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Abstract. This study presents results on the solutions of a coupled system of hybrid Langevin fractional
pantograph differential equations involving 1)-Caputo type fractional derivatives within Banach spaces.
We establish the uniqueness of solutions using Banach’s fixed-point theorem and confirm their existence
through Dhage’s hybrid fixed-point theorem for the sum of three operators. Additionally, we investigate
the stability of these solutions in both the Ulam-Hyers sense and its generalized form. The theoretical
findings are further supported by several illustrative examples.

1. Introduction

Due to their extensive applications in modeling diverse scientific and technical phenomena, fractional-
order differential equations have garnered significant interest from researchers. These equations are em-
ployed in the study of various fields, including blood flow dynamics, electrical circuits, biology, chemistry,
physics, control theory, wave propagation, and signal and image processing, among others. For further
details, see [1-3, 12-15, 34, 37, 38]. In recent years, researchers have introduced various fractional operators.
In 2017, Ricardo Almeida expanded the field by introducing the y-Caputo operator, thereby adding to the
existing repertoire, which includes the Caputo, Caputo-Hadamard, Caputo-Erdélyi-Kober, and Caputo-
Katugampola operators, see [10, 25].

Nonlinear coupled systems involving fractional derivatives have become a significant focus in contem-
porary research due to their applications in various areas of applied mathematics. Consequently, numerous
studies and books have explored the existence, stability, and uniqueness of solutions for various fractional
differential equations and inclusions, employing different fractional derivatives and boundary conditions.
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For more comprehensive details, refer to sources such as [4, 5, 8, 11, 16, 33]. Additionally, dynamic systems
are often studied as particular instances of fractional differential equations. Hybrid fractional differential
equations, which involve partial derivatives of a hybrid function with nonlinear dependence, are also a
prominent area of modern research. Recent advances in this field are detailed in several research papers,
see [6, 17, 20, 27, 28].

In [29], the authors Matar et al. investigated the following nonlinear fractional differential hybrid system
subject to periodic boundary conditions of the form

DiY (2(0)g1(1)) = f1(7,2(1), y(1)), 7 € [a,a2],
DgY (y(1)ga(1)) = fo(1, 2(7), (1)), T € [a1,a2],
z(my) = z(a2), Z'(a1) = 2/ (a2),
y(a1) = y(@2), y'(a1) = y'(a2),

where CDgl’Lp and CDgf’lp are the y-Caputo fractional derivatives of order a1, a, € (1,2), (gi)i=12 : [a,0] —
R\ {0} and (£;)i=12 : [a1,42] X R? — R are continuous functions.

Paul Langevin introduced the classical Langevin equation in 1908 to model the dynamics of physical
systems under fluctuating conditions [26]. Since then, researchers have explored various generalizations
of this equation [21, 22].

In [32], Salem et al. study the existence and uniqueness of solutions to dual systems of nonlinear
fractional Langevin differential equations of the Caputo type with boundary value conditions given as
follows:

DgL (CDp: + M) z(1) = fa(x, z(1), y(1)), T€[0,1], 0<pr1 <1, 1<y £2,
Dgz (D5 + A2) y(1) = fa(7,2(1), y(1)), T€[0,1], 0< o<1, 1< <2,
2(0) =0, Dfz(0) = (B +1) | [jiz(en),

L piz(en) = m?PIy z(e),

y(0) =0, Dy (0) = T(B2 +1) 172y (es),

Z?fl PiZY(Eiz) = VZABISEY("M)/

where CDy- is the Caputo fractional derivative of order aj and f; for j = 1,2. 8]y and 7I;+ are Atangana-
Baleanu, and Katugampola fractional integrals, respectively. y; > 0 and A;, 43 € R for = 1,2, v, € R for
n=1234pj € Rfori=1,.,mandj=1,2.0<e,<e1 <& <& <---<gyfori=12andn=1,273,4.
f1,f1 : [0,1] x R?> = R are continuous functions.

The pantograph equation is a versatile differential equation applied across diverse fields, including
electrodynamics, astrophysics, and cellular growth modeling. This broad applicability has led to a surge of
recent studies on the fractional order pantograph equation by various researchers, see [19, 24, 39].

Additionaly, I. Ahmad et al. [7] demonstrated the existence of solutions for a nonlinear coupled system
of pantograph fractional differential equations with Caputo fractional derivatives of the form

“D§iz(7) = f1(t, 2(1), 2(97), y(7)), T €[0,1],
“Dy2y(1) = f5(1, (1), y(7), y(97)), T € [0,1],
11z(0) — b1z(91) — c12(1) = g1(2),
122(0) — brz(92) — c2y(1) = ga(y),

where CDS“+ represent the Caputo derivatives of order a; € (0,1), 0 < 9; <1, a1 # by + c; which a;b;,¢; € R,
f:[0,1]XxR* > Rand g; : C([0,1,R) » R,i=1,2.
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In recent times, substantial attention has been directed towards investigating the Ulam stability of
solutions for coupled systems of fractional differential equations. In [31], A. Salim et al. investigate
the existence, uniqueness and Ulam stability of differential coupled system involving the Riesz-Caputo
derivative with boundary conditions of the from

QCDD“ 2(1) = f1(t, 2(7), y(7), iCD“]z(T) chazy(T)) te[0,77],
SEDPy(1) = f2(1, 2(7), y(7), s D' 2(1), Dy (1)), T € [0, 7],
ﬁlZ(O) + B2z(T) = Bs,
y1y(0) + y2y(T) = y3,
where gCDﬁ represent the Riesz-Caputo derivatives of order a; € (0,1) fori=1,2,y;,8; € Rfor j=1,2,3,
y1+y2#0and 1+ pr #0. Also f1, £, : [0, 7] % R* > R are given continuous functions.

The study of Ulam stability in fractional differential equations introduces a novel approach for re-
searchers, paving the way for exploring various topics in nonlinear analysis. Moreover, the stability anal-
ysis of fractional-order differential equations is more complex than that of classical differential equations,
due to the nonlocal nature and weakly singular kernels of fractional derivatives. Consequently, Ulam-type
stability issues have attracted considerable interest from numerous researchers, see [15, 18, 23, 30, 33, 36].

