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On the behavior of the modulus of m-th derivatives of algebraic
polynomials in the whole complex plane without recurrence formula in
the weighted Lebesgue space

F. G. Abdullayev®*, M.Imashkyzy®

“Mersin University, Tiirkiye, *Institute of Mathematics and Mechanics MSE Rep. of Azerbaijan
Y Kyrgyz-Turkish Manas University, Kyrgyzstan

Abstract. In this paper we study the growth of m — th derivatives of an arbitrary algebraic polynomial
in weighted Lebesgue spaces in bounded and unbounded regions of the complex plane, ignoring the
recurrence formula. We also provide estimates in the whole complex plane.

1. Introduction

Let C be a complex plane; G C C be a finite region bounded by Jordan curve L := dG (without loss of

generality, we will assume that 0 € G); Q := C \G = extL, where C := C U {oo} is the extended complex
plane. Fort € Cand 6 > 0, let A(t,0) :={w e C: |w—t| > 6}; A := A(0,1). Let ® : QO — A be the univalent

conformal mapping normalized by ®(c0) = co and lim; ? >0; W:=®!. Fort > 1, the us sets L;, G
and Q; are defined as follows:

Lt = {Z : |q)(Z)| = t}, L1 = L, Gt = inth, Qt = extL,.
For z € C and some set S C C, let

d(z,S) :=dist(z, S) = inf{|C—z| : L€ S}.

!
The class of all algebraic polynomials P,(z), degP, < n, n € IN denote by g,. Let {Zf}j=1 € L be a fixed

system of distinct points located on L sequentially, without loss of generality, in the positive direction. For
some fixed Ry, 1 < Ry < oo, consider the generalized Jacobi weight function

! —
h _ 1Vi , G ,
hz) = 0(z) ]=Hl |z z]) z € Gg,

0, z € C\Gg,,
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wherey; > —1,forall j = 1,2,...,l and for a measurable function h the inequality ho(z) > co(L, h) > 0,z € Gg,,
holds for some constant co(L, ) > 0, depending only on L and h.
For each 0 < p < oo and rectifiable Jordan curve L = dG, we introduce:

1/p

Pl == IPull g, 1) := fh(z) |Pu(2)l ldz]| < o0,0<p < oo, (2)
L
IPnlles == ”Pn“Lm(l,L) = n;eaLX [Py (2)l, p = o9, -Lp(ll L) =: -Ep(L)~

In many problems of the theory of approximations of functions in the complex plane when studying
the growth of polynomials with the expansion of a given region, the following, so-called Bernstein-Walsh
inequality, is often used [43]:

IPallec, < R IPallogg) » YPa € 91 3)

which means that the value ||P,||, has the same order of growth in n when the region Gis expanded to

Gyaenmt for all constants ¢ := ¢(G) > 0.
In [29], the “symmetric” analogue of inequality (3) in the space .£,(L) was given as:

1
IPall 2,y < R™ 7 IPullz 0y, VP € 9, p > 0.

Further, in [8, Lemma 2.4] this estimate was generalized to the space .£,(h, L) with the weight function
defined as in (1), as follows:

1+y* .
WPl £, n,10) < R™7 IPull 2,y y* = max {0; yii1<j< l}- (4)

Along with (2), for the arbitrary Jordan region G, weight function / and P, € ¢,,, we also introduce:

Iy

1
IPalla,,c) = ffh(z) |Pu(z)P do.| ,0<p<oo,
c
IPnlla.ac) = maEx [Pu(2)l, p = 00, Ap(1,G) = Ap(G),
zZ€

where o be the two-dimensional Lebesgue measure.

To give an inequality similar to inequalities (3) and (4) for the space A,(k, G), we need to introduce the
corresponding notations and definition. For any 6 > 0 and arbitrary t,w € C let B(w, 0) := {t : |t —w| < 0}
and ¢ : G — B := B(0,1) be a conformal and univalent map which is normalized by ¢(0) = 0 and ¢’(0) > 0;

pr=gh

Definition 1.1. ([36, p.286]). A bounded Jordan region G is called a k-quasidisk, 0 < « < 1, if any conformal

mapping ¢ can be extended to a K-quasiconformal, K = £, homeomorphism of the plane Con C. In that
case the curve L := JG is called a x-quasicircle. The region G (curve L) is called a quasidisk (quasicircle), if

it is x-quasidisk (k-quasicircle) with some 0 < x < 1.

