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Abstract. This paper introduces new classes of Finsler metrics, namely D̃-stretch metrics, isotropic D̃-
stretch metrics, and relatively isotropic D̃-metrics, by exploring the Douglas curvature in Finsler geometry.
The class of relatively isotropic D̃-metrics encompasses two additional classes: D̃-stretch metrics and
isotropic D̃-stretch metrics. The study delves into the properties of relatively isotropic D̃-metrics, elu-
cidating their geometric characteristics and situating them within the broader context of Finsler metrics
dependent on Douglas curvature, such as Douglas or GDW-metrics. Additionally, the research investigates
the interplay between relatively isotropic D̃-metrics and other key curvatures, including Ē-curvature and
S-curvature, building upon prior studies on the relationships between Douglas curvature and these curva-
tures. Furthermore, examples of Finsler metrics are provided to elucidate the distinguishing criteria for the
class of relatively isotropic D̃-metrics in comparison to well-known classes of Finsler metrics like Douglas,
Weyl, and GDW-metrics.

1. Introduction

Recent years have seen important progress in the study of Finsler geometry, with a special emphasis
on exploring the behaviors of different curvatures present in Finsler spaces. One of the most significant
contributions to the study of Finsler geometry involves the development and exploration of Douglas
curvature, first introduced by Douglas in his pioneering work [14]. Douglas curvature plays a crucial role
in understanding the geometric properties of Finsler spaces due to its projective invariance property. In
this research, we focus on the development of new classes of Finsler metrics based on an in-depth analysis
of Douglas curvature, introducing D̃-stretch metrics, isotropic D̃-stretch metrics, and relatively isotropic
D̃-metrics.

The behavior of various curvatures in Douglas spaces unveils intriguing characteristics of the underlying
geometry. Additionally, our study investigates their relationships with other curvatures and provides
illustrative examples to emphasize their distinctions from established classes associated with Douglas
spaces, such as Douglas and GDW-metrics. The innovations of this study are detailed in Sections 3 to
5. The Douglas curvature of projectively related Finsler metrics is the same, with projectively flat Finsler
metrics having a Douglas curvature of zero. These projectively flat metrics are part of the Finsler metrics
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with scalar curvature category. The S-curvature is crucial, and extensive research has focused on Finsler
metrics with scalar flag curvature and isotropic S-curvature [10], [8], [7], [9]. The relationship between the
S-curvature and Douglas curvature in Finsler geometry is a fascinating and significant topic in this field.

Even though Douglas curvature remains a projectively invariant tensor in Finsler geometry, Ē-curvature
emerges as a significant non-Riemannian quantity within this field. The paper [15] demonstrates that when
a projectively flat Finsler metric F has non-zero flag curvature, it is Riemannian if and only if Ē = 0.

Although these two curvatures seem to be distinct, they share some common ground in describing
the geometric properties of Finsler spaces. For instance, the behavior of Ē-curvature in compact Douglas
manifolds are considered in some researches. In particular, it has been established in [4] that a Douglas
metric with vanishing stretch curvature is R-quadratic if and only if its Ē-curvature vanishes. Moreover,
in [27], it has been shown that any compact Douglas space with zero Ē-curvature simplifies to a Berwald
metric. The relation between Douglas and stretch curvature in the context of Douglas-Randers manifolds
with vanishing stretch tensor is discussed in [28]. The paper proves that every Douglas-Randers metric with
vanishing stretch curvature is a Berwald metric. These various research efforts are contributing significantly
to our knowledge of the relationships between diverse curvatures in Finsler geometry, with a specific focus
on Douglas curvature along with other relevant curvatures.

This paper delves into the study of Douglas curvature in Finsler geometry to introduce new classes of
Finsler metrics known as D̃-stretch metrics, isotropic D̃-stretch metrics, and relatively isotropic D̃-metric.
The approach used to define these new classes bears some similarities to the approach taken in [1] for
defining B̃-metrics or (isotropic) B̃-stretch metrics. The class of relatively isotropic D̃-metrics contains two
other introduced classes: D̃-stretch metrics and isotropic D̃-stretch metrics. This research presents several
theorems, lemmas, and examples that characterize the properties of a new class of Finsler metrics, the
relatively isotropic D̃-metrics. The study situates this new class of Finsler metrics within the broader context
of Finsler metrics that depend on Douglas curvature, such as Douglas or GDW-metrics. Furthermore, the
research explores the relationship between the relatively isotropic D̃-metrics and other important curvatures,
including Ē-curvature and S-curvature, in light of previous studies on the relationship between Douglas
curvature and these curvatures.

The paper is structured as follows.

• The first section introduces the research and its significance.

• In Section 2, we provide the essential preliminaries needed for this study.
In Section 3, the focus is on comprehending these novel Finsler metrics through the establishment of
efficient theorem that illuminate their properties and delineate the complete characterization of all
relatively isotropic D̃-metrics.
While these metrics generalize Douglas metrics, it is noteworthy that not all metrics within this class
are GDW-metrics. Instead, they exhibit an intersection with Weyl or W-quadratic Finsler metrics
without entirely containing them. Characterizing the intersection of relatively isotropic D̃-metrics
with Weyl metrics is of great significance. This characterization enables us to discover Finsler metrics
with scalar flag curvature that are not of relatively isotropic D̃-metric. This is important because the
class of relatively isotropic D̃-metrics only intersects with the class of GDW-metrics, rather than being
fully contained within it.

• In Section 4, we provide a clear image of this new class of Finsler metrics within the class of Finsler met-
rics with scalar flag curvature. We have discovered the distinct class of Finsler metrics, characterized
by their scalar flag curvature.

• In order to make this new class of Finsler metrics more discernible, we restrict our focus to a specific
class of Finsler metrics, namely those with constant flag curvature. By concentrating on this specific
class, we aim to recognize well-known Finsler metrics within the relatively isotropic D̃-metrics. This
approach allows us to gain a deeper understanding of the properties and characteristics of these Finsler
metrics, and to establish connections with existing Finsler metrics that are already well-studied in the
literature as discussed in Section 5.
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• Discovering Finsler metrics that display relatively isotropic D̃-metric characteristics is incredibly
significant. The introduction of a standby condition aids in the effective identification and charac-
terization of these metrics, simplifying the search process for these specialized geometric structures.
This paper employs some theorems in Section 5.1 to exemplify this approach. Then, we provide ex-
amples of Finsler metrics that help to clarify the criteria for the class of relatively isotropic D̃-metrics
and differentiate it from other well-known classes of Finsler metrics, such as Douglas, Weyl, and
GDW-metrics.