Leveraging insights from prior research, this study presents a novel examination of fractional hybrid
differential systems that combine Langevin processes with pantograph arguments. The primary objective
is to assess the existence, uniqueness, and Ulam-Hyers stability of solutions for these systems, which are
governed by the y-Caputo derivative, as detailed below

ay, P B Z(T) hl(Tr Z(T)) _ _
CD [CD " (—g1(7:, ) )+ /\12(’()] =fi(t,2(7),y(é1)), T€T =la,a],

CDUtz B [CDﬁz (y(T) - hZ(Tr Y(T))

(e ) )] = ey, reT = )

under the given boundary conditions

(Z(T) —hi(g, Z(T)))
g1(t, z(7))

(Z(T) — hy(z, 2(7)) )
81(1, 2(1))

(Z(T) —hi(g, Z(T)))
g1(7, z(7))

-o, (e tuteto)
e\ g2(n2(7)

_ (Z(T) —hz(T/Z(T))),
I ey

T=i

s (Z(T)—hz(T/Z(T)))
e\ g(mz(0)

=%, m <e€,6<a,

T=€2

where CD:ILP, CDf i’lp are the i-Caputo fractional derivatives of order «; € (0,1], i € (1,2], fori = 1,2,
1 1

A, A € R\ {0},0 <a; <ap, 91,9,93,9 €R, (\91 # d3and I, # \94) and 0 < 5,5 < 1. The given functions
fi: TXR* > R hj: 7 XR—-R,and g : 7 xR — R\ {0} are continuous with j = 1,2. It is noteworthy
that this is the first recorded instance in the literature where a coupled fractional model simultaneously
investigates both Langevin and pantograph systems.

The key novelties presented in this study are as follows:

— The coupled system (1)-(2) integrates both Langevin and pantograph arguments and involves
diverse boundary conditions, providing a comprehensive extension of the arguments constructed
in the literature.

— The deformation of two functions is used to express the coupled system (1)-(2) in hybrid mode,
enabling the application of Dhage’s hybrid fixed-point theorems.
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- By consolidating numerous fractional derivatives into a single operator, the i-fractional operator
facilitates the integration of classical results and the development of new applications.

— We further extend the findings in [32] by examining a coupled Langevin hybrid fractional system
with multi-point conditions of orders f5; € (0,1] and o; € (1,2], fori =1, 2.

— The qualitative concepts of uniqueness, existence, and stability are examined for the first time in
relation to the coupled system (1)-(2).

The structure of our paper is organized as follows: Section 2 introduces the fundamental concepts
and definitions relevant to our study. Section 3 demonstrates the existence and uniqueness of solutions
for the ¢-Caputo coupled system (1)-(2) through the application of fixed-point theorems. In Section 4,
we investigate the stability of the coupled system within the framework of Ulam-Hyers stability and its
generalizations. The final section presents illustrative examples that underscore the main findings of our
research.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary tools which are used
throughout this paper.
Let 7 = [a1,4;]. By C(7, R) we denote the Banach space of all continuous functions from 7 — R with
the norm
Izllee = supflz(o)l : T € T).

By C*"(7",R), we denote the space of functions that are n-times continuously differentiable on 7"
Now, we consider the following Banach space

E={(zy): zyeCT, 6 R)},

endowed with the norm
Iz, y)lle = lizIl + llyll.
Let ¢ € CY(7,R") be an increasing differentiable function such that ¢’(7) #0, forall t € 7.

Definition 2.1 ([9]). For a > 0, the 1-Riemann-Liouville fractional integral of order « for an integrable function
v: T v Eis given by

o P EWD) - P)*!
v f @)

v(s)ds, ®3)

where I is the classical Euler Gamma function.

Definition 2.2 ([9]). Letn—1<a <n,v: T + E bean integrable function and 1 be defined as in Definition 2.1.
The y-Riemann Liouville fractional derivative of order a of a function v is defined by

[ 1 d] nalp(T)

v (T ) dt
1 d] (FYOQE - e
Bb/(T) dT . F(Vl _ CY)

where n = [a] + 1 and [«] denotes the integer part of the real number a.

ay
D, v(7)

v(s)ds, 4)

Definition 2.3 ([9]). Assume that v € C"(7,E) and let 1\ be defined as in Definition 2.1. -Caputo fractional

derivative of a function v of order o € (n — 1, n), is determined as
CDa 2

V(D) = [ vy,
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where VZ”(T) = [w,lm %]n v(t)and n = [a] + 1 for a ¢ N, n = a for a € IN. By the definition, we have

T (8) (1) =1() ™ [n]
L=t vy ©ds, ngNN,

“Dyv(o) =
VZ’](T), nelN,

where IN denotes the set of positive integers.

Lemma 2.4 ([9]). For a > 0, we obtain

I CDZ‘;LP Ij;wv(’c) = v(t) for all functions v € C(T, E).
vl
ID) If v € CYT, E), then ¥ CDX¥v(7) = v(1) - Li2) “'T“[lp(T) — (@)~
Lemma 2.5 ([91). For the functions v, ¥ € C(7,R) and a > 0, we have

I) I;X;w (.) is linear and bounded form C(T",E) to C(T, E).
D 19V (@) = lime, [%¥v(7) = 0.

Lemma 2.6 ([9, 35]). Let o, p > 0andv € C(7,E). Then for each T € T, we have
I'()

(1) LYY - p@P = Ta+p V0~ Y(@)]*+F T,
(€D i > & N, then D10 O = e slolo) = v,

(C3) Yk e€({0,1,--- ,n =1}, nis a positive integer, then CD3;¢[¢(T) - I/J(a)]k =0,
(€4 1% P¥v(r) = [P ¥v(0),
(C5) for any constant p, we always have CDjﬁbp =0.

Here we recall some fixed point theorems to be used in the study.

Theorem 2.7 (Banach’s fixed point theorem [13]). Let X be a Banach space and A : X — X be a contraction, i.e.
there exists A € [0, 1) such that

A(z1) — ANl < Allz1 = z2l,

forall z1,zy € X. Then A has a unique fixed point.

Theorem 2.8 (Dhage fixed point theorem [13]). Let ] be a closed, convex, bounded and nonempty subset of a
Banach algebra (C(T,R), || -I), and let P,Q : C(T,R) — C(7T,R) and R : ] — C(7, R) be three operators such that

1) P and Q are Lipschitzian with Lipschitz constants ©1 and ©,, respectively,
2) Ris compact and continuous,

3) z=PzRy+Qz =z €] forally €],

4) ©1p+©; <1, where p = [RA)| = sup{IRY)Il - y € T}.

