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Abstract. Let G = (V,E) be a finite and connected graph. The corona Gm ⊙ Gn of two graphs Gm and Gn is
defined as the graph created by taking one copy of Gm and |V(Gm)| copies of Gn and attaching the ith vertex
of Gm to every vertex in the ith copy of Gn. In this paper, we initiate to decompose the corona Gm ⊙ Gn into
cycles, paths, and claws of varying lengths.

1. Introduction

A graph G = (V,E) is finite simple connected graph with n vertices and m edges. A path graph Pn with
n vertices consists of vertices v1, v2, . . ., vn and edges {vi, vi+1}, where i = 1, 2, . . . ,n − 1. The length of this
path graph is n − 1 which is the number of edges in the graph. A cycle graph is a graph with only one
cycle and denoted by Cn with length n. A star Sn is a tree with one internal vertex and n leaves / pendent
vertex, or the complete bipartite graph K1,n. The claw is a tree which is also a complete bipartite graph
K1,3 or star graph S4. For term and notation not defined here refer in [4, 6]. For positive integrals m and n,
see the corona in [10, 12, 20], where Gm ⊙ Gn of two graphs Gm and Gn is the graph created by taking one
copy of Gm and |V(Gm)| copies of Gn and attaching the ith vertex of Gm to every vertex in the ith copy of Gn.
Additionally, it has vertices of the form V(Gm ⊙ Gn) = {u1,u2, . . . ,um, v1, v2, . . . , vn} and edges of the form
E(Gm ⊙ Gn) = {e1, e2, e3, . . . , emn}with m + n(m + 1) + 1 vertices and 2mn + 2n − 1 edges.
In [11, 17], the term “decomposition” refers to the grouping of subgraphs H1,H2, . . . ,Hk, of G such that each
edge of G belongs to precisely one Hi, where i = 1, 2, 3, . . . , k. Several authors have explored different sorts
of decompositions and associated factors by placing restrictions on the decomposition’s constituents [9, 13–
15, 17]. These decompositions include claw decomposition, path decomposition, and cycle decomposition.
A path decomposition of graph is the decomposition of its edges into subgraphs, where each subgraph
represents a path or a union of paths [2, 7, 13, 14, 18] and a cycle decomposition is a decomposition of the
graph such that every member of the subgraph is a cycle [1, 5, 8, 15, 16]. Finally, a claw decomposition is
a decomposition where each subgraph represents a claw or union of claws [3, 9, 17, 19, 21]. Further, the
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corona graphs S4⊙P3, K4⊙P3, and C3⊙P3 are depicted in Figures 1, 2, and 3. In this paper, we determine the
decomposition of the corona Gm ⊙ Gn into cycles, paths, and claws with respect to different length, where
the graph G is Sm, Cm, Km and Pn.
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Figure 1: Corona Graph S4 ⊙ P3
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Figure 2: Corona Graph K4 ⊙ P3
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Figure 3: Corona Graph C3 ⊙ P3

2. Main Results

2.1. Decomposition of Sm ⊙ Pn

Here, we define the corona Sm ⊙ Pn of star graph Sm and path graph Pn, where it is described as the
graph created by taking one copy of Sm and |V(Pm)| copies of Pn and attaching the ith vertex of Sm to every
vertex in the ith copy of Pn with vertices of the form V(Sm ⊙ Pn) = {u1,u2, . . . ,um, v1, v2, . . . , vn} and edges of
the form E(Sm ⊙ Pn) = {er = u1ur+1, e1

s = u1vs, e2
s = u2vs, . . . , em

s = umvs, et = vtvt+1}, where s = {1, 2, . . . ,n − 1},
t = r = {1, 2, . . . ,m − 1}, and has m + n(m + 1) + 1 vertices and 2mn + 2n − 1 edges.

Now, we start with the following result and proof.

Theorem 2.1. Let m,n be positive integers and m,n ≥ 4, then there exists a decomposition of Sm ⊙ Pn into
(1) ⌊ n−2

2 ⌋m + 1 copies of P2, ⌊m−1
2 ⌋ copies of P3, and ⌊ n

2 ⌋m copies of C3, if m,n is even.
(2) ⌊ n−2

2 ⌋m copies of P2, ⌊m−1
2 ⌋ +m copies of P3, and ⌊ n

2 ⌋m copies of C3, if m,n is odd.
(3) ⌊ n−2

2 ⌋m + 1 copies of P2, ⌊m−1
2 ⌋ +m copies of P3, and ⌊ n

2 ⌋m copies of C3, if m is even and n is odd.
(4) ⌊ n−2

2 ⌋m copies of P2, ⌊m−1
2 ⌋ copies of P3, and ⌊ n

2 ⌋m copies of C3, if m is odd and n is even.