Throughout this article, the notations “ .” and “|” represent the vertical and horizontal derivatives associated
with the Berwald connection, respectively.

Additionally, the subscript “0” denotes the contraction by ym indicated by the subscript “m”, and the
symbol “;m” denotes the differential with respect to xm.

2. Preliminaries

A Finsler metric on a manifold M is a nonnegative function F on TM with the following properties

1. F is C∞ on TM \ {0};
2. F(λy) = λF(y), ∀λ > 0, y ∈ TM;
3. For each y ∈ TxM, the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1
2

[
F2(y + su + tv)

]
|s,t=0, u, v ∈ TxM. (1)

At each point x ∈M, Fx := F |TxM, is an Euclidean norm, if and only if gy is independent of y ∈ TxM \ {0}. To
measure the non-Euclidean feature of Fx, define Cy : TxM × TxM × TxM→ R by

Cy(u, v,w) :=
1
2

d
dt

[
gy+tw(u, v)

]
|t=0, u, v,w ∈ TxM. (2)

The family C := {Cy}y∈TM\{0} is called the Cartan torsion. A curve c(t) is called a geodesic if it satisfies

d2ci

dt2 + 2Gi(c(t), ċ(t)) = 0, (3)

where Gi(x, y) are local functions on TM given by

Gi(x, y) :=
1
4
1il(x, y){

∂2F2

∂xk∂yl
yk
−
∂F2

∂xl
}, y ∈ TxM, (4)

and called the spray coefficients of F = F(x, y). Here,

G = yi ∂

∂xi − 2Gi(x, y)
∂

∂yi ,

denotes the associated spray to (M,F). The projection of an integral curve of G is called a geodesic in M.
The Riemann curvature Ry = Ri

k
∂
∂xi ⊗ dxk of F is given by

Ri
k = 2

∂Gi

∂xk
−
∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂ym∂yk
−
∂Gi

∂ym
∂Gm

∂yk
.

For the Riemann curvature of Finsler metric F one has [22]

Ri
kl =

1
3

(Ri
k.l − Ri

l.k), and R j
i
kl = Ri

kl. j. (5)
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Here, ”.k” denotes the differential with respect to yk.
F is called a Berwald metric if Gi(y) are quadratic in y ∈ TxM for all x ∈M. Define

By : TxM × TxM × TxM→ TxM

By(u, v,w) = B j
i
klu jvkwl ∂

∂xi ,

where, Bi
jkl
= ∂3Gi

∂y j∂yk∂yl , and

Ey : TxM × TxM→ R

Ey(u, v) = E jku jvk,

where, E jk =
1
2 B j

m
km, u = ui ∂

∂xi , v = vi ∂
∂xi and w = wi ∂

∂xi . B and E are called the Berwald curvature and
the mean Berwald curvature, respectively. F is called a Berwald metric and weakly Berwald (WB) metric
if B = 0 and E = 0, respectively [22]. The connection between the Berwald curvature and the Riemann
curvature is articulated through the following Ricci identity [22].

B j
i
kl|m − B j

i
km|l = R j

i
lm.k. (6)

By means of E-curvature, we can define Ē-curvature as follows

Ēy : TxM × TxM × TxM −→ R

Ēy(u, v,w) := Ē jkl(y)uiv jwk = E jk|lu jvkwl.

It is worth noting that Ēi jk is not completely symmetric with respect to all three indices. To define the
H-curvature, we take the covariant derivative of E along geodesics. Specifically, Hi j = Ei j|mym,

Hy : TxM × TxM −→ R

Hy(u, v) := Hi juiv j

Define

D j
i
kl = B j

i
kl −

1
n + 1

∂3

∂y j∂yk∂yl
(
∂Gm

∂ym yi). (7)

The tensor D := D j
i
kldx j

⊗
∂
∂xi ⊗ dxk

⊗ dxl is a well-defined tensor on the slit tangent bundle TM0, and is
called the Douglas tensor. The Douglas tensor D is a non-Riemannian projective invariant, meaning that
if two Finsler metrics F and F̄ are projectively equivalent, i.e., if Gi = Ḡi + Pyi where the projective factor
P = P(x, y) is positively y-homogeneous of degree one, then the Douglas tensor of F is the same as that of F̄
[12], [22]. One could easily show that

D j
i
kl = B j

i
kl −

2
n + 1

{E jkδ
i
l + E jlδ

i
k + Eklδ

i
j + E jk.lyi

}. (8)

The Douglas curvature, denoted by D j
i
kl, is a projective invariant that is constructed from the Berwald

curvature. Finsler metrics with D j
i
kl = 0 are called Douglas metrics. Additionally, metrics satisfying the

following condition are called GDW-metrics, which are also projective invariants

D j
i
kl|mym = T jklyi,

for some tensors T jkl = T jkl(x, y).
Z. Shen proposed a non-Riemannian quantity B̃, derived from the Berwald curvature B, through co-

variant horizontal differentiation along Finslerian geodesics [22]. Extending the concept further, we define
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a metric based on the expanded notion of Douglas curvature, termed D̃-metric. Given a vector y ∈ TxM,
define

D̃y : TxM × TxM × TxM −→ TxM

D̃y(u, v,w) = D̃ j
i
klu jvkwl ∂

∂xi ,

where D̃ j
i
kl = D j

i
kl|0 = D j

i
kl|mym. For a vector y ∈ TxM, we define

Dy : TxM × TxM × TxM × TxM −→ TxM

Dy(u, v,w, z) = D j
i
klmu jvkwlzm ∂

∂xi ,

where D j
i
klm = 2(D̃ j

i
kl|m − D̃ j

i
km|l).

A Finsler metric (M,F) is called D̃-stretch if

D j
i
klm = 0.

Additionally, if the metric satisfies the extra requirement below, it becomes an isotropic D̃-stretch metric

D j
i
klm = λF(D j

i
kl|m −D j

i
km|l),

where λ = λ(x, y) is a scalar function on TM.
The new class of Finsler metrics which is introduced in the following, includes the previously mentioned

classes, is termed relatively isotropic D̃-metric. The method of defining these new classes mirrors that of
relatively isotropic (mean) Landsberg metrics.