For an arbitrary quasidisk G and a weighted function hi(z) defined asin (1) withy; > -2, forallj = 1,2,...,],

the analog of the estimates (3) and (4) for the ||P,|| iy Was given in [2] as follows:

n+d
1Pall, 6 < €1 R 1Pyl R>1,p>0, (5)

- Ap(hG) ”
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where R* := 1+ (R —-1), ¢ > 0 and c; = ¢1(G,p,c2) > 0 constants, independent of n and R. In [4,
Theorem1.1], estimate (5) was generalized to the case of an arbitrary Jordan region G, h(z) = 1, as follows:

n+%
<RI,

Ap(GR) —

1
([Pl R>R1=1+E,p>0,

Gry)

where ¢z = (%)’7 [1 + O(%)] , h — oo, is asymptotically sharp constant.

N. Stylianopoulos [39] replaced the norm ||P, || c© with norm [|P;||4,(c) on the right-hand side of (3) and
found a new version of the inequality(3) for the rectifiable quasicircle L and arbitrary polynomials P, € g,
as follows:

_Nn_

IPu(2)] < Cd(z, D

IPullayc) IR, z€Q,

where a constant C = C(L) > 0 depending only on L.
In this paper, for k-quasidisks G, 0 < x < 1, and also for quasidisks satisfying an additional more general

condition, we study for the derivative |P£1m)(z) ,m=0,1,2,.., pointwise estimates in the unbounded region

Q11 = C\Gyyonr for arbitrary constant ¢ > 0 independet of #, in the following form:
[P @)| < (Ll p, 1, 2) Pl s 2 € Qe (6)

where 1, := 1n,(L, h, p,m, 2), u(-) = o0, as n — oo, depending on the properties of the G and h.

Subsequently, estimates of the type (6) for z € (3, m = 0 and various weight functions & were objects of
study in [5]-[9], [28], [27, p.418-428], [41] and others. For the m > 1 derivatives estimates of the (6) type
were investigated in [13], [14], [24], [25] and others using a recurrence formula, i.e. the inequality for each
derivative is obtained using estimates for the previous derivative. And this leads to some cumbersome
calculations. In this study, estimates of (6)-type will be obtained for each m > 1 independently of the
estimates for the previous derivative and without using the recurrence formula.

On the other hand, using inequalities of the Bernstein-Markoff-Nikolskii type estimate |P$1m)(z) ,z€G,
of the following type:
1Pl < AullPully, 1 = 1,2, .., )

where A, := A, (L, h,p,m) > 0, A, = oo, n — o0, is a constant, depending on the geometrical properties of
the curve L and the weight function & in general, and combining it with inequality (6), we eventually find

the growth of the m — th derivative of the polynomial |P§,m)(z)
the following form:

,m=1,2,.., on the whole complex plane in

(m) < Ap z€ Elﬁ—cn*l/
[P (@) _c4||Pn||,,{ o eonmy (8)

where ¢y = ¢4(L, p) > 0 is a constant independent of n, i, P,, and A, — o0, 1), — 00, as n — o0, depending on
the properties of L and h.

The study inequalities of type (7) began with works [20], [21], [40]. Similar studies were then carried
out in numerous papers. In recent years, such inequalities for m > 0 and various spaces have been studied
by [27, pp. 418-428], [32]-[35, pp.122-133], [38], [26] (see also the references cited therein) and continued to
be studied in [7], [8], [10]-[12], [15] and other, for various general regions in the complex plane.

2. The class of curves

Throughout this paper, ¢, co, c1, ¢2, ... are positive and ¢, €1, €, ... are sufficiently small positive constants
(generally, different in different relations), which depends on L in general and, on parameters inessential
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for the argument, otherwise, the dependence will be explicitly stated. The notation i = k,m denotes
i=kk+1,..,mforallk >0andm > k.
Let z1, z; be an arbitrary points on L and L(z,z;) denotes the subarc of L of shorter diameter with
endpoints z; and z;. The curve L is a quasicircle if and only if the quantity
|z1 —z| + |z — 2|

©)

|z1 — 22|

is bounded for all z1,z; € L and z € L(z1, z2) ([30, p.100]-three point property). Lesley [31, p.341] said that
the curve L is “c—quasiconformal”, if there exists the positive constant ¢, independent from points z;, z, and
z such that

|z1 — z| + |z — 2]
|z1 = z2|

The Jordan curve L is called asymptotically conformal [23], [37], if

|z1 —z| + |z — 22|

=1, |z1 —22| = 0.
z€L(z1,22) |Zl - Zz|

According to the geometric criteria of quasicircles ([16, p.81], [37, p.107]), every asymptotically conformal
curve is a quasicircle. Every smooth curve without corners, is asymptotically conformal. Moreover,
asymptotically conformal curves may not be rectifiable.