Proof. Let V(Sm⊙Pn) = {u1,u2, . . . ,um, v1, v2, . . . , vn} and E(Sm⊙Pn) = {er = u1ur+1, e1
s = u1vs, e2

s = u2vs, . . . , em
s =

umvs, et = vtvt+1}, denotes the vertex and edges of Sm ⊙ Pn. The theorem’s proof consists of four cases:
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Case 1: When m,n ≥ 4 and m,n are even.
For P2, let E = {er = u1ur+1}, where r = {3, 5, 7, . . . ,m − 1} and Ft = {et = vtvt+1}, where t = {2, 4, 6, . . . ,n − 2}.
For P3, let Gr = {er, er+1}, where r = {1, 3, 5, 7, . . . ,m − 3}.
For C3, let H1

s = {e1
s , e1

s+1, et}, H2
s = {e2

s , e2
s+1, et}, H3

s = {e3
s , e3

s+1, et}, . . ., Hm
s = {em

s , em
s+1, et}, where s = {1, 3, 5, 7, . . . ,n−

1} and t = {1, 3, 5, . . . ,n − 1}.
Now take one copy of path P2 with length one create a subgraph < E >, ⌊ n−2

2 ⌋ copies of path P2 with length
one create as subgraphs < F2 >, ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < F4 >, and this
process of decomposition continue until ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < Fn−2 >.
Again, take ⌊m−1

2 ⌋ copies of path P3 with length two creates a subgraph < Gr > and finally ⌊ n
2 ⌋ copies of

cycle C3 with length three creates a subgraph < H1
s >, < H2

s >, till < Hm
s >. In this process, the corona graph

of Sm ⊙ Pn can be decomposed into {⌊ n−2
2 ⌋ + ⌊

n−2
2 ⌋ + . . . + ⌊

n−2
2 ⌋} + 1 = ⌊ n−2

2 ⌋m + 1 copies of path P2 of length
one, ⌊m−1

2 ⌋ copies of path P3 with length two, and {⌊ n
2 ⌋+ ⌊

n
2 ⌋+ . . .+ ⌊

n
2 ⌋} = ⌊

n
2 ⌋m copies of cycle C3 with length

three.
Case 2: When m,n ≥ 4 and m,n are odd.
For P2, let Et = {et = vtvt+1}, where t = {2, 4, 6, . . . ,n − 3}.
For P3, let Fq = {e

q
s , et}, where q = {1, 2, . . . ,m}, s = {m}, t = {m−1}Gr = {er, er+1}, where r = {1, 3, 5, 7, . . . ,m−2}.

For C3, let H1
s = {e1

s , e1
s+1, et}, H2

s = {e2
s , e2

s+1, et}, H3
s = {e3

s , e3
s+1, et}, . . ., Hm

s = {em
s , em

s+1, et}, where s = {1, 3, 5, 7, . . . ,n−
2} and t = {1, 3, 7, . . . ,n − 2}.
Now, take ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < E2 >, ⌊ n−2
2 ⌋ copies of path P2 with

length one create a subgraph < E4 >, and this process continues until ⌊ n−2
2 ⌋ copies of path P2 with length

one create a subgraph < En−3 >, m copies of path P3 with length two creates a subgraph Fq and ⌊m−1
2 ⌋ copies

of path P3 with length two creates a subgraph < Gr >, and finally ⌊ n
2 ⌋ copies of cycle C3 with length three

creates a subgraph < H1
s >, < H2

s >, till < Hm
s >. Hence, by the above process the corona graph Sm ⊙ Pn can

be decomposed into {⌊ n−2
2 ⌋ + ⌊

n−2
2 ⌋ + . . . + ⌊

n−2
2 ⌋} = ⌊

n−2
2 ⌋m copies of path P2 of length one, ⌊m−1

2 ⌋ +m copies
of path P3 with length two, and {⌊ n

2 ⌋ + ⌊
n
2 ⌋ + . . . + ⌊

n
2 ⌋} = ⌊

n
2 ⌋m copies of cycle C3 with length three.

