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Analytical approach and stability results for Caputo generalized
proportional fractional differential equation involving two different
fractional orders

Hamid Lmou®”, Khalid Hilal?, Ahmed Kajouni?, Brahim El Boukari®

*Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract. The results presented in this research paper investigate the existence, uniqueness and stability
for a new class of Caputo generalized proportional fractional differential equation involving two different
fractional orders. We expose and highlight some of the characteristics of the generalized proportional
fractional derivative. We established the existence and uniqueness results by employing Schaefer fixed
point theorem and Banach contraction principle, and also we investigate different kinds of stability such as

Ulam-Hyers and generalized Ulam-Hyers stability. As application, we provide an example to demonstrate
our theoretical results.

1. Introduction

Fractional differential equations (FDESs) have recently captured the attention of many mathematicians,
because it can effectively represent a variety of scientific phenomena, and has been proven to be effective
in physics, mechanics, biology, chemistry, and control theory, and other domains for example, see [1, 5, 7,
11,12, 14, 15, 20-28].

There are numerous approaches to define fractional integrals and derivatives, however the most well-
known ones are the Riemann-Liouville and the Caputo fractional integrals and derivatives, this derivatives
had been effectively employed to develop models of long-term memory behaves and the challenges that
emerged in numerous scientific and technological fields [4, 8-10], for more details for Caputo fractional
derivative, we direct readers to the papers [3, 18, 31]. In [16], Jarad et al. as the modification of the
conformable derivatives [2, 17], the authors introduced a novel kind of fractional derivative, that called
generalized proportional fractional (GPF) derivative. Anderson et al. [6] were able to handle with the fact
that the fractional conformable derivative does not tends to the original function where the order p tends
to 0, by defining the proportional derivative of order p by

DIy(t) = &(p, DN(T) + Ea(p, DY (1),
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where &1,&5 : [0,1] X R — [0, 00) are continuous functions such that, for all 7 € IR,
lim El(P/ T) = 1/ lim EZ(P/ T) = 0/ lim 51(,0/ T) = 0/ lim EZ(P/ T) = 1/
p—0* p—0* p—1- p—1-

and &i(p, 1) # 0,&2(p, T) # 0, p € [0, 1], by this modifications, the new proportional derivative tends to the
initial function when p tends to 0.

In the previous few decades, authors are interested to study this new fractional derivative for that and
motivated by the mentioned works, in this paper, we combine their ideas to investigate the existence,
uniqueness and stability results for the problem of the form

S “D2aw(1)) = b, w(1)), T € A= [y,0],

A

w(y) =0, wd)= Zv, ’Xw<@,>+2fﬁ' ().

j=1

(1)

Where D77 and GD‘D X are the Caputo generalized proportional fractional derivative of order 5,0 <o <1

r
and o, 0 <o <1, respectively. } Yand 3 ‘”ﬁ " are the generalized proportional fractional integral of order

aj, Bi>0,x€0,1],y=20,vj,; €R, j= 1,...,m,i= 1,.,m,y<01<..<0, <0,y <K <..<ky<06and
he C(A xR, IR).

The rest of this paper is organized as follows : In section 2, we recall some notations, definitions, and
lemmas from fractional calculus that will be used in our study. In section 3, we discuss the existence results
for the problem (1) by making use of Schaefer’s fixed-point theorem and to deal with the uniqueness result
we use Banach’s contraction principle. In section 4, we discuss the Ulam-Hyers stability and the generalized
Ulam-Hyers stability of solutions for the problem (1). Finally, an example is provided to illustrate the main
results.

2. Preliminaries

Definition 2.1. [6] For xy € (0,1]. Let &1, &2 - [0,1] X R — [0, 00) be continuous functions such that, forall T € R,
lim 51()(/ T) = ]-/ lim EZ(X/ T) = 0/ lim 51()(/ T) = 0/ lim 52(){/ T) = ]-/
x—0+ x—0* x—1- x—1-

and E1(x,t) #0,&2(x,7) # 0, x € [0, 1], then the proportional derivative of order x of Yy is defined by

D*h(t) = &1(x, D(T) + S20x, DY (1), 2)
By setting £1(x,T) = x — L and &(x, T) = X, (2) becomes
D*h(7) = (1 - x)b(1) + xb'(7) (©)

Definition 2.2. [16] For x € (0,1], 0 € Cwith Re(c) > 0. The GPF integral of order o of a function’t) € L'([y, 6], R)
is defined by

30h(1) = ar(g) f Tl e - s)“’lb(s)ds (4)

where I'() is the gamma function.