A Finsler metric is called relatively isotropic D̃-metric if it satisfies the given equation

D̃ j
i
kl|0 + λFD̃ j

i
kl = 0,

where λ = λ(x, y) is scalar function on TM.
The Douglas curvature is identical for projectively related Finsler metrics, and projectively flat Finsler

metrics that have a Douglas curvature of zero. Two Finsler metrics F and F̄ are said to be projectively related
if their geodesic coefficients Gi and Ḡi are related as follows [22],

Gi = Ḡi + Pyi,

where P is a homogeneous function of degree 1. A Finsler metric F is considered projectively flat if its
geodesic coefficients satisfy the condition

Gi = Pyi,

for a homogeneous function P of degree 1. It is known that every projective Finsler metric is of scalar
curvature, namely, there is a scalar function K(P, y) = λ(x, y), where

Ri
k = λ(x, y)[δi

kF2
− ykyi].

There exists another significant quantity closely linked to flag curvature known as the S-curvature S = S(x, y)
[23], [21]. The isotropic nature of S-curvature is characterized by S = (n + 1)cF, where c = c(x) is a scalar
function on M. It has been demonstrated that for a Finsler metric F with scalar flag curvature λ = λ(x, y)
and isotropic S-curvature S = (n + 1)cF, the flag curvature takes the form

λ =
3c;0

F
+ σ, (9)
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where σ = σ(x) and c;0 =
∂c
∂xm ym. This relationship illustrates the close connection between flag curvature

and S-curvature. For further advancements, refer to [19].
The class of (α, β)-metrics is a significant and well-studied class in Finsler geometry. These metrics are

defined by a Riemannian metric α and a 1-form β, and they have been shown to play a crucial role in
understanding various categories within Finsler spaces. They are expressed in the form F = αφ(s), s = β

α

where α(y) =
√

ai j(x)yiy j and β(y) = bi(x)yi, with ∥ βx ∥α< b0, are a Riemannian metric and 1-form on
manifold M and φ(s) is a C∞ positive function on (−b0, b0). It is known that F = αφ(s) is a (positive definite)
Finsler metric for any α and β, with ∥ βx ∥α< b0, if and only if φ satisfies the following condition [24],

φ(s) − sφ′(s) + (b2
− s2)φ′′(s) > 0, | s |≤ b < b0.

Such a metric is called an (α, β)-metric. Clearly, Finsler metrics of Randers type are special (α, β)-metrics.
For an (α, β)-metric F = αφ(s), we define

bi| jθ
j = dbi − b jθ

j
i,

where θi = dxi and θ j
i = Γ̃

j
ikdxk denote the Levi-Civita connection form of α. Put

ri j =
1
2

(bi| j + b j|i), si j =
1
2

(bi| j − b j|i), si
j = aihshj,

s j = bisi
j, r j = biri

j, ei j = ri j + bis j + b jsi.

For more details, one could refer to [11], [22].

3. Relatively Isotropic D̃-Metrics

In [30], Weyl introduces a projective invariant for Riemannian metrics. Then Douglas extends Weyl’s
projective invariant to Finsler metrics [14]. Finsler metrics with vanishing projective Weyl curvature are
called Weyl metrics or W-metrics. In [25], Szabó proves that Weyl metrics are exactly Finsler metrics of
scalar flag curvature.

In this section, we aim to deepen the understanding of these new Finsler metrics by establishing key
theorems that shed light on their properties and relationships within the broader context of Finsler geometry.
While the relatively isotropic D̃-metrics extend beyond Douglas metrics, it is important to note that not all
metrics in this category are GDW-metrics. They intersect with Weyl or W-quadratic Finsler metrics without
encompassing them entirely. Characterizing the intersection of relatively isotropic D̃-metrics with Weyl
metrics holds significant importance. This characterization unveils Finsler metrics with scalar flag curvature
that do not fall under the category of relatively isotropic D̃-metrics. Our next task is to demonstrate the
truth of the following Theorem, which characterizes all relatively isotropic D̃-metrics.

Theorem 3.1. [Characterization of Relatively Isotropic D̃-Metric]
A Finsler metric F is of relatively isotropic D̃-metric if and only if it satisfies the following equation,(

W j
i
ml.k|0 + µFW j

i
ml.k

)
ym +

1
n + 1

(
θ jkl|0 + µFθ jkl

)
yi = 0, (10)

for some scalar function µ = µ(x, y) on TM. W j
i
ml.k and θ jkl are defined as in

W j
i
ml.k =

1
3

(Wi
m.l −Wi

l.m). j.k, (11)

and

θ jkl = 2E jk|l − (Rm
lm − R.l). j.k, (12)

respectively, in terms of the E-curvature E, Weyl curvature W, and Riemann curvature R of the Finsler metric F.
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Proof of Theorem 3.1

Proof. The Weyl curvature of a Finsler metric (M,F) is defined as [22]

Wi
k = Ai

k −
1

n + 1
Am

k.myi,

where Ai
k = Ri

k −Rδi
k and R = 1

n−1 Rm
m. From this definition, we can express the Riemann curvature tensor

as follows.

Ri
k =Wi

k + Rδi
k +

1
n + 1

Am
k.myi.

Substituting this expression into (5), we obtain

3R j
i
ml = (Wi

m.l −Wi
l.m). j + (

1
n + 1

As
m.s − R.m). jδi

l − (
1

n + 1
As

l.s

−R.l). jδi
m +

1
n + 1

(As
m.l − As

l.m).sδi
j +

1
n + 1

(As
m.l − As

l.m).s. jyi.
(13)

However, per the definition of Ai
k, we can see that

1
n + 1

As
k.s − R.k =

1
n + 1

(Rs
k.s − (n + 2)R.k),

and

As
k.l − As

l.k = 3Rs
kl − (R.lδs

k − R.kδs
l).

To compute R j
i
ml.k, we first differentiate (13) with respect to yk. Then, by substituting the resulting equations

into R j
i
ml.k, we obtain the following expression.

3R j
i
ml.k = 3W j

i
ml.k +

1
n + 1

[
(Rs

m.s − (n + 2)R.m). j.kδi
l − (Rs

l.s

−(n + 2)R.l). j.kδi
m + 3Rs

s
ml.kδ

i
j + 3Rs

s
ml. jδ

i
k + 3Rs

s
ml. j.kyi

]
,

(14)

where W j
i
kl =

1
3 (Wi

k.l −Wi
l.k). j. By utilizing the Ricci identity (6), we can express the relations as follows.

