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Abstract. A graph G is induced matching extendable or IM-extendable if every induced matching of
G is contained in a perfect matching of G. For a bipartite graph G[U,V] with |U| = n1, |V| = n2, and
n1 > n2 > 1, we say G is k-critical-bipartite if deleting at most k = n1 − n2 vertices from U yields G′ that has
a perfect matching. Previously, Yuan (1998) and Laroche (2014) provided the structural characterizations
for IM-extendable graphs and k-critical-bipartite graphs, respectively. Since the eigenvalues of a graph are
closely related to its structural properties, we now characterize them from the perspective of the spectrum
of graphs. In this paper, we first provide a tight spectral radius condition that guarantees a graph with
minimum degree is IM-extendable. Furthermore, we present a tight spectral radius condition that ensures
a bipartite graph with minimum degree is k-critical-bipartite.

1. Introduction

In this paper, we only consider finite undirected simple graphs. Let G be a graph with vertex set V(G)
and edge set E(G), we use n and m to denote its order and size, respectively. For v ∈ V(G), let dG(v) be the
degree of v. We use δ(G) (or δ for short) to denote the minimum degree of a graph G. For a subset S ⊆ V(G),
let o(G − S) denote the number of odd components of G − S. A graph G[X,Y] is bipartite if its vertex set can
be partitioned into two disjoint subsets X and Y such that every edge has one end in X and the other end in
Y. For two disjoint graphs G1 and G2, we use G1 ∪ G2 and G1∇G2 to denote respectively the union and join
of G1 and G2. Given two bipartite graphs G1[X1,Y1] and G2[X2,Y2], let G1∇1G2 denote the graph obtained
from G1 ∪G2 by adding all possible edges between X1 and Y2. The adjacency matrix of a graph G is defined
as A(G) = (ai, j), where ai, j = 1 if i and j are adjacent in G, and ai, j = 0 otherwise. The largest eigenvalue of
A(G) is called the spectral radius of G, denoted by ρ(G).

An edge set M ⊂ E(G) is called a matching of G if any pair of edges in M are not adjacent. Moreover, a
matching M is perfect if V(M) = V(G). A matching in G is called induced if no two edges in the matching
are joined by an edge in G. A graph G is called induced matching extendable if every induced matching of
G can be extended to a perfect matching, which was introduced by Yuan [10]. For convenience, we refer
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to G as IM-extendable, which means that G is induced matching extendable. It is easy to see that every
IM-extendable graph must have an even number of vertices.

There are several sufficient conditions for a graph to be IM-extendable. For example, Liu, Yuan and
Wang [8] studied IM-extendable graphs in terms of degree. Wang and Yuan [9] proved a degree sum
condition that ensures a graph is IM-extendable. In particular, Yuan [10] gave the following structural
characterization of a graph that is IM-extendable.

Theorem 1.1 ([10] ). A graph G is IM-extendable if and only if for every induced matching M of G and every
S ⊆ V(G)\V(M), o(G − V(M) − S) ≤ |S|.

On the other hand, note that the eigenvalues of a graph are closely related to its structural properties,
so it is natural and interesting to ask “Are there some conditions from spectral viewpoints to ensure that a graph
G is IM-extendable? ”

Using Theorem 1.1, we first provide a tight spectral radius condition that guarantees a graph with
minimum degree is IM-extendable.

Theorem 1.2. For any even n, let G be a connected graph of order n with minimum degree δ ≥ 5r + 1, where r ≥ 1
is an integer. If n ≥ max{2r + 32δ + 12, δ3

−
2r−3

2 δ
2
− 2(r2

− r − 1)δ − 2r2 + 3r + 3
2 } and

ρ(G) ≥ ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))),

then G is IM-extendable unless G = Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1)).