Definition 2.3. [16] For x € (0,1], 0 € C with Re(c) > 0. The Caputo GPF derivative of order ¢ of a function
h e C*([y,o], R)is deﬁned by

C0x \1(_[ s) n —0-1 1
) = Sy | =) s ®)

where n —1 < o < n, n = [Re(o)] + 1 where [Re(0)] is the integer part of Re(c), and (D" h)(1) = (D*b(t))" with
D*h(t) = (1 = x)b(7) + xb'(7).
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Lemma 2.4. [16] For x € (0,1], 0, ® € C with Re(c) > 0 and Re(@) > 0. Ifh € C([y, 6], R) then we have

(\/O’ )((w(D )(b(T) ¢~17+m )tb(T), > )/ (6)

7/* V* 7/*

Lemma 2.5. [16] Let x € (0,1], n € N*, b € L'([y, 6], R) and 37h € AC"([y, 6], R). Then

(t—y)*

V) e —k+ 1) @)

S (EDIY)() = b(r) — €T >>Z (3o

Lemma 2.6. [16] Let 0, ® € C with Re(o) > 0 and Re(v) > 0. Then for each x € (0,1] and n = [Re(c)] + 1, we have

T X
(3267w =) = DD ), Ref) > 0.

(i 2P D=y = F e TN =), Relo) >

(iii)( DI )/)k)(’[) —0, Re(o)>n, k=0,1...,n—1.

Theorem 2.7. (Schaefers’s fixed point theorem)[30, 32]
Let X be a Banach space and K : X — X, be a completely continuous operator. If the set Y, = fw € X | w =
eKw; 0 < e <1} is bounded, then K has at least a fixed point in X.

Theorem 2.8. (Banach’s fixed point theorem)[13]
Let X be a Banach space, C a closed subset of X. Then any contraction mapping K from C into itself has a unique
fixed point.

3. Main Result

Lemma3.1. Lety>0,0<0<1,0<® <1, and e C(A R). Then the function w is a solution of the following
boundary value problem:

DDV w(r) = (1), TeEA:= [y,é]
m . 8
w(y) =0, w() = Zv 3 ])‘w(gj) + Z ‘”ﬁ’ Yw(i), v < 0j, ki <9, ®)
j=1
if and only if

(c= )6
Ox°T(@+1)

x| I150) - 2 TP ) = Y v ])]

j=1

w(t) = I (0) +

-1
x-1
= (t —y)Pe ™
— e m+o 1
- Mr(@ +0) f 1O T+ 1)

I /%1(0—5) _ oy@+o-1
x|:XcD+(71“((D+O.)‘f}: e (5 S) T(S)ds (9)
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n

1 ki P
— E ; (Ki=s) (. @+0+i-1%(5) 4
ex Ki—S s)as
Li )(‘D*"”ﬁ"r(’D 5 ,Bz) fy‘ ( i ) f( )

i=1

n

0j
_ (0, s) —3 o+o+aj-1 s)ds
Z ]X(D+U+a]1"(® +0 +(1]) f ) f( ) 7

j=1

where

- (x; — y)@+ﬁte%(Ki—V) n (Qj _ y)wm,-e%(@/—)/)

o= . .
Z f x>PT(@ + Bi + 1) Z Vi X (@ + aj + 1)

i=1 j=1
(65 =) T
 X°T(@+1)

#0. (10)

Proof. Let w be the solution of problem (8). By applying the GPF integral of order o, @ and Lemma 2.5 with
Lemma 2.6, the first equation of problem (8) can be expressed as

( 7/)@6 X (@) x-1

w(t) = Ma+cr;cf( )+ do T 1) +die T ), (11)

where dy and d; are constants. Next, by using the boundary condition w(y) = 0 in (11) we obtain d; = 0 then

(x—y)e T

w(t) = N;?:rwf(’f) +do T T+l (12)
next, by using the boundary condition w(6) = Z V]J o Xw(gj) + Z Ll‘vﬁ ““w(k;) in (12) we obtain
PR | (I  OSUIIIINIR SIS
0= ®[oy+ i(®) 21 L3P () ]Zl v ST ,)} (13)
where @ is given by (10). Substituting the value of dy in (12) we obtain
w(r) = 37°(r) + (@—X ?;(;J:;)
x [S;?G”‘f(é) - Z IR (Y i Vi30T »]. (14)
i=1 j=1

The converse follows by direct computation that the solution w(t) given by (9) satisfies problem (8) under
the given boundary conditions. [

4. Existence and Uniqueness Results for Problem (1)

In this section, we present the existence and uniqueness results for the problem (1).