Following [36, p.163], we say that a bounded Jordan curve L is A—quasismooth or Lavrentiev curve, if for
every pair z;, z, € L, there exists a constant A := A(L) > 1, such that

|L(21/ZZ)| < A |Zl - Z2| ; 21, 22 € L/

where |L(z1, z2)| is the linear measure (length) of L(z1,z>).

Let S be rectifiable Jordan curve or arc and let z = z(s), s € [0, |S|], |S| := mes S, be the natural parametriza-
tion of S.

A Jordan curve or arc S € Cy, if S has a continuous tangent 6(z) := 6(z(s)) at every point z(s). We will
write G € Cy, if dG € Cg.

Following [36, p.48], we say that a Jordan curve S called Dini-smooth, if it has a parametrization z =
2(s), 0 < s < [S] := mes S such that z'(s) # 0, 0 < s < S| and |z'(s2) — 2 (s1)| < g(s52 — 51), 51 < 52, where g is an
increasing function for which

1
@dx<oo
X
0

A Jordan curve L := dG called piecewise Dini-smooth, if L consists of the union of finite Dini-smooth arcs
Lj, j = 1,m, such that they have exterior (with respect to G) angles A;rr, 0 < A; < 2, at the corner points

{zj} , j =1,m, where two arcs meet.

According to the “three-point” criterion [30, p.100], every piecewise Cy—curve and Dini-smooth curve
(without cusps) is quasiconformal.

We give the definition of x-quasicircles in Definition 1.1. Denote by Q(x), 0 < x < 1, class of k-
quasicircles and say that G € Q(x), if L = dG € Q(x), 0 < x < 1. Further, we denote that L € Q, (G € Q) if
L € Q(x) (G € Q(x)) for some 0 < k < 1. Quasicircles can be non-rectifiable [22]. Since the object of study
will be integrals along a curve, then we will say that L € Q(x),0 < x < 1,if L € Q(x) and L := dG is rectifiable.
Correspondingly, L € Q (G € Q),if L € Q(x) (G € Q(x)) for some 0 <« < 1.

In this work, firstly, the above (6) problem will be solved for the class Q(x), 0 < x < 1. Secondly, we will
try to get the result for more general curves, also including the above class of curves.

For this, we need to give the following definitions of the class of quasicircles with some general functional
conditions. This will allow us to unite in one class all the curves defined above.
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Definition 2.1. We say that the Jordan curve L = G = JQ € Q,, if L is a quasicircle and ® € H* (Q) for some
O<a<lie | -OQ)| <M z-(*,0<a <1, forallz (€ Q, where M, > 0 is a constant depending
only on L. Additionally, say that L € Q,, 0 < a <1, if L is rectifiable and L € Q,.

The class Q, is sufficiently large. We can find more detailed information about the elements of this class
from [31], [37], [42] (also references therein). Here are just a few examples:

a) A piecewise Dini-smooth curve L having largest exterior angle opening an, 0 < a < 1, belong to the
class éa [37, p.52].

b) A smooth curve having continuous tangent line belong to the class Qu forall 0<a<1.

¢) If G is "L—shaped” region, then L = dG € é 2.

d) A Lavrentiev curve L € Qa for a = 2(1 - arcsm 1) ~land c > 1[42].

e) A “c-quasiconformal” curve L € Q, for a = m,

f) An asymptotic conformal curve L € Q, forall 0 < a < 1 [31].

3. Main results

We are already beginning to formulate the new results. Firstly, we present estimate for |Pn
z € Q, for the classes é(K) and éa.