Then the operator equation PzRz + Qz = z has a solution in J.
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3. The existence of solutions

Let ® : 7 — R be a function such that Y(-) € C(7,R), G € C(7,R\{0}), and the function ‘H € C(7,R).
We consider the following linear fractional differential equation related to (1) .

CDa;'#’ [CD’S:’L’ (M) + AX(T)] = 3/(7), T € [a1,a0], (5)
o o G(7)

where a € (0,1], f € (1,2], A > 0, with the boundary conditions

x(1) — H(1)
5
x(1) - H(@)\
( G(1) )
x(1) — H(1)
5

where G € C(7,R\{0}), H € C(7T,R), ¢,{ € R with ¢ # ¢ and ¢, is pre-fixed point satisfying a1 < € < a,
Y € C(7,R). The following theorem shows that the problem (5)-(6) have a unique solution given by:

- Y

T=0a1

=0, (6)

=

={, m<e<a,

T=€

«(1) :=G(7) [ij Y (r) = AP () + e - €
@ - P(an)l?

[Y(e) — (@)

Theorem 3.1. The function x satisfies problem (5)-(6) if and only if it satisfies (7).

(;\If;‘Px(e) ~IPY(e) + £ - c)] +H(1). 7)

Proof. Assume that x satisfies the problem (5)-(6) and such that the function : 7 — (%) € C(7,R).

We prove that z is a solution to the equation (7). Applying the fractional integral I;X;w to both sides of (5)
1
and using Lemma 2.4, we have

DP¥n(0) + Ax(1) = LY Y (1) + co. (8)
Now, applying If ¥ to both sides of (8)
1

[Y(7) — ()l

10 = Y0 + 0=y — AL + o+ () - yla) ©)
Then,

X(0) ~H@ _ sy W@ @)l s

BT I,,; Y(1)+ QOW - MHT x(1) + ¢1 + G2[Y(1) — P(a1)],
which implies that

- B
() =600 157490 + o L~ A
+e1+ lp(n) = @] + H(). (10)

. S e x(@)-H@) _ x@-H@Y
such as ¢; € R, with i = 0,1,2. Next, by the condition Gan = and ( G )

=0 gives
=11

¢i:=cand ¢, :=0. (11)
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On the other hand by X(GETS@ = {, we have
Ir'p+1) ath,
o= W(e)[iw (/\If?bx(e) - I+ PYY(e)+ - c) . (12)

Substituting (11) and (12) into (10), we obtain (7).

Conversely, assume x satisfies the equation (7) such that the function: 7 — (%) € C(7T,R).
Applying operator CDf ¥ on both sides of (7), and since G(1) # 0 for all T € 7, then, from Lemma 2.4 and
Lemma 2.6, we obtain

rg+1)
[¥(e) — Y(ar))F

Reapplying, CDZf’b to the above equation, we obtain

CDPn(r) = IV Y (x) - Ax(1) + (Mfﬁ”x(e) YY) 40— c) . (13)

.
4

G(1)
Taking the limit 7 — a3 of (7) we obtain
x(a1) = H(ar) —c
G(m) ’
Substituting 7 = € into (7), we have
2e) = HE) _,
G(e) '

Now, applying D_. to both sides of (7) gives
1

CDZSP |:CD5¥P (M) + /\X(T)] = y(T)’ (14)

(15)

(M) = 15 Y (1) - AP (0) "
G g ;

L _T6+1
[¥(e) - Yla)lP

Taking the limit T — a1 of (16) we have

(/\If;wx(e) 1YY (e) 4 £ - c) 1,

.
4

=0. (17)

T=m

(X(T) —H() )
G(1)

This shows that the boundary conditions (6) are satisfied. [

Next, we present the solution for the coupled system (1)-(2).

Definition 3.2. A function x € C(7,R) that satisfies the equations (5) and (6) on T is considered a solution to the
fractional problem (5)-(6).

Lemma 3.3. Let a; € (0,1], Bi € (1,2],f0ri =1,2, A, e R\{0},0<a1 <ap, a1 < €1,6 <p, I1,92,93,94 €
R, (91¢S3and92¢S4)and0<é,£<1,letfj:Tx]R2—>]R,hj:T><]R—>IR,and gi: 7T XR — R\ {0}

are continuous functions with j = 1,2 . If the function © — (%) € C(7,R) and similarly, the function

T — (%) € C(T,R), then (z,y) € E satisfies the coupled system (1)-(2) if and only if (z,y) is the fixed
point of the operator S : & — E defined by

S(z,y)(7) := (S1(z, y)(1), Sa(z, y)(1)),
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such as

Si(2,y)(0) = g1(5,2(0) [\P( $)(0) - %\w y>(e1>] +hy(z,2(0), (18)
and

S2(2,)(0) 1= galt,¥(1) [c‘b(z, y)(0) - %é(z Y)(ez)] +ha(r, (), (19)
where

P(z,y)(1) = f ye (IP(;LX f;»wl_l £1(s, 2(s), y(Es))ds

f voun -y AT

and

T lpf(s)(l/,(rg) — ll)(s))azﬂiz—l

d(z, y)(1) := Tart ) f2(s, y(s), z(&s))ds
(N _ -1
n [ Y (S)(¢(;)( ﬁf(s)) y(s)ds + 9, — 9.

Given that the functions g; and h; are continuous and fi(z, -, -) € C(7 X R?,R), for i = 1,2, it follows that
S(z,y) € E.

The next result relies on the application of the Banach fixed-point theorem. Furthermore, we assume
the following conditions for this outcome.