R j
i
ml.kym = B j

i
kl|0, Rs

s
ml.k = 2(Ekl|m − Ekm|l). (15)

Combining equations (5) and (6), and taking into account the previous equation, we derive

Rs
s
ml.kym =

1
3

Rs
m.s.l.kym = 2Hkl.

Rs
s
ml. j.kym = 2H jl.k − Rs

s
kl. j = 2H jl.k − 2(E jl|k − E jk|l)

= 2E jl|p.kyp + 2E jl|k − 2(E jl|k − E jk|l) = 2(E jlk|0 + E jk|l).

(16)

Substituting equations (15) and (16) into the contracted form of (14) by ym, we obtain

W j
i
ml.kym = R j

i
ml.kym

−
1

n + 1

[
2H jkδ

i
l + 2Hklδ

i
j + 2H jkδ

i
k

+2E jl.k|0yi + (2E jk|l −
1
3

(Rs
l.s − (n + 2)R.l). j.k)yi

] (17)

Utilizing the above equation, (15) and (8) in the equation (17), one gets

W j
i
ml.kym = D j

i
kl|0 −

1
n + 1

θ jklyi, (18)
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where θ jkl = 2E jk|l −
1
3 (Rs

l.s − (n + 2)R.l). j.k. Considering (5) alongside the relationship R = 1
n−1 Rm

m, a new
expression for θ jkl might be derived.

θ jkl = 2E jk|l − (Rm
lm − R.l). j.k.

Based on the previous equation, a Finsler metric is a relatively isotropic D̃-metric if and only if there exists
a scalar function µ = µ(x, y) on TM such that

0 = D j
i
kl|0|0 + µFD j

i
kl|0 =

(
W j

i
ml.k|0 + µFW j

i
ml.k

)
ym +

1
n + 1

(
θ jkl|0 + µFθ jkl

)
yi.

According to (18), we can derive the following corollaries

Corollary 3.2. A Finsler metric (M,F) is GDW-metric if and only if

W j
i
ml.kym = w jklyi,

for tensor w jkl = w jkl(x, y) on TM.

Corollary 3.3. Every Finsler metric of scalar curvature is a GDW-metric.

Corollary 3.4. Every Finsler metric with quadratic Weyl curvature is a GDW-metric.

4. Relatively Isotropic D̃-Metrics: A Class of Finsler Metrics with Scalar Flag Curvature

Upon examining the broader scope of relatively isotropic D̃-metrics, we discover a distinct class of Finsler
metrics characterized by scalar flag curvature. This class goes beyond the conventional Douglas metrics,
demonstrating an intersection with Weyl or W-quadratic Finsler metrics. By investigating this intersection,
we uncover Finsler metrics with scalar flag curvature that do not conform to the traits of relatively isotropic
D̃-metrics. This analysis illuminates the complex relationships and properties of this class of Finsler metrics
within the context of an essential class of Finsler metrics, namely scalar flag curvatures, and provides a
discernible image of this new class of Finsler metrics.

Theorem 4.1. [Characterization of Finsler Metrics with Scalar Flag Curvature and Relatively Isotropic D̃-Metrics]
A Finsler metric F of scalar flag curvature λ = λ(x, y) is a relatively isotropic D̃-metric if and only if it satisfies

the following equation.

2
n + 1

(E jk|l|0 + µFE jk|l) + (tl. j.k|0 + µFtl. j.k) = 0, (19)

where µ = µ(x, y) is a scalar function on TM and tl is defined as in

tl =
F2

3
λ.l + λyl, (20)

and the other notations remain consistent with Theorem 3.1.

Proof of Theorem 4.1

Proof. Assume that the Finsler metric F has scalar flag curvature. According to its definition in [22], the
Riemann curvature tensor is given by

Ri
k = λ(F2δi

k − ykyi).

Then we could find(
Rs

k.s − (n + 2)R.k
)
= −(n + 1)

(
F2λ.k + 3λyk

)
. (21)
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On the other hand, the Weyl curvature of every Finsler metric with scalar flag curvature vanishes. Using
this fact in (18), we obtain

D j
i
kl|0 =

1
n + 1

θ jklyi. (22)

Using (22) and (21) in (18), we obtain

D j
i
kl|0 =

2
n + 1

E jk|l +
(F2

3
λ.l + λyl

)
. j.k
.

By defining tl =
F2

3 λ.l + λyl and applying the definition of a relatively isotropic D̃-metric, it follows that the
Finsler metric F with scalar curvature λ = λ(x, y) is a relatively isotropic D̃-metric if and only if there is
scalar function µ = µ(x, y) on TM such that

2
n + 1

(E jk|l|0 + µFE jk|l) + (tl. j.k|0 + µFtl. j.k) = 0.

The study of the relationship between flag curvature and the S-curvature has been the subject of
numerous investigations in Finsler geometry. For a Finsler metric of scalar flag curvature λ = λ(x, y) and
isotropic S-curvature, S = (n + 1)cF, for c = c(x) the flag curvature must be in a specific form that involves
the S-curvature, as expressed in (9). This relationship has been used to characterize Finsler metrics of
scalar curvature and isotropic S-curvature. In the following proposition, we aim to further explore this
relationship in the context of relatively isotropic D̃-metrics.

Proposition 4.2. Let (M,F) be an n-dimensional Finsler manifold of scalar curvature with flag curvatureλ = λ(x, y).
Suppose that the S-curvature is isotropic, S = (n + 1)cF, then F is relatively isotropic D̃-metric if and only if the
following equation holds for µ = µ(x, y) on TM and c = c(x) on M,

cL jkl|0 − ωL jkl − FηC jkl = c̄lh jk + c̄ jhlk + c̄kh jl + c̄0FF. j.l.k. (23)

Here, c̄l, ω and η are defined as c̄l = c;l|0 + µFc;l, ω = λF − (2c;0 + µFc), and η = λ|0 + µFλ − 3
F c̄0, respectively.