Case 3: When m,n ≥ 4 and m is even and n is odd.
For P2, let E = {er = u1ur+1}, where r = {3, 5, 7, . . . ,m − 1} and Ft = {et = vtvt+1}, where t = {2, 4, 6, . . . ,n − 2}.
For P3, let F′q = {e

q
s , et}, where q = {1, 2, . . . ,m}, s = {m}, t = {m−1}Gr = {er, er+1}, where r = {1, 3, 5, 7, . . . ,m−2}.

For C3, let H1
s = {e1

s , e1
s+1, et}, H2

s = {e2
s , e2

s+1, et}, H3
s = {e3

s , e3
s+1, et},. . . , Hm

s = {em
s , em

s+1, et}, where s = {1, 3, 5, 7, . . . ,n−
2} and t = {1, 3, 7, . . . ,n − 2}.
Now, take one copy of path P2 with length one create a subgraph < E >, ⌊ n−2

2 ⌋ copies of path P2 with
length one create a subgraph < F2 >, ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < F4 >,
and this process continues until ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < Fn−2 >, m
copies of path P3 with length two create a subgraph F′q and ⌊m−1

2 ⌋ copies of path P3 with length two cre-
ates a subgraph < Gr >, and finally ⌊ n

2 ⌋ copies of cycle C3 with length three creates a subgraph < H1
s >,

< H2
s >, till < Hm

s >. Hence, by the above process the corona graph Sm ⊙ Pn can be decomposed into
{⌊

n−2
2 ⌋+ ⌊

n−2
2 ⌋+ . . .+ ⌊

n−2
2 ⌋}+ 1 = ⌊ n−2

2 ⌋m+ 1 copies of path P2 of length one, ⌊m−1
2 ⌋+m copies of path P3 with

length two, and {⌊ n
2 ⌋ + ⌊

n
2 ⌋ + . . . + ⌊

n
2 ⌋} = ⌊

n
2 ⌋m copies of cycle C3 with length three.

Case 4: When m,n ≥ 4 and m is odd and n is even.
For P2, let Et = {et = vtvt+1}, where t = {2, 4, 6, . . . ,n − 3}.
For P3, let Gr = {er, er+1}, where r = {1, 3, 5, 7, . . . ,m − 3}.
For C3, let H1

s = {e1
s , e1

s+1, et}, H2
s = {e2

s , e2
s+1, et}, H3

s = {e3
s , e3

s+1, et},. . . , Hm
s = {em

s , em
s+1, et}, where s = {1, 3, 5, 7, . . . ,n−

1} and t = {1, 3, 7, . . . ,n − 1}.
Now, take ⌊ n−2

2 ⌋ copies of path P2 with length one create a subgraph < E2 >, ⌊ n−2
2 ⌋ copies of path P2 with

length one create a subgraph < E4 >, and this process continues until ⌊ n−2
2 ⌋ copies of path P2 with length

one create a subgraph < En−3 >, ⌊m−1
2 ⌋ copies of path P3 with length two creates a subgraph < Gr > and

finally ⌊ n
2 ⌋ copies of cycle C3 with length three creates a subgraph < H1

s >, < H2
s >, till < Hm

s >. Hence, by
the above process the corona graph Sm ⊙ Pn can be decomposed into {⌊ n−2

2 ⌋ + ⌊
n−2

2 ⌋ + . . . + ⌊
n−2

2 ⌋} = ⌊
n−2

2 ⌋m
copies of path P2 of length one, ⌊m−1

2 ⌋ copies of path P3 with length two, and {⌊ n
2 ⌋ + ⌊

n
2 ⌋ + . . . + ⌊

n
2 ⌋} = ⌊

n
2 ⌋m

copies of cycle C3 with length three.
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From Theorem 2.1, we have the following observations:

Observation 2.2. When m,n ≥ 4 and m,n be positive integers, then Sm ⊙ Pn can be decomposed into
(1) (m − 1) + ( n−2

2 )m copies of P2, and ⌊ n
2 ⌋m copies of C3, if n is even.

(2) (m − 1) + ( n+1
2 )m copies of P2, and ⌊ n

2 ⌋m copies of C3, if n is odd.