(C1) The functions (f;)i=12 : 7 XR? > R, (h;)iz12 : 7 XR — R, and (gi)i=12 : T xR — R\ {0} are continuous.
(C2) There exist positive functions pj, qi, r; € C(7,R*) such that

Ifi(t,z,y) - fi(t, z, §)| < pi(0) |z — 2| + |y = ¥),
lgi(7,2z) — gi(7, 2)| < qi(7)lz — 2|,
and
[hi(t, z) — hi(t, 2)| < ri(7)lz - ZI,

fori=1,2,forallt€7 andz,y,z 7 € R,
where

pi = suppi(7),q; =sup qi(1r) and 1} = supri(t), i =1,2.
s/ s/ €T

(C3) There exist positive constants £L; and M;, where [fi(7,-, )| < £; and [gi(7,-)] < M;, for all T € 7 and
-€ R, wherei=1,2.
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For the sake of clarity, we denote

_ [(W2) - @) + W(a2) — (@)™ (Pler) — P(an)™]

M F(oq + ﬁ1 + 1)

Ay = _ 2Ml((a)—p@)f

e - e
_ 2) — Yla) ™
Ay = (9] + |s3|>(—[ o v F 1)
_ [(W(a2) = ¥(@)™*P + (P(a2) — (1))’ (Y(ea) - P(a1))™]
B T(ay + B2 + 1) ’

\Y1
V, = _ 2 (a)—P(a))f2

T(Ba+1) ’ ;
[(a2) = P(ay)]™ )
Vi =(9+[94))| —————— +1
o= (el 4')([¢<ez> — (@)
@1 = 2piMi + q1 LA + (Mi + q)Ax + q1 A3 +17,
@2 = (2pyMa + @y L2)V1 + (Mo + q3)Va + q; Vs + 15

Theorem 3.4. Suppose that (C1) — (C3) holds. If

2
Z i <1,
=1

then the coupled system (1)-(2) has a unique solution on T = [a1, a2].
Proof. Let (z,y),(z,¥) € Eand 7 € 7. By (C2), we get
|\p(Z/ Y)(T) - \If(z, }_’)(T)|

T g _ a+p1-1
id (s><¢§;1 f ésl))) IF1(5, 2(5), y(&15)) — F1(5, 2(5), §(E15))|ds

YEEE@ -
) G [2(5) — 2(s)lds

- 2p: (P(7) — P(ar))m*h N [A1l(W(T) — P(ar))Pr [,
|7 Tt it TG+ 1) Zmay = Yle

+ Ml

and by condition (C3), we obtain

L)1) - P(ar)) 2P GO P(a))P
F(Oél + ﬁl + 1) F(‘B1 + 1)

Wz, y)(0)l <
In the same way, we obtain

B2,y - 8, 7))
a2+ﬁz
(s (0, 625 ~ s 509, 2(Eas)ls

p2-1
o f OO

2p0(0) — Y™ Polpln) - pa)
= ( I'(ax +p2+1) + T, +1) lz-2zy-7lz,

and by condition (C3), we get

LOO = g@)= | Pl - pla)
r(()(z + ﬁz + 1) r(‘Bz + 1)

[D(z, y)(0)l <

+ [91] + 193]

+ |92 + [94].

3409

(20)
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By applying the triangle inequality, we obtain
1S1(z, y)(7) = S1(z, 3)(7)]
< Ig1(7, 2(0) ¥ (z, y)(1) = g1(T, w(D) ¥ (Z, 7)(0)|

_ p1
+ %&(LZ(T»@(Z/ y)er) - gi(, 2(1))V(z, 7)(e)l

+ |h1(T/ Z(T)) - hl(T/ Z(T))l
We conclude that

1912, )0) = 12, )0
26,00 PP I -y
SMl[ Mo+ i+ 1) SV ]”Z‘Z’y‘y”E

(L) — Plaq))+h N A1 () — P(ar))fr Iz =2y —¥l=
MW T T+ g+ D) TG + 1) Zmay = Yle

A iy -5l
Fa1+p1+1) I +1) ! =
Li((er) — Pp(ar))™ N |A4] )”Z —zy -l
T(a1+p1+1) T +1) ! =
[y () — P(ar)}P
[Y(e1) — Y(an)P

After taking the supremum over 7 and simplifying, we get

+ Mi((7) = ¢(an)” (

+q; (¢ (0) = P(an)” (

+

q](l91|+|~93|)( +1)+r§]llz—2,y—)7lla-

IS1(z,y) = S1(Z, 9l < @1llz -2,y - §ll=. (21)
Similarly, we obtain

1S2(2,y) = S22, 9)lle < @2llz -2,y - §ll=. (22)
It follows from (21) and (22) that

IS, y) = S&, Pz < (@1 + @2) X =X,y = Fll=.

2
Since Z @; < 1,8 is a contraction operator. Consequently by utilizing Banach’s fixed point theorem, the

i=1
coupled system (1)-(2) has a unique solution. In the following result, we establish the existence of solutions
for the hybrid coupled Langevin fractional pantograph system (1)-(2). O

This is achieved by utilizing a theorem derived from Dhage’s fixed-point theorem.

Theorem 3.5. Assume that the following hypotheses hold.
(CD1) The functions f1,f, : T X R?2 — R are continuous on T
(CD2) The functions g; : T X R — R\ {0} and h; : T x R — R are continuous. Moreover, there exist positive
continuous functions qi, r; € C(7, [0, 0)) such that
I8i(7, 2) — gi(7, 2)| < qi(7)lz — 2,

and
lhi(t, z) — hi(7, 2)| < ri(7)lz - ZI,

fori=1,2,and foranyz,z€e Randt € T.
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(CD3) There exist functions p1,p2,P3, V1, V2, V3 € C(T,R*) such that
If1(7, z, 2)| < p1(7) + p2(7)lz| + P3(T)IZI,

and
It2(7, 2, 2)| < 91(7) + 2(7)|z| + v3(7)IZI,
forallt €T and z,z € R.
(CD4) There exists a number y > 0 such that

gNy + 8,6, +h] +h;

" " I
1- [qlNy +q,6) + ]+ 15]

and

OGNy + 6y +1) +15, <1, (23)
where

q; = sup qj(1),r; = supri(7), g = suplgi(7,0), hi =sup h(7,0)|, j=1,2,

T €T €T €T
p; = suppi(1), v; =supni(1),i=1,2,3,
€T €T

and

Ny = AP} + [Ar(Py + P3) + Ao] y + As,
&y = Vi + [Va(v; + v3) + V| y + V.
Then the coupled system (1)-(2) has at least one mild solution on T .
Proof. We define a subset D, of C(7, R).
Dy ={(z,y) €E : llz,ylls < }.
Next, consider the operator S; and S, defined in (18) and (19), respectively. Additionally, introduce the
operators P,Q, U,V : C(T,R)> — C(T,R) by

P(Z/ Y)(T) = gl(T/ Z(T))/ TE T/
Q(z,y)(7) = hi(t, z(1)), T€T,
U(z,y)(1) = go(T,y(1), TET,
V(z,y)(1) =ho(1,y(1), T€T,

and R, K : D, — C(T,R) by

- - Bl o~
R(z,y)(1) = V(z,y)(1) - LBV, y)e), T T,

~ )-1(m))f2 %
K(z,y)(1) = Bz, y)(1) - Gaism Bz, y)e), teT.
Then,
Sl (Z/ Y) = P(Z/ Y)R(Z/ Y) + Q(Z/ Y),

and

Sa(z,y) = Uz, y)K(z,y) + V(z,y).
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Step 1: Firstly, we show that P, Q, U and V are Lipschitzian on C(7",R)?. Let (z,y),(z,¥) € C(T,R)%.
Then by (CD2) we have

[P(z,y)(7) = P(z,3)(0)| 181(1, (7)) — g1(1, (7))l

< q™lz(t) = Z(7)l.