Proof. Assume that (M,F) be an manifold of scalar curvature with flag curvature λ = λ(x, y) which is of
isotropic S-curvature, S = (n+ 1)cF(x, y), with the scalar function c = c(x) on M. Then, according to (9),there
is a scalar function σ = σ(x) on M such that

λ = 3
c;0

F
+ σ. (24)

Here, c;m =
∂c
∂xm . Using the facts E jk =

1
2 S. j.k and F. j.k|l = 1

F (1 jk − l jlk)|l = − 2
F L jkl, we have

2
n + 1

E jk|l = (cF. j.k)|l = −
2c
F

L jkl + c;lF. j.k. (25)

Therefore

2
n + 1

(E jk|l|0 + µFE jk|l) = −
2
F

cL jkl|0 −
2
F

(c;0 + µFc)L jkl + (c;l|0 + µFc;l)F jk.

Based on (24), we have

F2

3
λ.l = c;lF − c;0F.l, λyl = (3c;0 + σF)F.l, λ. jyl = 3c; jF.l − 3

c;0

F
F. jF.l.
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By using the equations mentioned earlier and (20), we can derive the following expressions for tl, tl. j, and
tl. j.k

tl =
F2

3
λ.l + λyl = c;lF + (2c;0 + σF)F.l,

tl. j = c;lF. j + (2c; j + σF. j)F.l + (2c;0 + σF)F.l. j,

tl. j.k = c;lF. j.k + 2c; jF.l.k + 2c;kF. j.l + 2c;0F. j.l.k

+σ(F.lF. j.k + F. jF.l.k + F.kF. j.l + FF. j.l.k).

Therefore, using the definition of C jkl, simplifying tl. j.k and equation (25), we can express Tl jk =
2

n+1 E jk|l + tl. j.k
as

Tl jk =
2

n + 1
E jk|l + tl. j.k = −

2
F

cL jkl + 2σC jkl + 2(c;lF. j.k

+c; jF.l.k + c;kF. j.l + c;0F. j.l.k).
(26)

Then using the facts

F. j.k|0 =
1
F

(1 jk − l jlk)|0 = 0,

and

F. j.k.l|0 = F. j.k|p.lyp = F. j.k|0.l − F. j.k|l =
2
F

L jkl,

we obtain

Tl jk|0 = −
2
F

cL jkl|0 +
2
F

(σF + c;0)L jkl + 2σ;0C jkl + 2(c;l|0F. j.k + c; j|0F.l.k

+c;k|0F. j.l + c;0|0F. j.l.k).

Applying the above equation and (26) in the equation (19) in the Theorem 4.1 we find that F is a relatively
isotropic D̃-metric if and only if

Tl jk|0 + µFTl jk = −
2
F

cL jkl|0 +
2
F

(σF + c;0 − µFc)L jkl

+2(σ;0 + µFσ)C jkl + 2(c̄lF. j.k + c̄ jF.l.k + c̄kF. j.l + c̄0F. j.l.k) = 0,
(27)

where c̄l = c;l|0 + µFc;l. Based on (24), we have

σF + c;0 − µFc = λF − (2c;0 + µFc),

σ;0 + µFσ = σ|0 + µFσ = λ|0 + µFλ −
3
F

c̄0,

which upon merging with (27) and the fact, h jk = FF. j.k, we derive (23).

According to a theorem in [9], every non-Randers type regular (α, β)-metric on an n-dimensional mani-
fold M (n ≥ 3) is a Finsler metric with scalar flag curvature λ and vanishing S-curvature if and only if the
flag curvature λ is identically zero. In this case, the metric is also a Berwald metric. Therefore, by applying
the Proposition 4.2 we have the following Corollary.

Corollary 4.3. Every non-Randers type regular (α, β)-metric on an n-dimensional manifold M (n ≥ 3) of scalar flag
curvature λ and vanishing S-curvature is a relatively isotropic D̃-metric.
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For Randers metrics that meet the criteria outlined in the previous corollary, we have the following
result.

Corollary 4.4. Let (M,F) be an n-dimensional Randers manifold of scalar curvature with flag curvature λ = λ(x, y).
Suppose that the S-curvature is isotropic, S = (n + 1)cF, then F is relatively isotropic D̃-metric if and only if the
following equation holds for µ = µ(x, y) on TM and c = c(x) on M.

αAk − A0α.k + ωsk0 = 0, (28)

where

Ak = (λ|0 + µ(λ + c2)F + 2cc;0)bk − c(λF − 2c;0 − µcF)sk + 2(τ̄k + cFτk),

τ̄k = c̄k − c̄0
F.k
F
, τk = c;k − c;0

F.k
F
,

ω = λF − 2c;0 − µcF,

for some scalar function µ = µ(x, y) on TM and A0 = Akyk.

Proof. Assuming F is a Randers metric with scalar curvature and flag curvature λ = λ(x, y), and isotropic
S-curvature, S = (n + 1)cF, it is a known fact that every Randers metric is C-reducible, which implies

C jkl =
1

n + 1
(I jhkl + Ikh jl + Ilh jk).

Subsequently, we have

L jkl =
1

n + 1
(J jhkl + Jkh jl + Jlh jk),

and

L jkl|0 =
1

n + 1
(J j|0hkl + Jk|0h jl + Jl|0h jk),

and utilizing the relationship 2C jkl =
F. j
F hkl +

F.k
F h jl +

F.l
F h jk + FF. j.k.l), we derive

FF. j.k.l = (
2

n + 1
I j −

F. j
F

)hkl + (
2

n + 1
Ik −

F.k
F

)h jl + (
2

n + 1
Il −

F.l
F

)h jk.

By incorporating the above expressions into equation (23) from Proposition 4.2, we arrive at

ρ jhkl + ρkh jl + ρlh jk = 0,

where ρk = cJk|0 − ωJk − (ηF + 2c̄0)Ik − (n + 1)τ̄k, τ̄k = c̄k − c̄0
F.k
F and the remaining symbols retain the same

definitions as presented in Proposition 4.2. The proceeding equation yields

cJk|0 = ωJk + (ηF + 2c̄0)Ik + (n + 1)τ̄k (29)

However, we have the following Bianchi identity for every Finsler metric with scalar flag curvature K, [13]

Jk|0 + KF2Ik = −
n + 1

3
F2K.k.

On the other hand, based on (9), we have

F
3
λ.k = c;k − c;0

F.k
F

:= τk.
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By combining the two aforemention equations with (29), we get

ωJk +ΩFIk + (n + 1)(τ̄k + cFτk) = 0, (30)

where Ω = λ|0 + (µ + c)λF − c̄0
F .

According to equation (38) of Lemma 4.1 in [11], for Randers metric with isotropic S-curvature, S =
(n + 1)cF, we have

Jk = −cFIk +
n + 1
2α2

(
αsk0 − c(α2sk − s0yk)

)
, (31)

where

IkF =
n + 1
2α2 (α2bk − βyk).