For a bipartite graph G[U,V] with |U| = n1, |V| = n2, and n1 > n2 > 1, we say G is k-critical-bipartite
if deleting at most k = n1 − n2 vertices from U yields G′

that has a perfect matching. Up to now, much
attention has been paid to k-critical-bipartite graphs. For example, Cichacz et al. [2, 3] studied the problem
of finding a minimum k-critical-bipartite graph of order (n1,n2). Li and Nie [7] gave the characterization
of k-critical-bipartite graphs and they also described the connectivity of k-critical-bipartite graphs. On the
other hand, Laroche et al. [6] gave a Hall-style characterization of k-critical-bipartite graphs.

Theorem 1.3. A bipartite graph G[A,B] is k-critical-bipartite if and only if |N(X)| ≥ |X|+ k for all nonempty subset
X ⊆ B with |X| ≤ |A| − k.

In fact, the definition of k-factor-critical graphs (for a nonnegative integer k, a graph G is said to be
k-factor-critical if G−T has a perfect matching for any T ⊆ V(G) with |T| = k) provides us with a framework.
Within this context, a k-critical bipartite graph can be viewed as a special case of a k-factor-critical graph
when considering only bipartite graphs. In [11], Zheng, Li, Luo and Wang provided a spectral radius
condition for a general graph with minimum degree to be k-factor-critical. In particular, we consider the
case of a bipartite graph in the following. Inspired by the result in [11] and utilizing Theorem 1.3, we provide
a tight spectral radius condition that ensures a bipartite graph with minimum degree is a k-critical-bipartite
graph.

Theorem 1.4. Let k, s,n1,n2,n be integers, where 1 ≤ k ≤ n
2 − 1, n1 ≥ n2 ≥ 2s + k + 1 and n1 + n2 = n. If G[A,B]

(|A| = n1, |B| = n2) be a bipartite graph of order n with minimum degree δ and

ρ(G) ≥ ρ(Kδ+k+1,δ∇1Kn1−δ−k−1,n2−δ),

then G is k-critical-bipartite unless G = Kδ+k+1,δ∇1Kn1−δ−k−1,n2−δ.

The remainder of the paper is organized as follows. In Section 2, we present some preliminary results,
which will be used in the subsequent sections. In Section 3, we will give the proofs of Theorems 1.2 and 1.4.



X. Lv et al. / Filomat 39:10 (2025), 3453–3461 3455

1( 1)k K 1K1 1( 1)n k K 2 1( )n K

Figure 1: Graph Kδ+k+1,δ∇1Kn1−δ−k−1,n2−δ.

2. Preliminary

In this section, we present some preliminary results and lemmas which will be used in the subsequent
sections.

The eigenvalues of an n × n real symmetric matrix M are denoted by λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M),
where we always assume the eigenvalues to be arranged in nonincreasing order. Given a partition π =
(X1,X2, . . . ,Xt) of the set {1, 2, . . . ,n} and a matrix B whose rows and columns are labelled with elements in
{1, 2, . . . ,n}, B can be expressed as the following partitioned matrix

B =


B11 . . . B1t
...

...
...

Bt1 . . . Btt


with respect to π. The quotient matrix Bπ of B with respect to π is the t by t matrix (bi j) such that each entry
bi j is the average row sum of Bi j. If the row sum of each block Bi j is a constant, then the partition is equitable.

Lemma 2.1 (Lemma 2.3.1 in[1], Lemma 9.3.1 in[5]). Let M be a real symmetric matrix, and let λ1(M) be the
largest eigenvalue of M. If Bπ is an equitable quotient matrix of M, then the eigenvalues of Bπ are also eigenvalues of
M. Furthermore, if M is nonnegative and irreducible, then λ1(M) = λ1(Bπ).

Lemma 2.2 (Theorem 2.5.1 in[1]). Let G be a connected graph and let H be a spanning (or proper) subgraph of G.
Then ρ(H) ≤ ρ(G) (or ρ(H) < ρ(G)), with equality holds if and only if G = H.

Lemma 2.3 (Lemma 3.1 in[4]). Let n =
∑t

i=1 ni + s. If n1 ≥ n2 ≥ . . . ≥ nt ≥ 1 and n1 < n − s − t + 1, then

ρ(Ks∇(Kn1 ∪ Kn2 ∪ . . . ∪ Knt )) < ρ(Ks∇(Kn−s−t+1 ∪ (t − 1)K1)).