A

Then for each 7 € [a1,4,] we obtain

As before, we have
Uz, y) - Uz 9 < Iz, y), (Z )=, (25)

and for each 7 € [a1, 22] we get

Q(z, y)(7) - Q(z, §)(7)

Iha(7, (7)) — ha (1, (7))

< 1i(0)lz(7) = z(7)l.
Then,
1Q(z,y) - Qz, Pl < 1ili(z, y), (2, Pll=, (26)
and
V(z,y) = VE Il <1z, ), (Z 9l (27)

Therefore P, Q, U and V are Lipschitzian on C(7, R)? with Lipschitz constants q; and 1}, fori =1, 2.

Step 2: We demonstrate that the operators R and K are completely continuous on D,.. To achieve this,
we first establish that the operators R and K are continuous on C(7, R). Let {z,, .}, be a sequence in D,
that converges to a point (z,y) € D,. Then, we have

lim R(zn, yn)(7)
n—+oo

(W(er) — Plar)P U(zy, yn)(er)

ar+p1—1
- fim_ { f VOO PP o s
Y

n—+oo

= lim {‘I«zn,yn)(f) -

(a1 + B1)
S)(WP(1) — P(s)P !
o I'(g1)
(1) — P(a)’ (f P (s) ab(el) — Y(s)) L
T @en) - pla)P T(as + f1)
Y (5)(ler) — Pls)P!
o I'(B1)

By the continuity of the function f;, we may obtain

Tim Rz, ya)(1) = Rz, y)(0).

-

Zn(S)dS +91 93

£1(s,zu(s), Yn (&19))ds

-M Zn(S)dS + 91 — 93)} .

Hence,

”R(an Yn) - R(Z, y)”OO — 0/ asn — Oo/
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for all T € 7. Similarly, we also have

Tim Kz, yu)(7)

@) = p@)”
(Plea) — Plan)P

n—+oo

= lim {CI)(ZH, Vn)(T) O(z,, Yn)(€2)}

T [,/ _ ar+pr—1
ZJH;{ ¢““ﬁ2ﬁfg? 6205, Yul5), 2n(E2))ds
T _ pa—1
- A 4 (S)(¢(;)(ﬁ2)¢(5)) yu(s)ds + 92 — 94

_(w@_¢wmm(jﬁ¢@qu%ﬂﬂw”%4ﬁ@%@%h@ﬁmk

(Y(e2) — P(ar))P2 [(az + B2)
“W@@%@ﬁ@w4%@m+%—&».

By the continuity of the function f,, we may obtain

Tim Kz, ya)(@) = Kz, y)(0).

N

Hence,
1K (2, yn) = K(z,y)llo — 0, asn — oo,

for all T € 7. This shows that R and K are continuous operators on D,,.

Next, we prove that the sets R(D,) and K(D,) are uniformly bounded in O,. For any (z,y) € D, and
7 € 7,we have

WW—MMW%@H@%*mONM@m—MmWV

Wz, y)(0)| < e T 1) e el
and

) (W) = P@))**" (v; + 0 +037)  Aal(r) - p(an)y

Bz, y)(0)| < e ha 1) Py el
Therefore,

R(z, y)(@)l
) (@(r) - Y(an)
S"”L”“”+J§ojﬁmwl
_ @ = p@) P (B + @+ B)Y) 2 () - gy
- [(a1 +p1+1) I +1)
() — Y@ (Yler) - Yl (P} + (B3 + P})y)
* T +pr+ 1)
[Y(az2) — P(ar)]P N 1)
[W(er) — plan]P

¥(z, y)(en)|

+(191] + I93|)(

<N,

(28)
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Then, we obtain

IR(z, y)llew < 0,
for all (z,y) € D,. We also have

1K (z, y)(7)l

< Bz, y)(o)) + LD ZWE@D™

Wier) — plapy V)
_ W@~ pla) (07 + 03+ 937)  20aW(0) - pla))ey
- Ila +p2+1) g, +1)

| WO - v @) -y (7 + (03 +v3)y)
Ilaz+p2+1)

[Y(a2) — P(a1)]P
(% '94')([1,1)(@) —panp 1)
<§,.
Then, we get

1K (2, y)lleo < 00,

forall (z,y) € D,.

This prove that the sets R(D,) and K (D, ) are uniformly bounded in D, .

3414

(29)

On the other hand, we demonstrate that R(D,) and K(D,) are equicontinuous sets in D,. We take

71,72 € [a1,a2] with 71 < 77 and (z,y) € D,. Then,

1Rz, y)(x2) - Rz, )(a)
L [ YOI ~ YOI — ) — pe) ]
=J. Tar + 1)
Ty o[,/ _ aj+p1-1
) L4 (SW(;& +‘2(f))) 6105, 2(5), y(E:9)lds
N A ($)[(Y(12) = P(8)P 7 = (P(T1) — ()P ]
n I'(B1)
Ay (s)(@(T2) — P(s))Pr!
* fn I'(B1)
N [(Y(12) — P(a1))P' — (P(T1) — P(ar))P']
(Y(er) — P(ar)P
([ e or
. ['(a1 + p1)
LY (s)(W(er) — P(s)P!
+A4] f; )

|z(s)lds

|z(s)lds

|f1 (S/ Z(S)/ y(éls))|ds

a

|z(s)Ids + [91] + [93]] .