Applying these two equations in (30), we arrive at

[(Ω − cω)bk − cωsk + 2(τ̄k + cFτk)] −
1
α2 [(Ω − cω)β − cωs0]yk +

ω
α

sk0 = 0.

Putting Ak = (Ω − cω)bk − cωsk + 2(τ̄k + cFτk) in the above equation we reach (28).

5. Relatively Isotropic D̃-Metrics and Constant Flag Curvature in (α, β)-Metrics

This section conducts a comparative analysis of relatively isotropic D̃-metrics with constant flag curva-
ture and examines the criteria that (α, β)-metrics must satisfy to belong to this class. The study of Finsler
metrics with constant flag curvature remains an active area of research in Finsler geometry, with numerous
examples of Finsler metrics that have been presented in the literature. Understanding the conditions under
which these metrics are relatively isotropic D̃-metrics is crucial for identifying a wide range of Finsler met-
rics that fall within this new class. By studying the conditions for Finsler metrics of constant flag curvature
to be relatively isotropic D̃-metrics, we can uncover a wealth of examples of Finsler metrics that belong to
this new class. This, in turn, can help us to develop a more intelligible image of this new class of Finsler
metrics, deepening our understanding of their properties and relationships with other Finsler metrics.
The class of (α, β)-metrics plays a significant role in Finsler geometry, as they aid in the development and
understanding of various categories within Finsler spaces. By determining the conditions under which
(α, β)-metrics can be classified as relatively isotropic D̃-metrics, we can gain a more comprehensive and
clearer picture of this new class. In this section, we will consider (α, β)-metrics as examples to illustrate our
approach and further elucidate the properties of this class. To begin, we establish the following Lemma as
a direct consequence of Theorem 4.1.

Lemma 5.1. A Finsler metric F of constant flag curvature λ0 is a relatively isotropic D̃-metric if and only if it satisfies
the following equation.

(E jk|l|0 + µFE jk|l) + (n + 1)λ0(L jkl + µFC jkl) = 0, (32)

As mentioned in [5], when a Randers metric possesses constant flag curvature, it also exhibits constant
S-curvature. Combining this with the Corollary 4.4 yields.

Corollary 5.2. A n-dimensional Randers metric F, (n ≥ 3), of constant flag curvature λ0 is a relatively isotropic
D̃-metric if and only if it satisfies the following equation.

µ(κ + c2)(α2bk − βyk) + (κ − µc)(αsk0 − cα2sk + cs0yk), (33)

where µ = µ(x, y) is a scalar function on TM and c0 is a constant such that S = (n + 1)c0F.

Proof. Supposing that the Randers metric F exhibits a constant flag curvature κ, then it must also exhibit
isotropic S-curvature of c, with S = (n+1)cF as reported in [5], while the scalar quantity c̄ stated in Theorem
4.2 remains at zero. Based on Corollary 4.4, calculate the following indexes in the corollary.

Ak = µ(κ + c2)bk − c(κ − cµ)sk, τ̄k = 0, τk = 0.

Putting (28) yields (33).



N. Sadeghzadeh / Filomat 39:10 (2025), 3381–3399 3393

5.1. Relatively Isotropic D̃-Metrics: A Study of Constant Flag Curvature and Vanishing Ē-Curvature

Douglas curvature and Ē-curvature are both important quantities in Finsler geometry, with the former
being projectively invariant and the latter emerging as a significant non-Riemannian quantity. While
they may seem to be distinct quantities, they both play crucial roles in understanding the geometry of
Finsler spaces. Despite their differences, these two curvatures share some common ground in describing
the geometric properties of Finsler spaces, which have been considered in some research studies. In the
subsequent discussion, leveraging this significant connection and referencing equation (32), we will explore
Finsler metrics characterized by constant flag curvature and exhibiting vanishing Ē-curvature.

Theorem 5.3. Let F be a Finsler metric of constant flag curvature λ0 with Ē = 0 on a manifold M. Then

1. If λ0 = 0, then F is a relatively isotropic D̃-metric.
2. If λ0 , 0, then F is relatively isotropic D̃-metric if and only if it is general relatively Landsberg metric, as

described by

L jkl + µFC jkl = 0, (34)

for scalar function µ = µ(x, y) on TM.

Proof of Theorem 5.3

Proof. Let F be a Finsler metric of constant flag curvature λ0. Then one has

Ri
k = λ0F2hi

k.

According to equation (32) and the condition Ē = 0, this Finsler metric F is a relatively isotropic D̃-metric if
and only if

λ0(L jkl + µFC jkl) = 0,

for µ = µ(x, y). If λ0 = 0, the above equation is satisfied, indicating that F is a relatively isotropic D̃-metric.
Now, in the case where λ0 , 0, we observe that F is a relatively isotropic D̃-metric if and only if

L jkl + µFC jkl = 0.

Finding the scalar functions µ for Finsler manifolds that satisfy the specific equation (34) is crucial. In
the subsequent theorem, the solution to this equation reveals the general form of µ for relatively isotropic
D̃-metrics with constant flag curvature and Ē = 0. We will now establish proof for the Theorem.

Theorem 5.4. Let F be a non-Riemannian Finsler metric of constant flag curvature λ0 , 0 with Ē = 0 on a manifold
M. If F be a relatively isotropic D̃-metric, D̃ j

i
kl|0 + µFD̃ j

i
kl = 0, then

1. If µ|0 = 0, then λ0 ≤ 0.
2. If µ|0 , 0, we have the equation λ0 + µ2 = ξ0

∥C∥2 ,

with ∥C∥ representing the norm of Cartan torsion of F as ∥C∥2 = C jklC jkl, and where ξ0 = ξ0(x, y) serves as a scalar
function on TM satisfying ξ0 |0 = 0.

Proof of Theorem 5.4
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Proof. Given a metric F with constant flag curvature and Ē = 0, suppose it is a relatively isotropic D̃-metric.
Consequently, based on the earlier Theorem, we obtain equation (34), L jkl + µFC jkl = 0. On the other hand,
with F having constant flag curvature λ0, we have

Ri
k = λ0F2hi

k.