In view of Lemma 3.1 we define the operator K : C — C by

(c—y)e T

(Kw)(r) = 37" (t,w(0) + =g Lroms
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n m

x [M’Wb(a w(6)) - Z L3P0, we)) = ) v by, w(g)

=1

_ = (T s) (D+O 1
= ‘D+“1"(cD o) f b(s, w(s))ds

(T - V){ve X v @) 1 f ) o+0-1
Ox°T(@+1) |x**T(@+0) J, € (6-5) b(s, w(s))ds (15)

n

1 g,
B Y — I T et s

= X (@ + 0 + Bi)

— \T _ o\otot+a—-1
Z Vj (D+a+a]1"((a+a+a])f S) ! b(S,ZU(S))dS

where C = C([y, 6], R) denotes the Banach space of all continuous functions from [y, 6] into R with the
norm [lwll := sup{lw(o)}; 7 € [y, 81).

Now, to deal with the existence and uniqueness results for the problem (1), we use the following
notations to simplify the computations

( 5— y)(D+0'

XorT(@+0+1) (16)
S Clab ©-y Z T b i
T ®xeT (@ + 1) | x*T (@ + 0 + 1) "X PT(@ + 0 + B + 1)
)[D+U+a]
+ Z [vil @+a+a,r(@ Yota+ 1)] (17)

We reveal the principal results under the following hypotheses.
(H1): b(t,v) =b(r,w)| < Llv—w|; L >0, foreach 7 € [y,0] and v,w € R.

(H): there exist non-negatives continuous functions 11 and 1, such that
b(z, )| < P1(7) + Pa(D)lwwl, (z,w) € [y, 0] X R, with |91l = supeepy 511P1(D], 12l = suprepy,s1lip2(T)l.

(H3): ||1’[Jz||(91 + 23) < 1, where U and B are given by (16) and (17).

4.1. Existence result based on Schaefers fixed point theorem

Theorem 4.1. Assume that (Hy) and (H3) are satisfied. Then, there exists at least one solution for the problem (1)
on [y, 0d].

As a means of demonstrating Theorem 4.1, we will prove that the operator K satisfies the conditions of
Theorem 2.7 (Schaefer’s fixed point theorem).

Proof. Consider the operator K defined in (15), we will show that K is a completely continuous operator.
Step 1: K is continuous.

By using the continuity of function b, it follows that K is continuous.

Step 2: K is bounded.

Let N a bounded set, such that N' C B, we will show that K(N) is bounded for all w € N. For each 7 € A
and w € N, we have
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(x—y)e T

|(Kw)(@)| < 37 b(x, w(w))] + @+ 1)

[”‘D“’le(é w(®))| + Z a3 g ) + ) vi ST e w(gp) |,
j=1

S f e T 7 - )" (s, wls)lds
- X‘D”F(@ +0) y ’
(T - )(De * @ 0 X—’,l(é—s) @+o-1
T T@ + 1) | ¢ T(@ +0) f; ‘ (65" Io(s, wis)lds
i Sl g (OO
+ Z ®+(7+[§ r(LD +0+ ﬁ ) f e ( Ki S) |b(S/ W(S))|dS

A (07 s) _ @+o+a;-1
+Z Vi (D+U+a]r(®+(7+05])f e Q ) |b(S,ZU(S))|dS],

using (H;) and the property T <1 for y<s<t<t<ditleadsto

( _ )(D+(7 (6 _ y)@
(K0 < e Wil + llval) + & oma T
(6 — )/)u)-Hf
x [ —Ta ooy Wl + iyl

)1D+0+ﬁ,'

(i —
+ Z T o T pi T 1)(ntpln + lwllgall)

_ )(D+U+aj

(i -y
+ ; M m——— (gl + feolliall)

G-y 6-yr
< (i + p”%”)xmwr(@ o+ T @her@+ )
(6 y)mm . ZI | (Kz _ )@+U+ﬁi
X T(@+0+1)  dmt @@ + 0 + B+ 1)
m .
(Q' _ ,)/)LD+(7+0(/