Lemma 2.4. Let n be an even positive integer. The graph Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1)) is not IM-extendable.

Proof. Let G = Kδ∇(rK2∇(Kn−2δ−2r−1∪(δ+1)K1)). Without loss of generality, let V(M) = V(rK2) and S = V(Kδ).
Then

o(G − V(M) − S) = o(G − V(rK2) − V(Kδ)) = δ + 2 > δ = |S|.

By Theorem 1.1, G is not IM-extendable.
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Figure 2: Graph Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1)).

Lemma 2.5. Let n1,n2, s, k be integers, where n1 ≥ n2 ≥ 2s + k + 1 and k ≥ 1. Then we have

ρ(Ks+k+1,s∇1Kn1−s−k−1,n2−s) < ρ(Ks+k,s−1∇1Kn1−s−k,n2−s+1).

Proof. Note that A(Ks+k+1,s∇1Kn1−s−k−1,n2−s) has the equitable quotient matrix

Bs
π =


0 0 s n2 − s
0 0 0 n2 − s

s + k + 1 0 0 0
s + k + 1 n1 − s − k − 1 0 0

 .
By a simple computation, the characteristic polynomial of Bs

π is

φ(Bs
π, x) = x4

− [n1(n2 − s) + s(s + k + 1)]x2 + s(n2 − s)(s + k + 1)(n1 − s − k − 1).

Observe that A(Ks+k,s−1∇1Kn1−s−k,n2−s+1) has the equitable quotient matrix Bs−1
π , which is obtained by replacing

s with s − 1 in Bs
π. Then by n1 ≥ n2 ≥ 2s + k + 1, we obtain

φ(Bs
π, x) − φ(Bs−1

π , x) = (n1 − 2s − k)(2n2s − 3s2
− 2sk + n2k + s + k + x2)

+ n2s(s − 1) − 2s3
− s2k + 2s2 + sk

≥ k2 + 2s2 + 2s + 2k(s + 1) + x2

> 0,

which leads to λ1(Bs
π) < λ1(Bs−1

π ). It follows that

ρ(Ks+k+1,s∇1Kn1−s−k−1,n2−s) < ρ(Ks+k,s−1∇1Kn1−s−k,n2−s+1)

by Lemma 2.1. This completes the proof.

3. Proofs of Theorems 1.2 and 1.4

By the Perron-Frobenius theorem, ρ(G) is always a positive number (unless G is an empty graph), and
there exists an unique positive unit eigenvector corresponding to ρ(G), which is called the Perron vector of
G.

Firstly, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose, to the contrary, that G is not IM-extendable. By Theorem 1.1, there exists a
vertex subset S ⊆ V(G)\V(M) such that o(G−V(M)− S) > |S|. Since n is even, we have o(G−V(M)− S) ≡ |S|
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(mod 2). Thus o(G − V(M) − S) ≥ |S| + 2. For convenience, let |V(M)| = 2r and |S| = s. It is clear that G is a
spanning subgraph of G′ = rK2∇(Ks∇(Kn1 ∪ Kn2 ∪ . . . ∪ Kns+2 )) for some odd integers n1 ≥ n2 ≥ . . . ≥ ns+2 > 0
with

∑s+2
i=1 ni = n − 2r − s. Then by Lemma 2.2, we have

ρ(G) ≤ ρ(G′), (1)

where equality holds if and only if G = G′. Let G′′ = Ks∇(rK2∇(Kn−2s−2r−1 ∪ (s + 1)K1)). By Lemma 2.3, we
obtain that

ρ(G′) ≤ ρ(G′′), (2)

where equality holds if and only if (n1,n2, . . . ,ns+2) = (n − 2s − 2r − 1, 1, . . . , 1).
Case 1. s = δ.

Combining (1) and (2), we have

ρ(G) ≤ ρ(G′) ≤ ρ(G′′) = ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))).