Observation 2.3. When m,n ≥ 3 , and m,n be a positive integers, then Sm ⊙ Pn can be decomposed into
(1) m copies of P2, and ⌊m−1

2 ⌋ + (n − 1)m copies of P3, if m is odd.
(2) m + 1 copies of P2, and ⌊m−1

2 ⌋ + (n − 1)m copies of P3, if m is even.
(3) (n − 2)m + 1 copies of P2, and ⌊m−1

2 ⌋ copies of P3, and m copies of cycle Cn+1 of length n + 1, if m is even.
(4) (n − 2)m copies of P2, and ⌊m−1

2 ⌋ copies of P3, and m copies of cycle Cn+1 of length n + 1, if m is odd.
(5) (m − 1) copies of P2, m copies of Pn, and mn

2 copies of claw K1,3, if m = n = 3q, where q = 1, 2, . . .
(6) (2m − 1) copies of P2, m copies of Pn, and n2

−n
3 copies of claw K1,3, if m = n = 3q + 1, where q = 1, 2, . . .

(7) (m − 1) copies of P2, m copies of P3, m copies of Pn, and nm−2m
3 copies of claw K1,3, if m = n = 3q + 2, where

q = 1, 2, . . .

2.2. Decomposition of Cm ⊙ Pn

The corona Cm ⊙ Pn of cycle Cm and path Pn is defined as the graph obtained by taking one copy of Cm
and |V(Cm)| copies of Pn and joining the ith vertex of Cm to every vertex in the ith copy of Pn.
The graph formed by the corona product Cm⊙Pn has vertices of the form V(Cm⊙Pn) = {u1,u2,u3, . . . ,um, v1, v2, . . . , vn}

and edges of the form E(Cm ⊙ Pn) = {el = ulul+1, el′ = ul′u1, ei = u1vi, e
′

i = u2vi, e
′′

i = u3vi, . . . , em−1
i

= umvi, e j = v jv j+1}, where i = {1, 2, . . . ,n}, j = l = {1, 2, . . . ,m − 1}, l′ = {m}. There are m + mn vertices
and m +m(n − 1) +mn edges in the corona product Cm ⊙ Pn.

Now, we are calculating the decomposition of corona graph of Cm ⊙ Pn.

Theorem 2.4. Let m,n be positive integers. If n ≥ 2,m ≥ 3, then there exists a decomposition of Cm ⊙ Pn into a
single copy of cycle Cm of length m, m copies of path Pn+1 of length n, and m(n − 1) copies of path P2 of length one.

Proof. Let V(Cm⊙Pn) = {u1,u2,u3, . . . ,um, v1, v2, . . . , vn} be the vertex set and edges-set consisting of all edges
of the form E(Cm ⊙ Pn) = {el = ulul+1, el′ = ul′u1, ei = u1vi, e

′

i = u2vi, e
′′

i = u3vi, . . . , em−1
i = umvi, e j = v jv j+1},

where i = {1, 2, . . . ,n}, j = {1, 2, . . . ,n − 1}, l = {1, 2, . . . ,m − 1}, l′ = {m}.
Since m and n are positive integers that can be either an odd number or an even number.
Case 1: When m,n are even and it can be written as m = n = 2q, where q = 1, 2, 3, . . .
Let F = {el, el′ }, where l = {1, 2, . . . ,m − 1} and l′ = {m}, E1 = {ei, e j}, E2 = {e

′

i , e j}, E3 = {e
′′

i , e j},. . . ,Em = {em−1
i , e j}

where i = {1}, j = {1, 2, 3, 4, . . . , n − 1}. Also Fi = {ei}, F′i = {e
′

i}, F′′i = {e
′′

i },. . ., Fm−1
i = {em−1

i } where
i = {1, 2, . . . ,n − 1}.
Then, the subgraph < F > create a single cycle Cm of length m, the subgraph < E1 > creates 1 copy of path
Pn+1 of length n, the subgraph < E2 > creates 1 copy of path Pn+1 of length n , the subgraph < E3 > creates 1
copy of path Pn+1 of length n, and this process continues until the subgraph < Em > creates 1 copy of path
Pn+1 of length n.
Again the subgraph < Fi > creates n − 1 copies of path P2 of length one, the subgraph < F′i > creates n − 1
copies of path P2 of length one, the subgraph < F′′i > creates n − 1 copies of path P2 of length one, and this
process continues until the subgraph < Fm−1

i > creates n − 1 copies of path P2 of length one. Hence Cm ⊙ Pn
of cycle Cm and path Pn can be decomposed into one copy of cycle Cm of length m, and (1 + 1 + . . . + 1) = m
copies of path Pn+1 of length n and {(n − 1) + (n − 1) + . . . + (n − 1)} = m(n − 1) copies of path P2 of length 1.
Case 2: When m,n are odd and it can be written as m = n = 2q + 1, where q = 1, 2, 3, . . ..
Let F = {el, el′ }, where l = {1, 2, . . . ,m − 1} and l′ = {m}, E1 = {ei, e j}, E2 = {e