+ ) i - (Ilpall + pllps )

j=1

XN (@ + 0 + aj + 1)

< (Il + pligl) (20 + ),

then ||Kw|| < (||ll)1|| + p||¢1||)(91 + 23), where A and B are given by (16) and (17).
Step 3: K is equicontinuous.
Let 71, 72 € [y, 6] such that 71 < 72, and for each w € N we obtain

[(Kw)(t2) — (Kw)(71)]
1 T

+ m fﬂ (T2 = 8)**7Ib(s, w(s))lds

[(r2 =877 = (1 = )77 [Is, wis))lds

3442
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|(,[2 _ y)weXTf](Tz—y) — (11 — )/)mex«%](“_y)

®x°T(@ +1)

[ S f =)™ s, we)ids

+le T f (ki =) (s, wis)lds

+

1D+0+aj—1
+Z Vi n+o+a]1"(@+o.+a])f |b(S,W(S))|dS],
(||4)1|| + pligall) .
= Y T@+o) f @ e (=) s

M f”rz (s — S)@+a—1ds

X+ T(@ + o)

Joe T @)=00) _ - y>|

(11 = p)°e’T
®x°T (@ + 1)

y [(nwln + pllall) fé oo

X+ T(@ + 0)

|(T2 -7
+

o (Il + pllyall) ool
+ ZZ; L BT (@ + 0 + ) (Ki - s) ds

Zm.‘ (bl + pllyall) o (Qj_s)@w]._l ds],
=1

X2 (@ + 0 + a])

(Ilgall + plipal)

Xt T(@+0+1)
(22 = )T @) = (11 = e T )|
Blx°T(@ + 1)
(Il + pllyall)
| (6-7)

X T(@+0o+1)

(2(,(2 —71)®* + '(Tz _ y)ma — (11 — 7/)m+o|)

+

+Zn: (Igall + pliy2l) (=)

Li XOHHPT(@ + 0+ Bi + 1)

S (Il + pllyal oto+a;
+Z Vi X2+ 1 2) (Q _7/) ]’

“T(@+o+a;+1)

3443

the right hand side tends to zero as 7, — 74, indepently of w € N which leads to |[(Kw)(t2) —
(Kw)(11)] — 0 as 1, — 7 this implies that K'(N) is equicontinuous. From step 1, step 2 and step 3 it
follows by using the Arzela-Ascoli theorem that the operator K is relatively compact, as consequence the

operator K is completely continuous.

Step 4:Theset Y, = {w € C(A,R) |w = eKw; 0 < e <1} is bounded.
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We are going to show that the set Y, is bounded. For all w € Y, by using (H;), we have

(t - y)me%](T—)/)

|w(0)| < 397 (T, w(T)| + TOeT(@+ 1)

[‘”‘”*””‘Ib(é w(6)>|+lets?f”+“|b(xl,w(xl |+Z Vi30T (e, wion)l |,

x= 1(7 s) (D+af
s ] T s v

T— )‘De X (=) 1 D =15 @+0-1
( = x°+T(@ + 0) f e S)((S _S) [b(s, w(s))lds

1®lx°T(@ +1)

1 i i @+o+pi—1

. X (Ki=$) (1. _

+ X; i BT @ + 0 + ) f e (K, s) [b(s, w(s))lds
1

ik o+o+aj—-1
+ Z vi mm,r(m ToTa) f e g ~s) IbGs, w<s))|ds],

using (H») and the property T <1 for y <s<t<t<oitleads to

( — ,)/)(D+O‘ (6 — y)(D

o) < e e il + llval) + G om oD
(6 _ 7/)LD+0
[ T ro Tl + kellyal)

_ )m+a+ﬁ,

n
(ki—7y
’ ;‘ |”';‘(“’*‘”ﬁfl“(ca +o+pi+1) (”%” " Iw”l%”)

+Z|v, o -y (||¢1||+|w|||¢2||)]

X T (@ + 0 +aj+ 1)

©=-9)°" ©—y"

< (Ihpall + olllyall) X" T(@+0+1)  [Ox°T(@+ 1)
_ ~\o+0 n . — A \o+o+Bi

X[ 0-y) +Z"' (ki =)

Xo+T(@+0+1) "X (@ + 0 + B + 1)

(Q‘ _ )@+a+a,

n
]
+ j +
12:1 |v]|Xm+a+ajr(@ Totat 1)](Ilwlll |w|||l,l)2||)

< (Iall+ ol (20 + ),
< (24 B)l + ol (2 + B),

Where U and B are given by (16) and (17). Thus, we have

(2 + B)iiyl

ol € —————.
‘ 1= [lyall(A + B)

This proves that the set Y, is bounded in C(A, R), by using Theorem 2.7, K has at least one fixed point
which is the solution of the problem (1). O
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4.2. Uniqueness result based on Banach fixed point theorem

The second existence and uniqueness result will be established using Banach fixed point theorem.