By the assumption ρ(G) ≥ ρ(Kδ∇(rK2∇(Kn−2δ−2r−1∪(δ+1)K1))), we have G = Kδ∇(rK2∇(Kn−2δ−2r−1∪(δ+1)K1)).
By Lemma 2.4, Kδ∇(rK2∇(Kn−2δ−2r−1∪ (δ+1)K1)) is not IM-extendable. Therefore, G = Kδ∇(rK2∇(Kn−2δ−2r−1∪

(δ + 1)K1)).
Case 2. s ≥ δ + 1.

Recall that G′′ = Ks∇(rK2∇(Kn−2s−2r−1 ∪ (s + 1)K1)). The vertex set of G′′ can be devided into V(G′′) =
V(Ks) ∪ V((s + 1)K1) ∪ V(rK2) ∪ V(Kn−2s−2r−1), where V(Ks) = {u1,u2, . . . ,us}, V((s + 1)K1) = {v1, v2, . . . , vs+1},
V(rK2) = {w1,w2, . . . ,w2r} and V(Kn−2s−2r−1) = {z1, z2, . . . , zn−2s−2r−1}.

Let G∗ = G′′+E1−E2, where E1 = {viz j|δ+2 ≤ i ≤ s+1, 1 ≤ j ≤ n−2s−2r−1}∪{viv j|δ+2 ≤ i ≤ s, i+1 ≤ j ≤ s+1}
and E2 = {uiv j|δ + 1 ≤ i ≤ s, 1 ≤ j ≤ δ + 1}. Obviously, G∗ = Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1)). Let x be the
Perron vector of A(G′′) with respect to ρ′′ = ρ(G′′). By symmetry, x takes the same value (denoted as x1, x2, x3
and x4) on the vertices of V(Ks), V((s + 1)K1), V(rK2) and V(Kn−2s−2r−1), respectively. By A(G′′)x = ρ′′x, we
have

ρ′′x2 = sx1 + 2rx3, (3)

ρ′′x3 = sx1 + (s + 1)x2 + x3 + (n − 2s − 2r − 1)x4, (4)

ρ′′x4 = sx1 + 2rx3 + (n − 2s − 2r − 2)x4. (5)

Observe that n ≥ 2s + 2r + 2. According to (3) and (5), we obtain that x4 ≥ x2. By (4) and (5), we have
ρ′′x3−ρ′′x4 = (s+1)x2−(2r−1)x3+x4. It follows that x4 =

(ρ′′+2r−1)x3−(s+1)x2

ρ′′+1 ≥ x2. Then we have x3 ≥
ρ′′+s+2
ρ′′+2r−1 x2.

Note that s ≥ δ+ 1 and δ ≥ 5r+ 1. Then ρ′′ + s+ 2 ≥ ρ′′ + δ+ 3 > ρ′′ + 2r− 1, and hence x3 > x2. Combining
(3), we have

x2 >
sx1

ρ′′ − 2r
. (6)

Recall that G∗ = Kδ∇(rK2∇(Kn−2δ−2r−1∪ (δ+ 1)K1)). Note that G∗ contains Kn−2δ−2r−1 as a proper subgraph.
Then ρ(G∗) > n − 2δ − 2r − 2. Similarly, let y be the Perron vector of A(G∗), and let ρ∗ = ρ(G∗). By symmetry,
y takes the same value (denoted as y1, y2, y3 and y4) on the vertices of V(Kδ), V((δ + 1)K1), V(rK2) and
V(Kn−2δ−2r−1). By A(G∗)y = ρ∗y, we have

ρ∗y2 = δy1 + 2ry3, (7)

ρ∗y4 = δy1 + 2ry3 + (n − 2δ − 2r − 2)y4. (8)
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Combining (7) and (8), we have

y4 =
ρ∗y2

ρ∗ − (n − 2δ − 2r − 2)
. (9)

Note that n ≥ 2s + 2r + 2. Then δ + 1 ≤ s ≤ n−2r−2
2 . Since G′′ is not a complete graph, ρ′′ < n − 1.