,m>1,

Theorem 3.1. Letp > 1;L € é(K),fO?’ some 0 < k < 1 and h(z) be defined by (1). Then, for any P, € p,, n € N,
and every m = 1,2, ..., we have:

|P(m (Z)l <q ‘(D” m+1( )| %)Aip(m), z € Q1+e7?, (10)

where c1 = ¢1(L, y,m,p) > 0 is a constant independent of n and z;

1+x

p<1+ 7 7 >0,
1)1+ K 2
Tl( S = )( 7\) p= 1+ 2“\)// Yy > 111’;’
. ey, 2t
np pMr+1= ’ (lnn) o, op=1+ ;i;ﬁ% O0<ys< %i;ﬁ'
1+ +1—* ! :
=] p>1+572=y, 0<y<£E,
p(+x), p=21 -1<y<0.

Theorem 3.2. Letp>1;L € éafor some < o < 1 and h(z) be defined by (1). Then, for any P, € 9,, n € N, and
everym =1,2, ..., we have:

nau

[P (2)| < cp | )| )Af,,p(m), 2€Qy,q, (11)
where c; = co(L, y, m, p) > 0 is a constant independent of n and z;
L p<1+1+/a, y >0,
a5 m)i, p=1l+7—, y>1l+a,
Vv
A2y (m) =] wr R R R
Y et i (), p=1+75,0<y<l+a,
nﬁlj_%, p>1l+=,0<y<l+a,
na, p>1 -1<y<0,




F. G. Abdullayev, M. Imashkyzyr / Filomat 39:10 (2025), 3365-3379 3370

Remark 3.3.  a) The Theorems 3.1 and 3.2 gives the estimates for |Pf1m) (2)
for (Pﬁlm_l) (2)|. They allow us to find the growth of |P£,m) (2)], for any given m > 1.

,m > 1, regardless of estimate

b) Comparing (11) with the corresponding result [13, Theorems 2.5; 2.7], we see that the growth rate of
the value |®(z)| has significantly decreased, which makes it possible to improve the growth rate of

P @)

c) Forthep>2,0<y<l+aandp>1+ ﬁ,y > 1+ a, Theorem 3.2 gives better estimates in the sense
of n than the corresponding estimate in [13, Theorem 2.7].

d) We added also case of p = 1.

4. Estimates |PL"‘) (z)l ,m>1,forz e G

In order to formulate estimates for |Pf1m ) (z)

,m > 1, in the whole complex plane, we need estimates for
the |P{"” (2)

,m 21, in bounded regions G € Q(x) or Q,. We present them.

Theorem 4.1. ([15, Th.2.5]) Let p > 0; L € @(K), for some 0 < x < 1 and h(z) be defined by (1). Then, for any
P, € 9,, n € N, and every m > 0, we have:

1P < canl 70 (12)

where a constant cz = c3(L, y, m, p) > 0 independent of n and z;

Yy =max{0;y;, j=1,1}.

Theorem 4.2. ([15, Th.2.10]) Let p > O; L € Qu for some 1 < a < 1 and h(z) be defined by (1). Then for any
P, € p,, n € N, and every m > 0, we have:

7 +1
T tm
p

1Pl < cant (T )ip 1, (13)
where a constant cy = c4(L, ¥, m, p) > 0 independent of n and z; y* is defined as in (12).
Remark 4.3.  a) The sharpness of inequality (12) and (13) was given in [15, Th.2.10].

b) From (12) at n — oo we find

1P Nloo < c3n™ P OIP, ||co.

This result was obtained in [17] for m = 1 and is exact in the sense of order n forany m > 1and 0 < x < 1.

5. Estimates for |PL'”) (z)| in whole complex plane

First of all, we note that estimates (12) and (13) are valid for the points z € ERI, Ry =1+, with a
different constant, in accordance with (3) (applied to the polynomial PU(2)). Therefore, combining these
estimations with (10), (11) and considering that C = Gg, U Qg,, we will obtain estimation on the growth for

IPU"(2)|, for any m > 1 (regardless of the assessment for [PV (z)]), in the whole complex plane:
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Theorem 5.1. Letp > 1, G € é(K),fOV some 0 < k < 1 and h(z) be defined by (1). Then, for any P, € 9, n € N,
and every m = 1,2, ..., we have:

pasal ) . —_
( +m )(1+x)
n\ 7 , z € Gg,,

|(Dn—m+l)(z)|
dzL)

[P (2)] < eslIPall,

A}t,p(m)/ VAS QRU

where ¢cs = cs(L,y,p) > 0is a constant independent of n and z; y* is defined as in (12); A}llp(m) defined as in Theorem
3.1 forall z € Qp,.