′

i , e j}, E3 = {e
′′

i , e j}, . . ., Em = {em−1
i , e j}

where i = {1}, j = {1, 2, 3, 4, . . . , n − 1}. Also Fi = {ei}, F′i = {e
′

i}, F′′i = {e
′′

i },. . ., Fm−1
i = {em−1

i } where
i = {1, 2, . . . ,n − 1}.
Then, the subgraph < F > creates a single cycle Cm of length m, the subgraph < E1 > creates 1 copy of path
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Pn+1 of length n, the subgraph < E2 > creates 1 copy of path Pn+1 of length n , the subgraph < E3 > creates 1
copy of path Pn+1 of length n, and this process continues until the subgraph < Em > creates 1 copy of path
Pn+1 of length n.
Again the subgraph < Fi > creates n − 1 copies of path P2 of length one, the subgraph < F′i > creates n − 1
copies of path P2 of length one, the subgraph < F′′i > creates n − 1 copies of path P2 of length one, and this
process continues until the subgraph < Fm−1

i > creates n − 1 copies of path P2 of length one. Hence the
corona product Cm ⊙ Pn of cycle Cm and path Pn can be decomposed into one copy of cycle Cm of length m,
and (1+ 1+ . . .+ 1) = m copies of path Pn+1 of length n and {(n− 1)+ (n− 1)+ . . .+ (n− 1)} = m(n− 1) copies
of path P2 of length 1.

By employing Theorem 2.4, we have the following observation:

Observation 2.5. When n ≥ 2,m ≥ 3 and m,n be positive integers, then Cm ⊙ Pn can be decompose into a single
copy of path Pm of length m − 1, m copies of path Pn+1 of length n and (mn −m + 1) copies of path P2 of length one.

Theorem 2.6. Let m,n be a positive integers and m,n ≥ 4, then there exist a decomposition of Cm ⊙ Pn into
(1) One copy of Cm, nm

2 copies of C3, and ( n−2
2 )m copies of P2, if m,n is even.

(2) One copy of Cm, ⌊ n
2 ⌋m copies of C3, m copies of P3, and ( n−3

2 )m copies of P2, if m,n is odd.

Proof. Let V(Cm ⊙ Pn) = {u1,u2,u3, . . . ,um, v1, v2, . . . , vn} be the vertex and E(Cm ⊙ Pn) = {el = ulul+1, el′ =
ul′u1, ei = u1vi, e

′

i = u2vi, e
′′

i = u3vi, . . . , em−1
i = umvi, e j = v jv j+1}, where i = {1, 2, . . . ,n}, j = {1, 2, . . . ,n − 1},

l = {1, 2, . . . ,m − 1}, l′ = {m} be the edges set.
Since m and n are positive integers that can be either an odd number or an even number.
Case 1: When n > 2,m > 4 and m = n = even number.
For Cm, let F = {el, el+1, . . . , el+m−2, el′ }, where l = {1} ,l′ = {m}.
For C3, let Ei = {ei, ei+1, e j}, E′i = {e

′

i , e
′

i+1e j}, E′′i = {e
′′

i , e
′′

i+1, e j}, . . ., Em−1
i = {em−1

i , em−1
i+1 , e j}, where i = j =

{1, 3, 5, . . . ,n − 1}.
For P2, let H j = {e j}, H′

j = {ei}, . . ., Hm−1
j = {e j}, where j = {2, 4, 6, . . . ,n − 2}. Then, the subgraph < F >

creates one copy of cycle Cm of length m, the subgraph < Ei > creates n
2 copies of cycle C3 of length three,

the subgraph < E′i > creates n
2 copies of cycle C3 of length three, the subgraph < E′′i > creates n

2 copies
of cycle C3 of length three, and this process continues until subgraph Em−1

i creates n
2 copies of cycle C3

of length three. Finally, the subgraph < H j >, < H′

j >, . . ., < Hm−1
j > creates ( n−2

2 ) copies of path P2 of
length one. Hence, Cm ⊙ Pn of cycle Cm and path Pn can be decomposed into a single cycle Cm of length m,
{( n