We claim that ρ′′ < ρ∗. Suppose to the contrary that ρ′′ ≥ ρ∗. By x4 ≥ x2, (6) and (9), we derive

yT(ρ∗ − ρ′′)x = yT(A(G∗) − A(G′′))x

=

s+1∑
i=δ+2

n−2s−2r−1∑
j=1

(xvi yz j + xz j yvi ) +
s∑

i=δ+2

s+1∑
j=i+1

(xvi yv j + xv j yvi ) −
s∑

i=δ+1

δ+1∑
j=1

(xui yv j

+ xv j yui )

= (n − 2s − 2r − 1)(s − δ)(x2y4 + x4y4) + (s − δ − 1)(s − δ)x2y4 − (s − δ)(δ
+ 1)(x1y2 + x2y4)
≥ (s − δ)[2(n − 2s − 2r − 1)x2y4 + (s − δ − 1)x2y4 − (δ + 1)x2y4 − (δ + 1)x1y2]
= (s − δ)[(2n − 3s − 4r − 2δ − 4)x2y4 − (δ + 1)x1y2]

> (s − δ)[(2n − 3s − 4r − 2δ − 4) ·
sx1

ρ′′ − 2r
·

ρ∗y2

ρ∗ − (n − 2δ − 2r − 2)
− (δ + 1)x1y2]

=
(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
[(2n − 3s − 4r − 2δ − 4)sρ∗ − (δ + 1)(ρ′′

− 2r)(ρ∗ − (n − 2δ − 2r − 2))]

=
(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
[ρ∗(2n − 3s − 4r − 2δ − 4)

s
δ + 1

− (ρ′′

− 2r)(ρ∗ − (n − 2δ − 2r − 2))].

Note that s ≥ δ + 1, ρ′′ ≥ ρ∗ and ρ∗ > ρ∗(Kδ) = δ − 1 ≥ 5r. Then

yT(ρ∗ − ρ′′)x >
(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
[ρ∗(2n − 3s − 4r − 2δ − 4) − ρ′′ρ∗ + ρ′′(n − 2δ

− 2r − 2) + 2rρ∗ − 2r(n − 2δ − 2r − 2)]

=
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
[(2n − 3s − 4r − 2δ − 4) − ρ′′ +

ρ′′

ρ∗
(n − 2δ

− 2r − 2) + 2r −
2r
ρ∗

(n − 2δ − 2r − 2)]

>
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
[(2n − 3s − 4r − 2δ − 4) − ρ′′ + (n − 2δ

− 2r − 2) + 2r −
2
5

(n − 2δ − 2r − 2)]

=
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
(
13
5

n − 3s −
16
5

r −
16
5
δ −

26
5
− ρ′′).

Since Ks is a proper subgraph of G′′ and δ ≥ 5r + 1, ρ′′ > ρ(Ks) = s − 1 ≥ δ > 2r. Note that s ≤ n−2r−2
2 ,
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ρ′′ < n − 1, ρ∗ > n − 2δ − 2r − 2 and n ≥ 2r + 32δ + 12. Then

yT(ρ∗ − ρ′′)x >
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
(
13
5

n − 3 ·
n − 2r − 2

2
−

16
5

r −
16
5
δ

−
26
5
− ρ′′)

=
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
(

1
10

n −
1
5

r −
16
5
δ −

6
5
+ (n − 1) − ρ′′)

>
ρ∗(δ + 1)(s − δ)x1y2

(ρ′′ − 2r)(ρ∗ − (n − 2δ − 2r − 2))
·

n − 2r − 32δ − 12
10

≥ 0.

This implies that ρ∗ > ρ′′, which contradicts the assumption ρ′′ ≥ ρ∗.
By ρ∗ > ρ′′, (1) and (2), we conclude

ρ(G) ≤ ρ(G′) ≤ ρ(G′′) < ρ(G∗) = ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))),

which contradicts ρ(G) ≥ ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))).
Case 3. s < δ.