Theorem 5.2. Letp >1;L € éafor some } < o < 1and h(z) be defined by (1). Then, for any P, € p,, n € N, and
everym =1,2, ..., we have:

1 (}'*+1 +m) —_
nev , z € Gg,,
|(Dn—m+1)(z)|

IPY” (2)| < c6 IPull, )
D An,p(m), z € Qg,,

where ce = c6(L,y,p) > 0is a constant independent of n and z; y* is defined as in (12); Afl,p(m) defined as in Theorem
3.2 forall z € Qp,.

6. Some auxiliary results

Throughout this paper we denote “a < b* and “a < b" are equivalent to a < cb and c1a < b < cya for some
constants c, ci, ¢z, respectively.

Lemma 6.1. ([1]) Let G be a quasidisk, z1 € L, zp,z3 € QN {z : |z — z1| = d(z1, Ly,)}; wj = P(z)), j = 1,2,3. Then

a) The statements |z1 — z3| < |z1 — z3| and w1 — wy| < |wy — ws| are equivalent. Therefore, |z1 — z3| < |z1 — z3]
and |wy — wy| < [wy — ws| also are equivalent.

b) If |z1 — zo| 2 |z1 — z3], then

c1 C2

w1 — W3
w1 — w2

Z1—2
1 3 <
21— 22

w1, —ws
w1 — w2

<

where 0 < rg < 1 a constant, depending on G.
Corollary 6.2. Under the conditions of Lemma 6.1, we have:
lw1 — wa|™ =L |z1 = 22| < fwy —wol,
where ¢ = ¢(G) < 1.

Lemma 6.3. Let L € Q, for some % < a < 1. Then, for all wy, w; : [w1| = 1, |w;| > 1, we have:
1
|W(w1) — W(wy)| = [wy — wp|= .
Lemma 6.4. L € Q(x), for some 0 < x < 1. Then, for all w1, w, : |[wi| = 1, |wy| > 1, we have:
W (w1) = W(w)| = lwr — wo'* .

This fact follows from an appropriate result for the mapping f € }(x)[36, p.287] and estimation for
W'[18, Th.2.8]:

d(W(r), L) < W0l (] - D). (14)

Lemma 6.5. ([3]) Let L = G be a rectifiable Jordan curve and P,(z), deg P, < n,n = 1,2, ..., be arbitrary polynomial
and weight function h(z) satisfies the condition (1). Then forany R >1,p > 0andn =1,2,...

+y*

IS . S
”Pn”.[p(h,LR) < Rn+ 4 ”Pn”L,,(h,L)I Y =max {O,’)/] L] = 1, l} .
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7. Proofs of theorems

Proof. [Proofs of Theorems 3.1 and 3.2] The proofs of Theorem 3.1 and 3.2 will be simultaneously.

LetLEQ(K) O<1<<1(LGQQC,2<0¢<1)andletR—1+“J Ry —1+— ForzeQand1<m<mn,let

us define H,, ,, (z) := qj”m ff ()Z) Since the function H, ,, (z) is analytic in Q, continuous on Qand Hy p (00) =0,

then using the Cauchy integral representation we have:

1
Hn,m (Z) = _ﬁ f n,m (C) , Z € QRl

LRl

1f
S_
21

L

Ry

Then,

P (2)
(I)n—m+1(z)

(M)
© | 1 )
pn— m+1(C) |C _ Z| < ZHd(Z LR1 flp (C)| |dC| (15)

since |(I)”‘m+1(C)| = R”‘"1+1 > 1, for all C € Lg,, and consequently,

ol m+1( )|

(m)
P, <z>|_ F AN

f P O]l 6)

Let us write out the Cauchy integral representation for P (C):

P dt
(C) 27Tlifpn(t) (t_C)m+1’ CGGR'

R

Taking C € Lg, and substituting this formula into (16), we find:

ol m+1(z)| 1 dt
(1) R —
i o < (20 AT f = f P | 17)
- m+1
| — LR(Z)| f f Py 0 'dt',,m K
1 Lg,
ch—m+1
IPST’(z>|s%sip f 'dﬁ'mﬂ f 1P, (5] (18)
1) telg o