Based on (5) and (6) we have

B j
i
kl|m − B j

i
km|l = R j

i
ml.k = 2λ0(C jklδ

i
m − C jkmδ

i
l),

which yields

B j
i
kl|0 = 2λ0C jklyi, E jk|0 = H jk = 0. (35)

Through contracting it by yi, we can derive

L jkl|0 + λ0F2C jkl = 0. (36)

By referring to the equations denoted by (34) and (36), it becomes evident that

C(t)
(
µ′(t) − (λ0 + µ

2(t))F
)
= 0. (37)

Here, γ(t) is the geodesic parameterized by the arc length on M with the start point γ(0) = p and the tangent
vector γ′(0) = y, U = U(t), V = V(t) and W(t) are parallel vector fields along γ = γ(t) with U(0) = u, V(0) = v
and W(0) = w, and then

C(t) = Cγ′(t)(U(t),V(t),W(t)) = C jk(γ(t), γ′(t))UiV jWk.

and µ(t) = µ(γ(t), γ′(t)). Now, F is non-Riemannian, then C(t) , 0 and by (37), one has µ′(t) = (λ0 + µ2(t))F.
In the case where µ′(t) = 0, the value of λ0 = −µ2(t), indicating that λ0 will not have a positive value.
However, when µ′(t) , 0, we find that µ′ = (λ0 + µ2)F which is equivalent to

(λ0 + µ
2)′ = 2µF(λ0 + µ

2). (38)

On the other hand, by setting Y = Y(t) = ∥C∥2 = C jklC jkl and implementing equation (34), it can be
determined that

Y′ = 2L jklC jkl = −2µFY. (39)

The combination of the equations (38) and (39) results in

λ0 + µ
2 =

ξ0

∥C∥2
,

where ξ0 = ξ0(x, y) is a scalar function on TM which ξ′0 = 0.

In this study, it is crucial to explore and identify Finsler metrics that demonstrate properties of the
relatively isotropic D̃-metric introduced earlier. By incorporating a standby condition into the analysis,
the process of recognizing and describing these metrics is significantly improved, making the search for
these unique geometric structures more efficient. In the following, the evidence supporting Theorem 5.5
showcases a structured method for uncovering Finsler metrics belonging to this category.

Theorem 5.5. Every (α, β)-metric of constant flag curvature κ with Ē = 0 on manifold M of dimension n ≥ 3 is a
relatively isotropic D̃-metric if and only if one of the following conditions is true.

1. κ = 0,
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2. P|0 = 0, where

P =
n + 1
aA

(
sφφ′′ − φ′(φ − sφ′)

)
, (40)

and a = a(s) andA = A(s) are given by

a = φ(φ − sφ′), (41)

A =
3sφ′′ − (b2

− s2)φ′′′

φ − sφ′ + (b2 − s2)φ′′
+ (n − 2)

sφ′′

φ − sφ′
− (n + 1)

φ′

φ
. (42)

Proof of Theorem 5.5

Proof. Assume that F = αφ(s), s = βα be a non-Riemannian (α, β)-metric on a manifold M of dimension n ≥ 3,
then [17]

C jkl =
P

n + 1
(I jhkl + Ikh jk + Ilh jk) +

1 − P
∥I∥2

I jIkIl, (43)

where P can be represented as (40) as demonstrated in the study by [18] on the semi C-reducibility of these
metrics. By taking horizontal covariant derivative with respect to Finsler metric F we have

L jkl =
P

n + 1
(J jhkl + Jkh jk + Jlh jk) +

1 − P
∥I∥2

(J jIkIl + I j JkIl + I jIk Jl)

+
P
′

P
C jkl −

1
∥I∥2
(P′
P
+ 2(1 − P)

∥I∥′

∥I∥

)
I jIkIl.

(44)

In this scenario, ∥I∥′ is equivalent to the derivative of ∥I∥ with respect to t, where ∥I∥2(t) = Ii(t)Ii(t) and I(t)
is equal to Iγ(t)(U(t)) = I j(γ(t), γ′(t))U j. Here, γ(t) stands for the geodesic which is defined with arc length
as its parameter on the manifold M starting at γ(0) = p and having a tangent vector of γ′(0) = y, whereas
U = U(t) acts as a parallel vector fields along γ = γ(t) whose initial value is set to U(0) = u. The same
scenario applies to P′.

On the other hand, the mean Cartan torsion of a (α, β)-metric can be identified by [18]

Ii = −
1
2
A.ss.i,

where A.s = ∂A∂s , s.i = ∂s
∂yi and A is denoted by (42). With a contraction of the equation (44) by I j, Ik and Il

and applying the equation JkIk = I′kIk = 1
2 (IkIk)′ = ∥I∥∥I∥′ we get

L jklI jIkIl =
(
1 −

n − 2
n + 1

P

)
∥I∥′∥I∥3 +

P
′

P

(
C jklI jIkIl

− ∥I∥4).

Nevertheless, as per (43), one easily obtains

C jklI jIkIl =
(
1 −

n − 2
n + 1

P

)
∥I∥4. (45)

When these two equations are merged together, we get

L jklI jIkIl =
(
1 −

n − 2
n + 1

P

)
∥I∥′∥I∥3 −

n − 2
n + 1

P
′
∥I∥4. (46)

Now, according to Theorem 5.3, the (α, β)-metric F of constant flag curvature κ , 0 with Ē = 0 is of relatively
isotropic D̃-metric if and only if there is a function µ = µ(x, y) on TM such that L jkl + µFC jkl = 0.
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Then assume that the condition

L jkl + µFC jkl = 0, (47)

holds for the (α, β)-metric F. Then based on (45) we have

L jklI jIkIl = −µF
(
1 −

n − 2
n + 1

P

)
∥I∥4. (48)

When we contract equation (47) with 1 jl and Ik, and also use JkIk = ∥I∥∥I∥′, the result is

−µF =
∥I∥′

∥I∥
.

Plugging the aforementioned formula into (48) gives us

L jklI jIkIl = (1 −
n − 2
n + 1

P

)
∥I∥′∥I∥3,

which by combing with (46) one finds P′ = 0.

When it comes to Randers metric, the value P = 1, therefore, as per the Theorem mentioned above, one
can effortlessly arrive at the following Corollary.

Corollary 5.6. Every Randers metric of constant flag curvature with Ē = 0 (n ≥ 3) is a relatively isotropic D̃-metric.

Given corollary and Corollary 4.3, it is straightforward to derive the following result.