Recall that G′ = rK2∇(Ks∇(Kn1 ∪Kn2 ∪ . . .∪Kns+2 )). Then dG′ (v) = ns+2 − 1+ s+ 2r ≥ δ for v ∈ V(Kns+2 ), and
hence ns+2 ≥ δ − s − 2r + 1. Let G′′′ = rK2∇(Ks∇(Kn−s−2r−(s+1)(δ−s−2r+1) ∪ (s + 1)Kδ−s−2r+1)). By Lemma 2.3, we
have

ρ(G′) ≤ ρ(G′′′), (10)

where equality holds if and only if (n1,n2, . . . ,ns+2) = (n − s − 2r − (s + 1)(δ − s − 2r + 1), δ − s − 2r + 1, δ − s −
2r + 1, . . . , δ − s − 2r + 1).

Let ρ′′′ = ρ(G′′′). We claim that ρ′′′ < n − 2r − 1 − (s + 1)(δ − s + 1). Suppose to the contrary that
ρ′′′ ≥ n−2r−1− (s+1)(δ− s+1). Let z be the Perron vector of A(G′′′). By symmetry, z takes the same values
z1, z2, z3 and z4 on the vertices of V(Ks), V((s + 1)Kδ−s−2r+1), V(rK2) and V(Kn−s−2r−(s+1)(δ−s−2r+1)), respectively.
By A(G′′′)z = ρ′′′z, we obtain

ρ′′′z1 = (s − 1)z1 + (s + 1)(δ − s − 2r + 1)z2 + 2rz3

+ (n − s − 2r − (s + 1)(δ − s − 2r + 1))z4,
(11)

ρ′′′z2 = sz1 + (δ − s − 2r)z2 + 2rz3, (12)

ρ′′′z3 = sz1 + (s + 1)(δ − s − 2r + 1)z2 + z3

+ (n − s − 2r − (s + 1)(δ − s − 2r + 1))z4,
(13)

ρ′′′z4 = sz1 + 2rz3 + (n − s − 2r − 1 − (s + 1)(δ − s − 2r + 1))z4. (14)

By (11) and (13), we have

z3 =
(ρ′′′ + 1)z1

ρ′′′ + 2r − 1
. (15)

Substituting (15) into (12) and (14), we have

z2 =
sz1 +

2r(ρ′′′+1)
ρ′′′+2r−1 z1

ρ′′′ − (δ − s − 2r)
, (16)
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z4 =
sz1 +

2r(ρ′′′+1)
ρ′′′+2r−1 z1

ρ′′′ − [n − s − 2r − 1 − (s + 1)(δ − s − 2r + 1)]
. (17)

Since n ≥ δ3
−

2r−3
2 δ

2
− 2(r2

− r − 1)δ − 2r2 + 3r + 3
2 , we have ρ′′′ ≥ n − 2r − 1 − (s + 1)(δ − s + 1) > δ − 2r + 1.

Substituting (15), (16) and (17) into (11), we derive

ρ′′′ + 1 = s +
[n − s − 2r − (s + 1)(δ − s − 2r + 1)](s + 2r(ρ′′′+1)

ρ′′′+2r−1 )

ρ′′′ − [n − s − 2r − 1 − (s + 1)(δ − s − 2r + 1)]
+

2r(ρ′′′ + 1)
ρ′′′ + 2r − 1

+
(s + 1)(δ − s − 2r + 1)(s + 2r(ρ′′′+1)

ρ′′′+2r−1 )

ρ′′′ − (δ − s − 2r)

≤ s +
[n − s − 2r − (s + 1)(δ − s − 2r + 1)](s + 2r)
ρ′′′ − [n − s − 2r − 1 − (s + 1)(δ − s − 2r + 1)]

+ 2r +
(s + 1)(δ − s − 2r + 1)(s + 2r)

ρ′′′ − (δ − s − 2r)

< n − 2r − 1 − (s + 1)(δ − s + 1) −
1

2sr − s + 2r
[2n(sr + 2r) + (4r − 1)s3 + (8r2

− 4δr

+ δ + 1)s2 + (8r3
− 4δr2

− 6δr − 4r2
− 4r + 1)s + 8r3

− 4δr2
− 12r2

− 4δr − 6r].