Denote by

d
A= [ - | ;Jﬂm f P, (b)),
L

Ry

and estimate this integrals. For A, ,,(t), after replacing the variable © = ®(C), C € Lg,; w = @(¢t), t € Lg, and
applying (14) and Lemma 6.1, we get:

|dC] [V’ (D)l ld|
An,m t) = I
® LRf IC— ot m_f W(7) = W(w)"*!

d(W (1), L) |dT| a7
ﬁ"h:f& W (1) — W(w)™ " = f [W(7) - W(w)"
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Therefore, applying Lemma 6.1 and Lemma 6.4, we get:
|d]| (1+x)
Apm(t) <n f T maF) forallt € Ly, (19)
[Tl=Rq
for the case L € é(K) and Lemma 6.3,
|d’l’| m
am() = n — <na, forallt € Lg, (20)
T —wle
; 6 := mino;.
1<j<l

For the estimate B,,, we give some notations.

for the case L € éa.
For 0 < 6; < 8 := tmin{jzi— 2| 14, j=1,2,..,1, i # j}, let Q(z}, 6;) = QN {z: |z z| <5}
Letw; := O(z)), p; := arg w;. Without loss of generality, we will assume that ¢; < 27. For 1) := min{nj,j = 1,1}

withn; =  min |(D - w]-| > 0, let us set:
@€ID(Qz}, 5))
Ai(y) =@ : o - wj| < 1} € D(Q(z;, 5)),
1
A = Ajm), By = A\AG) D) = A\AG); A, = A1),
i+
<0< ¥ 2%}, i=2,3..,1,

Po+ Q1 <0< (Pler(Pz
Pj-1tQ;j

2

j=1
A;(p):z{szeiQ:R2p>1, >
A= A1), A(p) = {a) —Re®:R2p>1,

I
where g = 21 — ¢y; Q= ‘I’(A;), L;h =Lg, NQj; Q= U Q;.
j=1
We can limit our consideration to one point on the boundary for computational ease. Consequently, we
set y1 = y and let the weight function & be defined as in (1) for I = 1. After multiplying the integrands

numerator and denominator by hr (C) and using the Holder inequality, we may estimate B, as follows:
1

|dt|

h (t)

[ o, o) x Lf

B, = f 1P, (B) 1] <
Lr Lr R
%
|dt| 1 1
| , -+ ==
e 'p g

1.

= IPull £, L) f
Lr
Applying Lemma 6.5 and passing to the variable 7 = ®(t), we obtain

%
V" (w)l ldwl

IW(w) = W)

By < [IPll, X f

7|=R

To estimate the last integral, we put:
EM .= {w cw € Fh, [w—w| < (R - 1)},
EY = {w cweFy, cf(R—-1) < |w—w < 17},

ER :={w:we D(Lg), lw-w|>n},

(21)
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where F} := ®(Ly) = A} N{w: [w| =R}, F4 := ®(Lg)\Fy and 0 < ¢; <7 chosen so that

3
{w:lw—wi| < a(R—1)}NA # @ and D(Lg) = UE}{‘.
k=1

Then, taking into account (21), we have:

3
By < IIPull, x Y J%, (22)
k=1
7
It = f ¥ ol lde k=1,2,3.
! W(w) - WP | "

1k
ER

For any k = 1,2, denote by

W’ (w)||dww] .
/ W ify >0,

(1ER)" = Y "
LT W) = W)Y W @)l e, if y <0,

1k
ER

We will estimate integrals (I (E}J‘))q separately for any k = 1,2, 3.

1. Let Le é(K), forsomeO0<x <1(Le€ FQva for some % <a<l).
1.1. Let y > 0. Applying Lemma 6.4 (6.3) to (23), we get:

114\ d(W (w), L) |dw|
(1E:) ﬁf (wl = 1) W (w) = W(x) o) .

11
ER

<n f ldw < D@D e E 1L < [ra-D-1]ar,
w — 7|lra-v-1]a+x)

11
ER

i E11 q < f d(\y (ZU),L) |dw|

(1) < (jw| = 1) W (w) — W()P TV
ER

el e

yg-)-1 —
|w— 7| =

vg-1)-1
23

<n mes]:"llg1 <n

£l
Then, for the I(E}!) we obtain:

(E2-1)+x) ~
IEY) < { n ”V , for the case L € Q(x),

(22-1)1 ~ (25)
n\r Ja, for the case L € Q,.