If1(s, z(s), y(&15))Ids
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Therefore,
IR(z, y)(t2) — R(z, y)(T1)l
< < [(Y(12) = P(@)) — (Y(T1) - Y(a))]
< W(z,y)(t2) = W(z, y)(T)| + W(er) — Plar))P
[(Y(T1) = P(a)) P — (P(12) = P@)™ Y -
. Tar + fi+ 1) 71+ @+ Pa]
N (Y(t2) = P(T1)P' = (P(12) = P(ar))"" + (P(11) = P(ar))”
F(‘Bl + 1)

|\i’(zl Y) (el)l

) [Aily

: [ [P(er) — P(an)]™ A1
+[0(m) — P - () - () 1( e R s RALIRI LY
Hence,
IR(z, y)(T2) — R(z,y)(T1)] — 0, as 11 — To.
In addition, we have
1K (z, y)(12) = K(z, y)(T1)|
_ B2 _ - B2
<100, y)(22) = Bz y)(e) + 2P B g, e
[(Y(71) = P(ar))=*P> — (P(12) = P(@)*F
< Tt D) [P} + (@5 + Py
N (¥(12) = P(11))? = (Y(T2) = P(@1)” + (Y(11) — P(ar))” Ml
T(B2 + 1) 2y
2 (€)= @™ Ay
+[(T) = P - () - Yla) ]( s TN s LRI LY

Consequently,
1K (z,y)(12) = K(z, y)(11)] — 0, as 11 = To.

Thus, R(D,) and K(D,) are equicontinuous on 7 . Hence, by the Arzela-Ascoli theorem, R and K are
completely continuous on D,

Step 3: We show that condition (3) of Theorem 2.8 is satisfied. For (z,y) € C(7,R) and (z,y) € D,,
where z = PzRZz + Qz and y = UyKy + Vy , we get

|z(7)| = [Pz(1)Rz(T) + Qz(T)|
< [lg1(7, z(1)) + g1(7, 0)| + Ig1 (T, O)IIN), + [h1(7, 2(7)) + h1(7, 0)] + |hyi(7, 0)]
< [qillzll + g1 IN, + 1illzll + hi,

and
ly(D)l = Uy (1)K (1) + Vy(1)l
< [lg2(7, y(1)) + g2(7, 0)| + Ig2(7, 0)IEy + ha(7, y(7)) + ha(T, 0)] + [ha(7, 0)|
< [Gliyll + 851y + allyll + b3,
which implies that

(ople < BN B T
T [Ny + @6, + 1] +15]

<.
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This shows that condition (3) of Theorem 2.8 is satisfied.
Step 4: Finally, we have
p = IRDy), K(D,)llz = sup { IRz y)ll + 1Kz Y : (z,y) € Dy} < Ny +E,.

From the above estimate we obtain
QN + @36, +1) +15 < 1.

Hence, all the conditions of Theorem 2.8 are satisfied, and therefore, the operator equation z = PzRz+Qz
and y = UyKy + Vy has a solution in O,. Consequently, the coupled system (1)-(2) has a solution on
7. O

4. Ulam-type stability

This section discusses the Ulam stability of the coupled system (1)-(2). Let (z,y) € E and g1, 0, > 0, and
X1, X : [a1,a,] — R* be a continuous function. We consider the following inequalities:

DY DI (AR 4 \iz(0)| - (e, 20 &N < 0 TET,
1 (30)
|CDa2¢ CDﬁzﬂl’ (M) + Aoy (1) | = fa(7, y(7), 2(E27))| < reT
af | T & (Ty(0) 2y 2T,y ) 0, :
and
D3 DY (LA 1 2y2(0)| - u(r, 200, (&) < 0Xa(), TET,
(31)
|CDZTW CDﬁf ’ (%) + Aoy(7) | = fa(1, y(1), 2(&27))| < 0Xa(T), TET,

Definition 4.1 ([15, 33]). The coupled system (1)-(2) is Ulam-Hyers stable if there exists a real number © =
O1 + 0, > 0 with 1,0, > 0 such that for each ¢ > 0 and for each solution (z,y) € E to the previous inequality (30),
there exists a solution (Z,y) € E of the coupled system (1)-(2) with

Iz, y) =z 9)lz < 0©.

Definition 4.2 ([15, 33]). The coupled system (1)-(2) is generalized Ulam-Hyers stable if there exists € C(R*,R*),
such that J(0) = 0 for any o > 0, and for each solution (z,y) € E to the inequality (30), there exists a solution
(z,V) € E of the coupled system (1)-(2) with
Remark 4.3. It is clear that:

1. Definition 4.1= Definition 4.2.

A function (z,y) € E is a solution of the inequality (30) if and only if there exist a function W; € C(T,R) such
that for all i = 1,2 we have

i. 'Wir)|<og forallteT,
.. . s [ 2(7) —hi(7, 2(7)) _
11. CDZ} [CDa% (W + /\1Z(T) - fl(T, Z(T), y(élT)) = Wl(T)/fOT allt € T,
— ha(t,
iii. DY [CDW (M) + /\zy(’[)] — (7, y(7), 2(E27)) = Wa(2), forall T € T
1 g2(7,y(1))
We now discuss the Ulam stability of the solution to the problem (1)-(2).

Theorem 4.4. Assume that (C1), (C2) and (C3) are satisfied. then the coupled system (1)-(2) is Ulam-Hyers stable
and hence generalizes Ulam-Hyers stable under the condition (20).
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Proof. Assume that ¢ > 0 and that (z,y) € E fulfills the inequality (30), and let (z, §) € E be the sole solution
of the coupled system (1)-(2). Since (z,y) € E satisfes the inequality (30), then it follows from Remark 4.3
that

cprd [cpp (Z(T) —hi(1,2(1))
“ a 81(7, 2(1))

CDllz,lP CDﬁz,l,/J (Y(T) = hy(t, Y(T))
at aI’ gZ(T, y(T))

under the given boundary conditions

) +Mz(7) | - fi(7, 2(1), y(E7)) = Wi(D), T€T,

1

)+ Moy(@ | = bt y(0), 2E0) = Wa(r), TeT,

(Z(T) _hl(T/Z(T))) Y (Z(T) —hz(T,Z(T))) Y
gi(nz(®) )., grz() )., 7
(Z(T) - h1(T,Z(T)))’ _ (Z(T) —ha(t, Z(T)))' ~0o
g1(7, (7)) ey 82(7, (7)) .
z(t) = hi(7, 2(1)) _ z(1) = hy(7, 2(1)) _
( g1(1, z(7)) )r=51 =% ( (1, 2(T)) )T=€2 =Sy m < ey e <.
Using Lemma 3.3 once more, we have
— B
2(1) = g(r, 2(0) [\P(z, (0~ H Ly |+ b o),
and
_ —(@)® .
310) = 8a(5,9(0) 802, Y)0) - (S, e+ ()
where
Wz, y)(@) = L Pl (7 2(0), y(E0) + WD) = M z(o) + 91 - 85,
and