Let

f (n) = 2n(sr + 2r) + (4r − 1)s3 + (8r2
− 4δr + δ + 1)s2 + (8r3

− 4δr2
− 6δr − 4r2

− 4r + 1)s

+ 8r3
− 4δr2

− 12r2
− 4δr − 6r.

We assert that f (n) ≥ 0. In fact, suppose that f (n) < 0. Note that 0 ≤ s < δ, −4r+ 1 < 0, −8r2 + 4δr− δ− 1 > 0
and −8r3 + 4δr2 + 6δr + 4r2 + 4r − 1 > 0. Then

n <
1

2(sr + 2r)
[(−4r + 1)s3 + (−8r2 + 4δr − δ − 1)s2 + (−8r3 + 4δr2 + 6δr + 4r2 + 4r − 1)s

− 8r3 + 4δr2 + 12r2 + 4δr + 6r]

<
1
4r

[(−8r2 + 4δr − δ − 1)δ2 + (−8r3 + 4δr2 + 6δr + 4r2 + 4r − 1)δ − 8r3 + 4δr2 + 12r2

+ 4δr + 6r]

=
1
4r

[(4r − 1)δ3 + (−4r2 + 6r − 1)δ2 + (−8r3 + 8r2 + 8r − 1)δ − 8r3 + 12r2 + 6r]

<
1
4r

[4rδ3 + (−4r2 + 6r)δ2 + (−8r3 + 8r2 + 8r)δ − 8r3 + 12r2 + 6r]

= δ3
−

2r − 3
2
δ2
− 2(r2

− r − 1)δ − 2r2 + 3r +
3
2
,

which contradicts n ≥ δ3
−

2r−3
2 δ

2
− 2(r2

− r − 1)δ − 2r2 + 3r + 3
2 . Hence, f (n) ≥ 0. Then

ρ′′′ + 1 < n − 2r − 1 − (s + 1)(δ − s + 1) −
1

2sr − s + 2r
· f (n)

< n − 2r − 1 − (s + 1)(δ − s + 1)
≤ ρ′′′,

a contradiction. Therefore, we have ρ′′′ < n−2r−1−(s+1)(δ−s+1) = n−δ−2r−1−[(δ−s)s+1] < n−δ−2r−1.
Note that Kn−δ−2r is a proper subgraph of Kδ∇(rK2∇(Kn−2δ−2r−1∪ (δ+1)K1)). Then n−δ−2r−1 = ρ(Kn−δ−2r) <
ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))). Combining (1) and (10), we obtain

ρ(G) ≤ ρ(G′) ≤ ρ(G′′′) < n − δ − 2r − 1 < ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))),

which contradicts ρ(G) ≥ ρ(Kδ∇(rK2∇(Kn−2δ−2r−1 ∪ (δ + 1)K1))). This completes the proof. □



X. Lv et al. / Filomat 39:10 (2025), 3453–3461 3461

Now, we give the proof of Theorem 1.4.

Proof of Theorem 1.4. Let G[A,B] be a bipartite graph of order n with minimum degree δ. Suppose that G is
not k-critical-bipartite, by Theorem 1.3, there exists some nonempty subset S ⊆ B with s = |S| ≤ |A| − k such
that |N(S)| < |S| + k. Then G is a spanning subgraph of Ks+k+1,s∇1Kn1−s−k−1,n2−s for some s with δ ≤ s ≤ n1−k−1

2 .
By Lemmas 2.2 and 2.5, we have

ρ(G) ≤ ρ(Ks+k+1,s∇1Kn1−s−k−1,n2−s) ≤ ρ(Kδ+k+1,δ∇1Kn1−δ−k−1,n2−δ),

where the first equality holds if and only if G = Ks+k+1,s∇1Kn1−s−k−1,n2−s, and the second equality holds if and
only if s = δ. Note that Ks+k+1,s∇1Kn1−s−k−1,n2−s is not k-critical-bipartite. Thus the result follows. □
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