Theorem 4.2. Assume that (Hy) is verified. If L(‘ZI + 58) < 1, where A and B are respectively given by (16) and
(17), then the problem (1) has a unique solution on [y, 6].

Proof. Consider the operator K defined in (15). The problem (1) is then can be transformed into a fixed
point problem w = Kw. By using Banach contraction principle we will show that K has a unique fixed
point.

We set sup.epy,51 = [b(7,0)] = M < 00, and choose p > 0 such that

MU+ 9)

1 L) (1%

p=

B, = {w € C([y, 6], R); |[w|| < p)}, where U, B are respectively given by (16) and (17).
Step 1: We show that KB, C B,,.
For any w € 8, we have

I0(z, w(7))I < [H(7, w(T)) — H(7, 0)| + [H(7, 0)
< Liw(t)| + M
< Llw|+ M,

then we have

(c = )T

|(7(w)(7)| = STUXW(’CW(T)N + O @+ 1)

[Mmaku)(é w(0))| + Z Llw;?:'0+ﬁr (i, w(ki))| + Z ijju?jow, “Io(o, wigl],
l(rg) @o+0-1
= ‘D+f’1"(cv +0) f eI w =) (s, wis)ds
G R f ‘3 e O9(5 - 5)"" (s, wis)ids
IBlx°T(@ + 1) [x**T(@+0) J, ’
Ki /\)(l(KI s) _ o+o+pi—1
+Z X+ r(®+6+ﬁ)f € ( Ki 5) [b(s, w(s))lds

A (07 s) _ ®+o+aj—-1
+ Z (D+U+a/r((1)+0+0(])f e Q ) |b(5/w(5))|d5]/

using (H;) and the property e T <1 for y<s<t<t<ditleadsto

=P 6y
|(7(w)(T)| < YT (@ +0 + 1) (.£|7«U| + M) + Olx?T'(@ + 1)
(b _ .)/)(D-HF
[ XHT(@+ 0+ 1)<Llw| ’ M)

)(D+o+ﬁ,-

(ki
+Z|lz @+g+[5rw+o_+ﬁl+1)( IwI+M)
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_ )m+a+a]-

(Q]
+ ; |Vj|Xm+a+th1"((D +o+aj+ 1) (£|W| + M)]
(CD((S) — (D(’)/))(D"'O (6 _ )/)CD

< (Ll + M) e 7T B0 1)

_ ,)/)(D+a+ﬁi

6=y Z I (xi
X T(@+0+1) & ) FT(@ + 0 + i +1)

+ ZI vil (o =y ](Llwl + M)

Xt l(@+ o0 +aj+1)

< (1:|w| + M)(2+B),
< (Lp+ M)A+ B),
<p
which implies that KB, C B,,. Where U, B are respectively given by (16) and (17).

Step 2: We show that the operator K is a contraction.
For any v,w € C, and for 7 € [y, 6], we have

(z = )%T )

[(Ke)x) - (Kuw)(w)| < 3o, o) = bw @) + ~g ore—y

vt

30,0000 - o6 o) + Z S, 0() = B (k)

+ ) v gy, 0(07) — b(@j,w(@j))l},

j=1
< f Te%W*S)(T )" (s, 0(s)) - B, wls)lds
- )(‘D“’l"(cv +0) ’ ’

_ o) o .
+(T@|fw)rf@+1> [ty [ 7= s o0 s s

K Ki—$ o+o+pi—1
+Z Mﬁ,r(m“ 5 f e T i~ s) 1b(s, 0(s)) = Bls, w(s))lds

s ®+o+aj—-1
+ Z mm,r@ . f e g ~s) Ib(s, 0(s)) = B(s, w(s)lds |,

(6 _ ,)/)(D+U N (6 _ ,)/)u)
x> T(o+o+1) |O)x°T'(o+1)