B(z,y)(1) = 1P f2(5,y(0), 2(E0) + Wa(0)] = ALy (1) + 92 = 84,
Moreover, using part (i) of Remark 4.3 and (C2), we can obtain the following formula for each 7 € 7.
W (z,y)(7) — ¥(z,9)(7)
< I:§+ﬁ1,w|f1(f, (1), y(&7)) — f1(7, 2(7), §(ET))| + Alljlifﬂz(f) - 2(7)| + IZ§+51’¢|(M/1(T)|
2p; (@ (7) = P@))™ P A4|(() — plar))P .
< ||(Z/y) - (Z/Y)”E
F(a1 + ‘81 + 1) 1—‘(‘81 + 1)

L () - Par)

[(ar +p1+1) (32)
and
Bz, y)(x) = Bz, 7))
< L2 P1fa(1, y(2), 2(60) ~ £a(3, 9(0), 20| + A2y () = 901 + 12 1Wa(o)]
L (RO Y@ @ gy o
I(ax + B2+ 1) I +1)
, Q@) — Ylan) = @3

F(O(2 + ﬁz + 1)
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in addition to,
~ _ a1+p _ S
|\I](Z, y)(T)l (Li+0) (1) —p(ar))"1*F1 + [A1|(p(1)— (1)) + |‘91| + |‘93|’

P F(a1+ﬁ1+1)ﬁ o F(ﬁﬁlﬁ)

= — @1 +h1 - 1

|\II(Z, y)(T)l 1(P(1)—¢(a1)) + 1@ (D) —¢(@)) + |\91| + |‘93|/
[D(z, y)(7)]

T(a+B1+1) T(p1+1)
Pz, §)(7)

IA

(34)

(Lo+0)(P()=v(@)2*2 | (0) = (@m))F2
Tar D + g 9l + (84l
Lo@(0)=p@))22 Al (0)—v(an)2
Taargry — T t@rn— + 192l + 194l

IA

IA

Applying the triangle inequality to (32)-(34), we have
|2(7) = (7
< Ig1(7, 2 W(z, y)(1) - g1(T, 1)) ¥(Z, 9)(7)]

_ p1
+ %@m AN y)(er) - g1(5, 2N 9)(e)] + I (r, 2(2)) - ha(z, Z(D),

so that we obtain

Iz - Zlleo < @1ll(z,y) = (2, P)llz + MiAse. 35)
On the other hand, we have

lly = ¥llo < @2ll(z,y) = (2, 9)llz + M2V10. (36)

Combining the two last inequalities (35) and (36), we get

-1
Iz, y) = (z 9l < [1 - @i} (MiA1 + MaVa) 0. (37)

2

i=1

_1 2

(MiA1 + M, V,). Taking into account Z @; < 1, we notice that ® > 0. Thus,
i=1

2
1—2601

i=1

Let is put © =

we have

“(Zry) - (ZIY)”E < Q®

Consequently, the coupled system (1)-(2) is stable in the sense of Ulam-Hyers. This completes the proof
using Ulam-Hyers definition. [J

Theorem 4.5. Suppose the conditions of Theorem 4.4 hold. If there exists J € C(R*,R"), such that J(0) = 0 with
0 > 0, then the coupled system (1)-(2) is generalized Ulam-Hyers stable.

Proof. For (o) = ©g; J(0) = 0, we prove that the solution to the coupled system (1)-(2) is also generalized
Ulam-Hyers stable. [J

5. Examples

Example 5.1. Consider the coupled system

T . T - h 7
chfSIW CD1+65,\F (—Z(T)gl(T’lz((TT)Z)(T))) + %Z(T)] =fi(t,2(r),y(37)), T€T,

.70, V1 75,4t Y(T)_h(Tr (T))
cpi7’ Ve Dy Ve (gz(T;y(T;;) + ZY(T)] =f(1,y(1), z($57)), TET,

(38)
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under the boundary conditions

(Z(T)—h1(T,Z(T)))(1)= 15 (Y(T)—hz(T/Y(T)) =2

g1(7, 2(1)) ' 82(7, y(7)) ’

(Z(T) - hl(T/Z(T)))/ _ (Y(T) hy(7, y(T)))' 0,
81(7,2(7)) . g2(7,y(1))

) P Rl GAYG0)) AP
gl(T,Z(T)) 6/ — 1007 T/Y(T 100/ 4

where T =[1,2],a1 =1, a, =2 and

_1
&1(r,2(0) = — i(l_szg)lﬂ), 1T, 2 C(T,R),

cos(’c)(Ty(’c)l +0.01)

55¢-3(1 + |2(7)| |7 — 1)

sin(1) (s1n(T)Z(—T) +y(7) - 0. 02)
(55 +e7™3)(1 + |y(7)l)

f(7,y (1), 2(35)) =

Clearly, the continuous functions f; € C(7~ X R?,R), h; € C(7 x R, R) and gi € C(T xR,R\ {0

Hence the condition (C1) is satisfied.
Foreachz,z,y,y € Rand t € T, we have

1

2
lfi(7,z,y) — f1(7, 2, 9)| < = (lz—zl+1y-7l),
1
If2(7, 2, y) — f2(7, 2, §)| < = (lz-zl+1y-7l),

(t
8L -t 2l < —H 122,

1
- 7)| <
8200 y) —82(u I < =553
T}
lhi(7,z) - hi(7, 2)| € ———=1z -2,
! ! 12n61V6 -7

ha(e,y) = ha(u 9 < g5 by =1

g (T, y(t) = = + 10022 ,T€T,yeC(T,R),
~ T—43 52(1) 1
hi(7, z(7)) = o \/6—_1 Sl o | €7,zeC(T,R),
cos(27) y(7) e2
hz(’l',y(’lf)) = m TeT, y € C(T ]R)
AT — % (sm(T)y(;T) + cos(1)z(T) — 1)
ti(7, 2(7), y(3)) = ,T€T,2y€eCT,R),

,T€T,zy€eC(T,R).