Analogously, for the I(E?) we get:

nlaD-110+9 - [y - 1) = 1] (1 +x) > 1,
(I(E}g))" < nf [|d1ﬂ)_1](1+ < nlnn, [yg-1D-1]0+x) =1,
o w7l ) ", [g-1)-1]1+x) <1,

R



E. G. Abdullayev, M. Imashkyzyr / Filomat 39:10 (2025), 3365-3379 3375

Yig-)-1

a -)-1>a
! o nor e /
(I(E}f)) <n f m < nlnn, )/(q - 1) -1=aq,

: a 1, y@g-1)-1<a.
Therefore,
Aﬂﬂmlpd+%%
KER) <3 (n lnn)1 a , p=1+13Ey, (26)
nr, o p>1+ gy,

for the case L € é(K) and

(520
n\r a, p<1+1+a,
_1
I(E}{Z) = (nlnn)l1 v, o p=1+ 11:0(,
n'r, p>1+

1+a’
for the case L € éa.
For w € EZ, we have 1] < |w — wq| < 27mR. Then, |¥(w) — W(w1)| > 1, by Lemma 6.1. Applying (14), for
w € A(wy, 1), we get:
(];)q < fl‘l"(w)l |[dw] < mesEIlQ3 <1, for the case L € é(K),‘
ED
(]3)” < fI\I/’(w)I [dw| < mesE}{3 <1, for thecase L € éa,
EB

and, consequently,

]g’ﬁl,for the casesLE@(K) andLeéa. 27)
Combining (22-27), for p > 1 and y > 0, we get:
s n(VH )(1+7\) P<1+ ;z%
Z ey (nlnn)' v, p=1+1%y, +1 (28)
#ﬁr p>1+ 3%y,
p<l+iEy, >0,
y+l 1 K
70, p=l+aiy, 7>
= p>1+ =y, V=i,
(i)'}, p=1edEy0<ys i,
W p> 1By 0<y <
for the case L € é(K), and
(v+1 1)%'
3 e (o) n L p<1+1+a/
S <n 5] g, ) @
k=1 n'=s, p>1+1+a,
(z2o1)2 pf1+WW y>o
n\»r a, p= 1+1+a, y>1l+a,
— p>l+=, y>l+a,
(nlnn)lf%, p—1+1la,0<y<1+0c

n‘:V, p>1+L,0<y<l+a,

T+a’
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for the case L € Q,, and consequently, combining (22)- (29), we obtain

14k
n(%—l)(uk) Z f } I %1?7/' V> 0

2+K
Ty
Bnﬁnpn”p 11 p>1+2+1<7/’ V= Tk’ (30)
()7, p =145y 0<y < i3,
nr, p>1+ 2+K7/,0<7/<1i’;,
for the case L € é(K), and
. p<1+1+a, y >0,
(22-1)2
n\'r , p—1+1+a, y>1l+a,
By < IP4l, oo Up>lagg yzlta
(nlnn)llfﬁ, p=1l+=,0<y<l+a,
1 Y
nov,

p>1+1+a,0<y<1+a

for the case L € éa.

1.2. If y <0, for w € A(wy, 1), according Lemma 6.1, for the case of L € é(K) we have
- =»-1)
(1) < f AW (), L) |9 () = W)

|l —
EL

(81)

<n f [W(w) — W ()| g < "+ D@-D-110-0) 05 FLL < 4 [ya-D)-1]00=x)
Ell

I(Ell) <n *—1)(1 K) < 1

In a completely similar way for the case of L € Qu, we find
I(ER) < 1.

(32)
For w € E* we have [w —w:| < 1 and, so, |¥(w) — W(wy)| <
applying Lemma 6.4, we get:

1, from Lemma 6.1. Then, for t € A(wy,n)

(HER) < | W @)lldw] < mesER <1; I(ER) <1; (33)
E2
(IER) <n | W @)lldwl < 1; IER) <1
E2
Then,

I(EX) < 1, for both cases L € Q(x) and L € Q,

For w € E? and each w € A(w;, 1) we have 17 < |w — w;| < 2nR. Therefore, from Lemma 6.1 and applying
(14), we get:

(IER)) = | 1w @)l1dwl < 1; IEF) < 1.
El3

(34)
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(1ED)) = f W' (w)| [dw] < 1; I(ER) < 1. (35)
EP