< (le - w|)
_ )(D+J+ﬁ,

G-y (i
[)(®+01“(ca +o0+1) * ;4 ll";(mf”ﬁir(ca +o+pi+1)

_ )(D+O‘+Ué]'

- (o)
+ le |V]|X(D+U+Déj1"(® +o+a;+ 1) (le B ZU|),

< L(QI + %)w —w),

3446

which implies, [|Kv — Kuw|| < L(‘ll + %)llv —w||. As L(‘ZI + 23) <1, then K is a contraction. Therefore, by
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Banach fixed-point theorem, the operator K has a unique fixed point which is indeed the unique solution
of problem (1). O

5. Ulam-Hyers and generalized Ulam-Hyers stability analysis

In this section, we are interested to study the Ulam-Hyers (U-H) and the generalized Ulam-Hyers
(G-U-H) stability of problem (1).

Let € > 0, we consider the following inequality

“D2( S (m) - b BN <6, Te A= [0l 19

vt

Definition 5.1. [29] The problem (1) is U-H stable if there exists A > 0, such that for each € > 0 and for each solution
W € C of inequality (19), there exists w, € C solution of the problem (1) complying with

lo — w|| < Ae. (20)

Definition 5.2. [29] The problem (1) is G-U-H stable if there exists ¢ € C with ¢(0) = 0, such that for each € > 0
and for each solution @ € C of inequality (19), there exists w € C solution of the problem (1) complying with.

1@ = wl| < @(e). (21)
Remark 5.3. A function @ € C is a solution of inequalities (19) if and only if there exists a function g € C such that
- la(Dl <€,
ii- fort €[y,0]:

%;f( %‘;;Xw(q:)) = b(z, @(1)) + (7). (22)

To simplify the computations, we use the following notations:

6 -y Z = )t
X T(@+0o+1) |®|)(‘Dl"(ca +1) XOTBT(@+ 0+ Bi+ 1)

} (23)

(24)

Q =£{

)o+a+a,

(65— y)o+o Z o (0j -
xo*T(@+0+1) X T(@ + 0+ aj+ 1)

(6 _ y)(DJrO'

Q, =
2T Xt T(@+0+1)

Theorem 5.4. Assume that (Hy) hold, if OOy < 1 then the problem (1) is Ulam—Hyers stable on [y, 0] and consequently
is generalized Ulam—Hyers stable, where Q) is given by (23).

Proof. Let ¢ > 0, and @ € C satisfies inequality (19), and w € C be the unique solution of the problem (1)
with the conditions @W(y) = w(y), @(0) = w(0), then by Lemma 2.5, we obtain

<~(D+J (T — y)@e)‘%(T—V)
w(t) = (T, w(1)) + O T@r1)
X | 32506, () = ) 635y s, wi) = Y i3 (e wi(g)

i=1 =1
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_ *— (T-s) m+o 1
= mar(@ o) f b(s, w(s))ds

(1 =)

Ox°T(®+1)
1 3 x-1
e 7(6_5) _ o\ot+o-1
8 [)(‘D“’l"(ca +0) f; € (6 =) (s, w(s))ds (25)
n 1 Ki
i = (Kki=S) (4. o+Bi—1
. Z;‘ XN @+ o + ) f e e = )T, (s)ds

_ XT 0j— _ \@o+o+a—1
Z Vj (D+a+a]1"(®+o.+a])f S) ! [)(S,ZO(S))dS ’

Since, @ € C satisfies inequality (19) by using Remark 5.3 we have

DI DN @()) = b(r, D(7)) + (1), T € A= [,5], .
w(y) =w(y) , @O) =wd),
then by Lemma 2.5, we obtain
~ @+0, ( _y)@e)%l(ﬂﬁw
— @+ox
X | 39771 (6, W(0)) 2 LSy s, () = Y v (e, @(0y)
j=1
_ f = ) )oro= 1b(s w(s))ds
D+(II"(CD + U)
(T - 7/)@6 * P ) 1 l(5—s) @+0-1 ~
Ox°T(@+1) [x**T(® +o0) f ! ©=s) (s, (s)ds
_ - 1 < (1<, s) o+o+pi—1
;L T f e (ki — 5) B(s, (s))ds
— l(g-s) @+ot+aj—
Z Vi (D+U+“/F(ca +0+aj) f ‘ =9 s, W(s)ds
1 ‘ XT',l(r—s) _ o\@+o-1
+ X(D+UI“(6D + O') ]}: € (T S) g(s)ds, (27)

for each 7 € [y, 8], we have

|@(t) — w(7)|

(1= )%

< 3o, () - b(r, ()] + O T@ 1)