3419

(39)

D, fori=1,2.
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Hence condition (C2) is satisfied with

T j— §
— 2 -_—e,—
pl(T) - 55@ 437 pZ(T) - 55 + e_.H_S/
(t— 5) 1
Qu() = Tte-T+3’ P(T) = 2 + 10072’
e VI o
o= 127I€V6—TI = 12n(t + 1)’
so we have
* — Vg * — 1
P Sseva DTS
o3 a1
D= 2T 00
. V3 L1
T, = =

- s = ->"—,
24me 2 27 24m
and so the condition (C3) is satisfied with

1 3 1 1
M1_5_5€/ Ll_ﬁ/ -

We can show that

2

) @=097329 < 1.

i=1
Thus, all the conditions of Theorem 3.4 are satisfied. Hence, the coupled system (38)-(39) has a unique solution on
[1,2].

Let o= % > 0, as illustrated Theorem 4.4 and by (30). If z,y € C([1, 2], R) complies with
0.45,+/T 165,v7 [ 2(7) — i (g, 2(7)) 2
°Dy; CD (W T 2(0) | = f1(7, (1), yGO)| < 3

and

c 070{ c 175{ y(7) = ha(7, y(7)) )
o o (W) ZY(T)}_fZ(Tfy(T)/Z(f—OT)N <2

there exists a solution z,§ € C([1,2], R) of the coupled system (38)-(39) with

I6y) - .9l < 26,

where

2
1_Z(Di

i=1

0= (MlAl + Msz) =0.38176 > 0.

Consequently, the coupled system (38)-(39) is Ulam-Hyers stable on [1,2]. Finally, we assume that o = 0, we obtain
J(0) = 0. Hence, the problem (38)-(39) is generalized Ulam-Hyers stable.
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Example 5.2. Consider the coupled system

2 2
045,% 1655 (z(7) — hi(7, z(T
ep*7 |cp Z(M)+%zm - fi(g 200, y(Lr), TET,

v v 81(7, z(17)) (40)
755 (1255 (2(1) = ha(g, y (1))
D)7 |p, 72 ( gZ(’Dz}I(T;I) )+ wy (D) | = fa(ty(0), 2(G0), TeT,
under the boundary conditions
(Z(T) — hl(’(,Z(T))) _ 2 (y(f) —hy(t, y(r))) _ 3
81(7, 2(7)) oY g(ny) ).,
(z(r) - hl(nzo:))) ’ ) (ym ~ ha(, y(T)))' . »
g1(1,2(1)) - g2(7,y(7)) — 1)
(Z(T) _hl(TrZ(T))) _ -1 (y(T) — hy(7,y(17)) 25 1359
giwz(@) Jlz U\ m@y@) s ™ T

where T =[1,2],a1 =1,a, =2 and

(-1
g1(7,2(1)) = e_ﬁ; (|cos(D)llz(0)| +2), T € T, z € C(T,R),
82(7,y(7)) = 'Slzr;(f)'qy@n +lcos(t)| +1), €T, y € C(T,R),
hy (7, 2(7)) = 13'3;?;7:)&(1) + 3_}3?271# teT, zeCT,R),
2

ho(t,y(0) = S gy + 1tan (0 + 2m), 7€ 7, y € CT R,

] AT %I sin(7)| (Z(%T) + cos(1)z(1) + 1)
(e 0y0) = w1 i+ CETN T2y e QTR

T | sin?(7)| | cos(7)z(7) Z(ET) e
B ym26) = S5 | 7s ol 5, |Z(1’c)| A

5

Clearly, the functions f1,f, € C(T X R?,R) are continuous. Hence the condition (CD1) is satisfied.
Foreachz,2,y,y € Rand t € T, we have

(t—%)
21(7, 2) - €1(7, 2)| € ——5— 12~ 12,
_ | sin(T)| _
Ba(t,y) ~ g5, ) < oy g,
-1
Ihi(7,2) — hy (7, 2)] < | 5 e( )|| -2,
COS™(T
Iha(7,y) = ha(t,9)| < =5 ly -9
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Hence, the condition (CD2) is satisfied with

(t-3)
q(7) = T3

-1
rl(T) - 33n€ ’

| sin(7)]
Qa(7) = YT
oy = |05
2 T 73e2+T
so we have

V31 1
ql_ne\/i,rl_33ﬂ€’q2_ﬂ,
.1
1‘2—@.

Let z,y € R. Then

1

If1(7, 2, y)| < 70@——T+§ (yl+1zl+1), teT,
| sin®(7)|
35eT+3
and so, the condition (CD3) is satisfied with

f2(7, 2, y)l < (Iyl + IzI) + [tan™! ()| + ¢, T € T,

-1

70e-7+3

p1(7) = p2(7) = pa(7) =
V3

Pl—Pz—pS_me\/if
e | sin?(7)|
mm=§g,m®=mm=3&w,
*__n *_*_L
M =35 27097 550
Set
N6 . _ln
817 7 ™M T 3587

*_l . 5n
827 T30 T Zpa

In addition, condition (CD4) and (23) of Theorem 3.5 are satisfied if we take
0.91882 < y < 11.983.
By Theorem 3.5, the coupled system (40)-(41) has at least one solution in 7.

6. Conclusion

3422

In this paper, we employed the 1-Caputo derivative to analyze solutions of a novel class of hybrid
Langevin-pantograph fractional coupled systems. Our study primarily focused on the existence, unique-
ness, and stability of these solutions under non-local and two-point boundary conditions. This work
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represents the first exploration of the combined Langevin and pantograph differential systems within a
fractional framework.

The hybrid formulation of the coupled system allowed us to apply Dhage’s hybrid fixed-point theorem,
specifically for the sum of three operators, alongside with Banach’s fixed-point inequalities. We also exam-
ined the system’s stability through the Ulam-Hyers stability model and its generalized variants.

To substantiate our theoretical findings, we provided practical examples, contributing new insights and
broadening the scope of previous research in this domain.

Looking ahead, we recommend further research on similar problems that incorporate generalized
fractional derivatives within the context of impulsive systems. Additionally, future studies could explore
alternative fractional models, including those utilizing multipoint boundary conditions.
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