Corollary 5.7. Every (α, β)-metric with vanishing either flag curvature, λ = 0 and S-curvature, S = 0 (n ≥ 3) is a
relatively isotropic D̃-metric.

According to the work in [16], projectively flat (α, β)-metrics with constant flag curvature have been
categorized. The findings indicate that Finsler metrics which are not of Randers type can be considered

as essentially square metrics, given by F = (α+β)2

α , where α is a Riemannian metric and β is a 1-form on M.
It was later demonstrated by [29] that any square metric with constant flag curvature must exhibit local
projective flatness. Then one easily finds that

Corollary 5.8. There does not exist a non-trivial relatively isotropic D̃-metric (n ≥ 3) in the form of a square metric
having constant flag curvature κ , 0.

When examining (α, β)-metrics with the requirement of relatively isotropic D̃-metric, it is observed in [7]
that a regular (α, β)-metric possessing a constant length Killing 1-form β and constant flag curvature must
either be Riemannian metric or locally Minkowskian. Following this, we come to the subsequent Corollary.

Corollary 5.9. There does not exist a non-trivial relatively isotropic D̃-metric in the form of a regular (α, β)-metric
possessing a constant length Killing 1-form β and constant flag curvature κ , 0 (n ≥ 3).

The following example demonstrates the existence of Non-Douglas relatively isotropic D̃-metric.

Example 5.1. [6]
The family of Randers metrics on S3 constructed by Bao-Shen are weakly Berwald which are not Berwaldian.

Denote generic tangent vectors on S3 as

u
∂
∂x
+ v
∂
∂y
+ z
∂
∂z
.

The Finsler function for Bao-Shen’s Randers space is given by

F(x, y, z; u, v,w) = α(x, y, z; u, v,w) + β(x, y, z; u, v,w),
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with

α =

√
λ(cu − zv + yw)2 + (zu + cv − xw)2 + (−yu + xv + cw)2

1 + x2 + y2 + z2 ,

β =
±
√
λ − 1(cu − zv + yw)
1 + x2 + y2 + z2 ,

where λ > 1 is a real constant. The above Randers metric has vanishing S-curvature and with positive constant
flag curvature 1. The metric has constant flag curvature, it will also have Weyl curvature and be classified as a
GDW-metric. Despite not fitting the criteria for a Douglas type metric, according to (5.6), the Randers metric F falls
under the category of a relatively isotropic D̃-metric based on Theorem 5.5.

According to Corollary 5.7, the following example is a non-Douglas relatively isotropic D̃-metric.

Example 5.2. The Shen’s fish tank metric F is a Finsler metric with vanishing S-curvature and flag curvature λ = 0,
while it is not a Berwald metric. It is defined as follows

F(p, y) =

√
(−yu + xv)2 + (u2 + v2 + w2)(1 − x2 − y2)

1 − x2 − y2 +
−yu + xv

1 − x2 − y2 ,

where p = (x, y, z) and y = (u, v,w) are elements of the tangent space TΩ of the Ω = {(x, y, z) | x2 + y2 = 1}.

The following example, is a Randers metric of Weyl curvature (non-constant flag curvature) and is
consequently a GDW-metric, but it is not of relatively isotropic Douglas metric.

Example 5.3. [24]
Let us consider the Randers metric F = α + β which is given by

α =

√
(1− | a |2| x |2) | y |2 +(| x |2< a, y > −2 < a, x >< x, y >)2

1− | a |2| x |2
,

and

β = −
| x |2< a, y > −2 < a, x >< x, y >

1− | a |2| x |2
.

F is of isotropic S-curvature, S = (n + 1)cF, with c =< a, x >, and of scalar flag curvature λ as

λ = 3
c;0

F
+ 3c2

− 2 | a |2| x |2 .

However, we have

a jk =
δ jk

∆
+ b jbk,

b j = 2
c
∆

xk −
| x |2

∆
c;k,

(49)

where ∆ = 1− | a |2| x |2. Using Maple for the computation, which has been done in [24], we have

s jk =
2
∆2 (c;kx j − c; jxk),

sk = 2
| a |2| x |2

∆
xk + 2

c
∆

c;k

(50)
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and

Gi = αGi + Pyi + αsi
0, (51)

where P = c(α − β) − s0.
Now, let us assume n = 3, constant vector a = (−1, 0, 0), X = (x, y, z) and Y = (u, v,w). Then we have c = −x

and c;k = −δ1k. Hence, we have s jk =
2
∆2 (δ1kx j − δ1 jxk), which indicates that β is not closed. Consequently, F is

not a Douglas metric, even though it has scalar flag curvature. Therefore, it is a Weyl metric and, as a result, a
GDW-metric. Moreover, based on the notations in Corollary 4.4we have c̄k = δ1rNr

k − (µ+ c)Fδ1k. For k , 1 we have

2(τ̄l + cFτk) = 2(c̄k + cFc;k) −
2
F

(c̄0 + cFc;0)F.k = 2δ1rNr
k −

4
F
δ1rGrF.k,

and

Ak = Abk − cωsk + 2δ1rNr
k −

4
F
δ1rGrF.k.

where A = λ|0 + µ(λ + c2)F + 2cc;0 and ω = λF − 2c;0 − µcF.
Using the above equations and the fact F.k = α.k + bk in (28), the metric F is relatively isotropic D̃-metric if and

only if

(αA + A0)bk + ω(sk0 − cαsk) + 2δ1rNr
k − (A0 +

2
F
δ1rGr)F.k = 0,

where A0 = Akyk. The equation obtained implies that all coefficients of yi, and the coefficients of y1 = u, are zero.
Based on the formulas of (49) and (50), the term (αA + A0)bk + ω(sk0 − cαsk) cannot be a coefficient of every yi and
the coefficient of u. Furthermore, since k , 0, the term (A0 +

2
Fδ1rGr)F.k is not a coefficient of u either. Therefore, only

certain terms in δ1rNr
k can be the coefficient of u, and they are presented below. Based on (51), we have

δ1rNr
k = δ1r{

αNr
k + αs1

k − s1
0bk + s1

0F.k + P.ku}.

Using the expression

αNr
k = Ñrk + γrkl(x)u,

where there is no multiple of u in N̄rk, we find that the coefficient of u is equal to

0 = δ1rγ
r
k1(x) + P.k = δ1rγ

r
k1(x) + xbk −

x
α

yk,

which is a contradiction. Therefore F is not a relatively isotropic D̃-metric.
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