2 ) + ( n
2 ) + . . . + ( n

2 )} = nm
2 copies of cycle C3 of length three and {( n−2

2 ) + ( n−2
2 ) + ... + ( n−2

2 )} = ( n−2
2 )m copies

of path P2 of length one.
Case 2: When n > 3,m > 3 and m= n = odd number.
For Cm, let E = {el, el+1, . . . , el+m−2, el′ }, where l = {1}, l′ = {m}.
For C3, let Fi = {ei, ei+1, e j}, F′i = {e

′

i , e
′

i+1, e j}, F′′i = {e
′′

i , e
′′

i+1, e j}, . . ., Fm−1
i = {em−1

i , em−1
i+1 , e j} where i = j =

{1, 3, 5, . . . ,n − 2}.
For P3, let H = {ei, e j}, H1 = {e

′

i , e j}, . . ., Hm−1 = {em−1
i , e j}, where i = n, j = n − 1.

For P2, let G j = {e j}, G′

j = {e j}, . . . , Gm−1
j = {e j}, where j = {2, 4, 6, . . . ,n − 3}.

Then, the subgraph < E > creates a single cycle Cm of length m, the subgraph < Fi > creates ⌊ n
2 ⌋ copies of

cycle C3 of length three, the subgraph < F′i > creates ⌊ n
2 ⌋ copies of cycle C3 of length three, the subgraph

< F′′i > creates ⌊ n
2 ⌋ copies of cycle C3 of length three, and this process continues until the subgraph < Fm−1

i >
creates ⌊ n

2 ⌋ copies of cycle C3 of length three, the subgraph < H > creates a single path P3 of length two, the
subgraph < H1 > creates a single path P3 of length two, the subgraph < H2 > creates a single path P3 of
length two, the subgraph < H3 > creates a single path P3 of length two, and by the above process continues
until the subgraph < Hm−1 > creates a single path P3 of length two. Furthermore the subgraph < G j >,
< G′

j >, . . ., < Gm−1
j > creates n−3

2 copies of path P2 of length one. Hence, Cm ⊙ Pn of cycle Cm and path Pn

can be decomposed into one copy of cycle Cm of length m, {(⌊ n
2 ⌋+ ⌊

n
2 ⌋+ . . .+ ⌊

n
2 ⌋)} = m⌊ n

2 ⌋ copies of cycle C3
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of length three, (1 + 1 + ... + 1) = m copies of path P3 of length two and {( n−3
2 ) + ( n−3

2 ) + . . . + ( n−3
2 )} = ( n−3

2 )m
copies of path P2 of length one.

By employing Theorem 2.6, we have the following observations:

Observation 2.7. When m,n ≥ 4 and m,n be positive integers, then Cm ⊙ Pn can be decompose into
(1) One copy of path Pm, nm

2 copies of cycle C3, and m(n−2)+2
2 copies of path P2, if m,n is even.

(2) One copy of path Pm, ⌊ n
2 ⌋m copies of cycle C3, m copies of path P3, and m(n−3)+2

2 copies of path P2, if m,n is odd.

Observation 2.8. When m,n ≥ 4 and m,n be positive integers, then Cm ⊙ Pn can be decomposed into
(1) One copy of cycle Cm, mn

3 copies of claw K1,3, and m copies of Pn, if n = 3q, where q = 1, 2, 3, . . .
(2) One copy of cycle Cm, m( n−1

3 ) copies of claw K1,3, m copies of path Pn, and m copies of path P2, if n = 3q+ 1, where
q = 1, 2, 3, . . .
(3)One copy of cycle Cm, ( n−2

3 )m copies of claw K1,3, m copies of path Pn, and m copies of P3, if n = 3q + 2, where
q = 1, 2, 3, . . .
(4). One copy of path Pm, one copy of path P2, mn

3 copies of claw K1,3, and m copies of path Pn, if n = 3q, where
q = 1, 2, 3, . . .
(5) One copy of path Pm, m( n−1

3 ) copies of claw K1,3, m copies of path Pn, and (m + 1) copies of path P2, if n = 3q + 1,
where q = 1, 2, 3, . . .
(6) One copy of path Pm, one copy of path P2, ( n−2

3 )m copies of claw K1,3, m copies of path Pn, and m copies of path P3,
if n = 3q + 2, where q = 1, 2, 3, . . .