Further, combining (31)-(35) in case of y < 0, we have:

3
Z J¥ <1, for both cases L € Q(x) and L € Q,.
k=1

Then, for -1 < y <0, from (22), we have:

B, < |IP,l|,, for both cases L € Q(x) and L € Q,. (36)

Let us p = 1. After multiplying the numerator and denominator in the inner integral of the integrand by
h and applying Lemma 6.5, we obtain:

(Dn m+1
P ) < (2 T L())| f O Py O 1o il e (37)

L, \Lr

n—m+1
_ e f 4]

su ————— || | h() P, (®)] 4t
d(z,Lg,) tELI,::L h(b) |t — " Lf()| n (D] ldH]
Ry X

(Dn—m+1(z) dC
< ! IPnlly - sup f#mﬂ ’
d(z,Lg,) tele [ J h(t) |t = |

Ry

Denote by

Dy = sup f _ kg
T el J o=

Rq

and estimate this integral. According to Lemmas 6.3, 6.4 and using (19), (20), taking into account our
assumption at the end of page 7, we have:

(m+y)(14K)  ; M,
Dz sup| [ = <)L e Q) 38)
tele | J E=z| |t =™ d’(z1,LR) na, if L € Qu,

Ry

where y* is defined as in (12).
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Combining (17)-(22), (30) (36), (37) and (38), forany y > —1,p > 1, m > 1, we get:

p<l+i®y y>0,

y+1
n(——1)(1+;<) =14+ Lxy, 24k
)q)n—m+l(z)| P= >1+ 2+K7/ N 11§
|p(m) (Z)l < Pl _nm(1+1<) 1 p 2+1<7/’ Y = T
" = d(zLg,) r (nlnn) 7, p=1+1Ly0<y<EE
' p> 1+ By 0<y <P
1, p>1, —-1<y<0,

p<l+iEy, y>0,

_ 2+K
p=1+57 V> 1o

o pr1+ By 2 BE

d(Z, LRI) “Pn”p nm(l+K)+1—% (11’11’1)1_% , p _ 1 + ].H\ylo < )/ < 24K

1 11 2+x T+’
nm( +1)+ —;;’ p>1+;izf7/,0<7/<2+1(

1+ -1 <y <0,
, p y <

paa
Tl( +m— 1)(1+1<),

if L e é(K) and

o p<1+1+, y >0,
(5-1)z =14

n\»r , p= 1+1+a, y>1l+a,

|p<m>(z)|<—'®n_m+l(z)| 1Pl - , \p>lerg y2lva,
" T d(zLg,) iy (nlnn)ll_ﬁ, p=1+:=,0<y<l+a,
nl_ﬁ, p>1+1+ ,0<y<l+a,

1, p>1 -1<y<0,

y+1 1)1 p<1+1+a’ y>0’
n(T*m‘)E, p_1+137“’ y>1+a,
@r-m+l >14+-—2L, y>1+a,
<—’ @| N TP pas e
d(z,Lg,) ne %;l(lnn) P, p—1+1+a,0<y31+a,
nﬁi", p>l+=,0<y<l+a,

na, p>1, -1<y<0,

if L e éa, Thus, Theorems 3.1 and 3.2 have been proved.

Finally, we note thatd(z, Lg,) appears throughout the proofs. We show thatforallz € Qg,d(z, Lg,) > d(z,L)
holds.

For L = dG and 6 > 0, we set: Ux(L,0) := |J U(C, J) - infinite open cover of the curve L; Uy(L,9) :
CeL

N
U Uj(L,6) C Uw(L,6)—finite open cover of the curve L; For any R > 1, let us set: Qr(5) := Q(Lg,0) :
j=1

Qr N Un(Lg, 6), Q(0) := Q41(5). For the points z ¢ Q(Lg,,d(Lg,, Lr)), we have: d(z,Lg,) = 0 > d(z,L). Now,
let z € Q(Lg,,d(Lg,, Lr)). Denote by &; € Lg, the point such that d(z, Lg,) = |z — &1, and point &, € L, such
that d(z,L) = |z — &, and for w = O(2), t; = (&), tr = P(&,), we have: |w —wq| = |[w — wa| — |wy — wy|| =
(Iw —wy| - § lw - w2|| > 1 |w — w,|. Then, according to Lemma 6.1, we obtain d(z, Lg,) > d(z,L). [
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