ST [0(6, w(9)) ~ (&, w(@))| + Z| P o i, 1)) = B0, ()|

i=1

+ Z Vi30T (o), @(0)) - Doy W(@])I] I,
=

X
r—1
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using (H;), the property e’ <1 for y £s <t <1< 0and Remark 5.3 leads to

_ _ )(D+O‘ _
ol < — oD o - i

G Zn: P b Ve
IG)I)((DF(@ +1) XOTBT(@+ 0+ i+ 1)

© -y (0j =)™
Xo*rT(@+ 0+ 1)£”w wll+ ]Z; il XU (@ + 0 + aj + 1)

(6 _ ,)/)CD'FO
x**T(@+o+1) "

(6 _ ,)/)(D+U N (6 _ ,)/)u)
x> T(o+o+1) |Ox°T(o+1)

n ;= @+0+; 5 — )@+
X[Z"' (xki—y) R b

- f X T(@+o+Bi+1) xOT(@+0+1)

n . 4 \0+0+a; 5 — v)@to
Y ) ]}+ STk
= X T(@+o+a;+1) XT(@+0+1)
< ||ZT) - ZU”Q1 + QzE,
< Ol — wl| + e,

()]
< &,
1-O

Ll — wl|

Ll — wl|

<l - wIIL{

which implies,

By setting A =

|0 — wl| < €. (28)

1-O
Q
—q where () and (), are given by (23) and (24), we obtain

|0 — w|| < Ae. (29)

This proves that the problem (1), is U-H stable.
consequently, by setting ¢(¢) = Ae with ¢(0) = 0 we get

@ - wl| < @(e). (30)

This shows that the problem (1) is G-U-H stable. [

6. Example

Consider the following problem

L@?/%(L@?'% ( ))) e’ (M), TEAN:= [0,1]/

4+ e\ + |w(T)]
121 1 231 2 3., 4
w(0) =0, w(l) = 5\53Zw(§)+5\53'2w(§)+5\57'230(5) (31)
+§S%’%w(l) + §S% %w(é)
7 27 4
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3 5 1 1 2 3 2 3 4
h = — = — = — = =1 A= 1 = = — = — = — = — = — = —
W erleo 72,(0 7;})( 57 03,6 ,5 [0,4 ], m 43, 7 15,1/2 5,1/; =S ==
= - = - = - = 2 = - = - = - = - = - d = -
N=30=3,06=5n=50=50 7,51 3,52 3 ¥1=gandie =
. et w . . .
For (t,w) € [0,1] X R,, we define b(t,w) = N eT( s w) D is a continuous function, furthermore for

every 7 € [0,1] and v, w € R, we have

1 v-—w
10z, ©) = b(z, ) < ’6 +etll(1+0)(1 +w)
< 1Iv —w|.
~7
By setting £ = ; > (0 the hypotheses (H;) holds. Next by using the data given above, we get : || = 0.674256,
A = 0.013065, B = 0.756731.
Then

L(QI + 23) =0, 142857 x (0.013065 + 0.756731) ~0.109971 < 1.

The problem (31) satisfies all the hypothesis of Theorem 4.2, thus, the problem (31) has a unique solution
on [0, 1]. Additionally, Q; = 0.643688 < 1. Hence, using Theorem 5.4, the problem (31) is both Ulam-Hyers
and also generalized Ulam-Hyers stable on [0, 1].

7. Conclusion

In this paper, we have studied and investigated the existence, uniqueness and stability results for a new
class of Caputo generalized proportional fractional differential equation involving two different fractional
orders. The novelty of the considered problem is that it has been studied under Caputo generalized
proportional fractional derivative, which is more general than the works based on the well-known Caputo
fractional derivative. In this work we established the existence and uniqueness results for our problem, by
using a standard fixed point theorems (Schaefer fixed point theorem and Banach contraction principle) and
also we examined the stability of our problem by using Ulam-Hyers and generalized Ulam-Hyers stability.
Finally a numerical example is presented to clarify the obtained results.
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