2.3. Decomposition of Km ⊙ Pn

Here, we decompose the Km ⊙ Pn of the complete graph Km and path graph Pn. It is obtained by
taking one copy of Km and |V(Pn)| copies of Pn and joining the i−th vertex of Km to every vertex in the ith

copy of Pn. Let the vertex set be V(Km ⊙ Pn) = {u1,u2, . . . ,um, v1, v2, . . . , vn} and edge set be E(Km ⊙ Pn) =
{ei = vivi+1, e1

j = u1v j, e2
j = u2v j, . . . , em

j = umv j, ek = ukuk+1, em = umu1, e1
l1 = u1ul1+2, e2

l2 = u2ul2+3, . . . , em−2
lm−2 =

um−2ulm−2+(m−1)}, where i = {1, 2, 3, . . . ,n − 1}, j = {1, 2, 3, . . . ,n}, k = {1, 2, 3, . . . ,m − 1}, l1 = {1, 2, 3, . . . ,m − 3},
l2 = {1, 2, 3, . . . ,m − 3}, l3 = {1, 2, 3, . . . ,m − 4}, l4 = {1, 2, 3, . . . ,m − 5}, . . ., lm−2 = {1, 2, 3, . . . ,m − (m − 1)}.

Now, we are calculating the decomposition of corona graph of Km ⊙ Pn.

Theorem 2.9. Let m,n be positive integers and m,n ≥ 4, then there exists a decomposition of Km ⊙ Pn into
(1) One copy of complete graph Km, mn

2 copies of cycle C3, and m( n−2
2 ) copies of path P2, if m,n are even.

(2) One copy of the complete graph Km, m( n−1
2 ) copies of cycle C3, m copies of path P3, and ( n−3

2 )m copies of path P2,
if m,n are odd.

Proof. Let V(Km⊙Pn) = {u1,u2, . . . ,um, v1, v2, . . . , vn} and, E(Km⊙Pn) = {ei = vivi+1, e1
j = u1v j, e2

j = u2v j, . . . , em
j =

umv j, ek = ukuk+1, em = umu1, e1
l1 = u1ul1+2, e2

l2 = u2ul2+3, . . . , em−2
lm−2 = um−2ulm−2+(m−1)}, where i = {1, 2, 3, . . . ,n − 1},

j = {1, 2, 3, . . . ,n}, k = {1, 2, 3, . . . ,m − 1}, l1 = {1, 2, 3, . . . ,m − 3}, l2 = {1, 2, 3, . . . ,m − 3}, l3 = {1, 2, 3, . . . ,m − 4},
l4 = {1, 2, 3, . . . ,m− 5}, . . ., lm−2 = {1, 2, 3, . . . ,m− (m− 1)}, denotes the vertex and edges of Km ⊙Pn. The proof
of the theorem consists of two cases:
Case 1. When m,n is even and m ≥ 4,n ≥ 4. Let the subgraph E = {ek, em, e1

l1 , e
2
l2 , . . . , em−2

lm−2 }, where
k = {1, 2, 3, . . . ,m−1}, l1 = {1, 2, 3, . . . ,m−3}, l2 = {1, 2, 3, . . . ,m−3}, l3 = {1, 2, 3, . . . ,m−4}, l4 = {1, 2, 3, . . . ,m−5},
. . . , lm−2 = {1, 2, 3, . . . ,m − (m − 1)}, F1

j = {e
1
j , e

1
j+1, ei}, F2

j = {e
2
j , e

2
j+1, ei}, . . . , Fm

j = {e
m
j , e

m
j+1, ei}, where j =

{1, 3, 5, . . . ,n − 1}, and Gi = {ei}, where i = {2, 4, 6, . . . ,n − 2}.
Then the subgraph < E > generates a single complete graph Km, the subgraph < F1

j > generates n
2 copies

of cycle C3 with length three, the subgraph < F2
j > generates n

2 copies of cycle C3 with length three, and
this process continue until the subgraph < Fm

j > generates n
2 copies of cycle C3 with length three, the

subgraph G2 generates n−2
2 copies of P2 with length one, the subgraph G4 generates n−2

2 copies of P2 with
length one, and this process continue until the subgraph Gn−2 generates n−2

