = (2). Suppose that R is a uniformly S-SFT ring. There exists an s € S such that any ideal I of R is
strong finite type with respect to s. Let # = P(+)M be a prime ideal of R(+)M, where P is a prime ideal of R.
Then P is of strong finite type with respect to s. There exist a finitely generated sub-ideal | of P and positive
integer r such that for any a € P, sa” € J.

Let (a, m) € P. We show that (s, 0)(a, m)"*! € J(+)JM. Since a € P, (sa)” € ]. Then

(s,0)(a, m)™t = (s,0)@™, (r + Da'm) = (sa™*, (r + 1)sa’m) € J(+)JM.
N ) —
€] M

Note that J(+)JM = (] X {0)R(+)M. As ] is a finitely generated sub-ideal of I, there exist ji, ..., j; € I such that
J = (j1,- jo)R. So J(+)JM = (J X {0hR(+)M = ((j1,0), ..., (jt, 0))R(+)M. This implies that J(+)/M is a finitely
generated sub-ideal of # and (s, 0) € S(+){0}. Thus % is of strong finite type ideal of R(+)M, with respect to
(s,0), and hence R(+)M is a uniformly (S(+){0})-SFT ring.

(2)=(3). As S(+){0} € S(+)N, by Theorem 2.10(1), R(+)M is a uniformly (S(+)N)-SFT ring.

(3)=(1). Follows from Theorem 2.10 (3) and the fact that the naturel mapping ® : R(+)M — R defined
by ®(r, m) = r is a surjective ring homomorphism with ®(S(+)N) =S. O

Let R be a commutative ring and S a multiplicative subset of R. If R is uniformly S-Noetherian, then R
is uniformly S-SFT. This implication follows from the fact that if R is uniformly S-Noetherian, then there
exists an s € S such that for every ideal I there exists a finitely generated sub-ideal of I such thatsl C J C I.
So for every x € I, sx € sI C | C I which implies that I is of strong finite type ideal with respect to s.
The converse is not necessarily true, which means that there exist rings that are uniformly S-SFT but not
uniformly S-Noetherian.

Example 3.8. Let R = Z(+)Z[X] and S = {1} is an anti-archimedean multiplicative set. Then S(+)Z[X] is a
multiplicative subset of Z(+)Z[X]. Since Z is a uniformly S-SFT ring, by Theorem 3.7, Z(+)Z[X] is a uniformly
(S(H)ZIX])-SFT ring. Now, by [17, Proposition 3.1], if Z(+)Z[X] is a uniformly (S(+)Z[X])-Noetherian ring, then
Z is a uniformly S-Noetherian ring and Z[X] is a uniformly S-Noetherian Z-module. This implies that Z[X] is
an S-finite Z-module a contradiction. So Z(+)Z[X] is a uniformly (S(+)Z[X])-SFT ring which is not uniformly
(S(+)Z[ X])-Noetherian.

Example 3.9. LetR =Z/6Z,M = Z/6Z[X]and S = {1,3}. By [13], S is an anti-archimedean multiplicative subset
of R. Then S(+)M is a multiplicative subset of R(+)M. Since R is a uniformly S-SFT ring, by Theorem 3.7, R(+)M
is a uniformly (S(+)M)-SFT ring. Now, by [17, Proposition 3.1], if R(+)M is a uniformly (S(+)M)-Noetherian ring,
then M is an S-finite R-module a contradiction.
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