2 copies of P2 with length one.
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Therefore, the Km ⊙ Pn of Km and Pn contains one copy of Km, { n2 +
n
2 +

n
2 + ... +

n
2 } = ( n

2 )m copies of C3,
{

n−2
2 +

n−2
2 + . . . +

n−2
2 } = ( n−2

2 )m copies of P2.
Case 2. When m,n is odd and m ≥ 4,n ≥ 4. Let the subgraph E = {ek, em, e1

l1 , e
2
l2 , . . . , em−2

lm−2 }, where k =
{1, 2, 3, . . . ,m− 1}, l1 = {1, 2, 3, . . . ,m− 3}, l2 = {1, 2, 3, . . . ,m− 3}, l3 = {1, 2, 3, . . . ,m− 4}, l4 = {1, 2, 3, . . . ,m− 5},
. . . , lm−2 = {1, 2, 3, . . . ,m − (m − 1)}, F1

j = {e
1
j , e

1
j+1, ei}, F2

j = {e
2
j , e

2
j+1, ei}, . . ., Fm

j = {e
m
j , e

m
j+1, ei}, where j =

{1, 3, 5, . . . ,n − 2}, Gi = {ei}, where i = {2, 4, 6, . . . ,n − 1}, and Ht = {et
j, ei}, where t = {1, 2, . . . ,m}, j = {n}, and

i = {n − 1}.
Then, the subgraph < E > generates a single complete graph Km, the subgraph < F1

j > generates n−1
2 copies

of cycle C3 with length three, the subgraph < F2
j > generates n−1

2 copies of cycle C3 with length three, and

this process continue until the subgraph < Fm
j > generates n−1

2 copies of cycle C3 with length three, the

subgraph G2 generates n−3
2 copies of P2 with length one, the subgraph G4 generates n−3

2 copies of P2 with
length one, and this process continue until the subgraph Gn−2 generates n−3

2 copies of P2 with length one,
the subgraph H1 generates one copy of path P3 of length 2, the subgraph H2 generates one copy of path
P3 of length 2, and this process continue until the subgraph Hm generates one copy of path P3 of length 2.
Therefore, the Km ⊙ Pn of Km and Pn contains one copy of Km, { n−1

2 +
n−1

2 +
n−1

2 + . . .+
n−1

2 } = ( n−1
2 )m copies of

C3, { n−3
2 +

n−3
2 + . . . +

n−3
2 } = ( n−3

2 )m copies of P2, {1 + 1 + 1 + . . . + 1} = m copies of P3.

By utilizing Theorem 2.9, we have the following observation:

Observation 2.10. When m,n ≥ 4 and m,n be positive integers, then Km ⊙ Pn can be decomposed into
(1) One copy of cycle Cm, mn

2 copies of path C3, and {2(m− 3)+ (m− 4)+ . . .+ (m− (m− 1))+m( n−3
2 )} copies of path

P2, if m,n are even.
(2) One copy of cycle Cm, ( n−1

2 )m copies of path C3, m copies of path P3, and {2(m − 3) + (m − 4) + . . . + (m − (m −
1)) +m( n−3

2 )} copies of path P2, if m,n are odd.
(3) One copy of cycle Cm, n

3 m copies of claw K1,3, and m copies of path Pn, if n = 3d, where d = 1, 2, 3, . . .
(4) One copy of the complete graph Km, m( n−1

3 ) copies of claw K1,3, m copies of path Pn, and m copies of path P2, if
n = 3d + 1, where d = 1, 2, 3, . . .
(5) One copy of cycle Cm, ( n−2

3 )m copies of claw K1,3, m copies of path Pn, and m copies of path P3, if n = 3d+ 2, where
d = 1, 2, 3, . . ..

3. Conclusion

In this paper, we decompose the corona graphs Sm ⊙ Pn, Cm ⊙ Pn, and Km ⊙ Pn into cycles, claws, and
paths of different lengths. In particular, we observe that for any positive integers m,n, Sm ⊙ Pn can be
decomposed into ⌊ n−2

2 ⌋m + 1 copies of P2, ⌊m−1
2 ⌋ copies of P3, and ⌊ n

2 ⌋m copies of C3. Similarly, Cm ⊙ Pn can
be decomposed into a single copy of cycle Cm of length m, m copies of path Pn+1 of length n and m(n − 1)
copies of path P2 of length one. Moreover, Km ⊙ Pn can be decomposed into m−2

2 copies of complete graph
Km, nm

2 copies of cycle C3, and m+n−2
2 copies of path P2.
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