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Abstract. In this paper, we study the best approximation of algebraic polynomials in exponentially
weighted Orlicz spaces. By using Holder inequality, Minkowski inequality, de la vallée Poussin mean
and related analysis skills, we obtain two results about best approximation of algebraic polynomials and
corresponding convergence theorems.

1. Introduction

Algebraic polynomials are simple function types, and we often consider using them to approximate
complex functions. There are fruitful results about polynomial approximation in continuous function space
and L, spaces(such as references [1]-[10]). However, scholars research and obtain relatively few results in
Orlicz spaces. Orlicz spaces are natural extension of the ideas contained in D. Hilbert’s pioneering work.
Due to the needs of study integral equation theory, starting from the Hilbert spaces L, and combining with
the Lebesgue spaces L,(p > 1), using arbitrary convex functions satisfying conditions such as M(0) = 0,

M(u) > O(u > 0) replaces the functions ¢(u) = u” which determine the spaces Ly[a, b] (||f]l, = ( fa ’ |f (x)lpdx)% <
o). Therefore, L,[a,b] spaces expand and elevate to Orlicz spaces, which were introduced by Polish
mathematician W.Orlicz in 1932.

Letting w(x) = 7% is exponential weight function, here Q is nonnegative and even function on R. In
this paper, we consider w(x) = ¢~ W belongs to the set F(C?+) (w(x) € F(C?+) detailed meaning can be
found in Definition 1.1).

Let

_ Q)

T() =t =5 ¥ # 0. 1.1)

2020 Mathematics Subject Classification. Primary 41A10; Secondary 41A25.

Keywords. Orlicz space, exponential weight, de la vallé mean, best approximation.

Received: 06 December 2023; Accepted: 04 February 2025

Communicated by Miodrag Spalevi¢

Research was supported by the National Natural Science Foundation of China (11761055); The Fundamental Research Funds
for the Inner Mongolia Normal University (2023JBZD007); The First-Class Disciplines Project, Inner Mongolia Autonomous Region,
China (YLXKZX-NSD-001) and program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region
(NMGIRT2414).

* Corresponding author: Garidi Wu

Email addresses: 2530231785@qq . com (Lin Chen), wgrd@imnu. edu. cn (Garidi Wu)

ORCID iDs: https://orcid.org/0009-0006-1994-154X (Lin Chen), https://orcid.org/0009-0001-7144-7040 (Garidi Wu)



L. Chen, G. Wu / Filomat 39:10 (2025), 3501-3510 3502

If T is bounded, then w(x) is called a Freud-type weight function;
If T is unbounded, then w(x) is called an Erdds-type weight function.
By reference[11], for x > 0, the positive root a, = a,(w) of equation

1 ’
(o2 [,
0

nJo (1-u2):

is called the Mhaskar-Rakhmanov-Saff number(MRS number).
Definition 1.1 When Q is a even and continuous function defined on R — [0, o) and satisfies the
following five conditions, we say that w(x) = e" %™ € F(C?+).
(1) Q'(x) is a continuous function on R and Q(0) = 0;
(2) Q" (x) exists and is positive on R\{0};
(3) lim Q) = oo
(4) The function T defined in (1.1) is quasi-increasing in (0, o) (i.e. There is C > 0 such that T(x) < CT(y) for
0 <x < y). And there is A € R, such that

T(x) = A >1,x € R\{0};
(5) There exists C; > 0, such that

QW _ . 19

Q) ~ T Q)

There also exists a compact subinterval | € R(0 € J) and C; > 0, such that

Q") C Q")

Q@) ~ 7 Q)
Let Q € C3(R), A > 0. If there exist C > 0,K > 0,
‘Q (x) < C'Q (x)
Q" (x) Q' (x)
hold for all |x| > K, then we say w € F(C3+).

By reference [11], we know that F;(C3+) C F(C?+).
Let w(x) € F(C?+). Due to Q'(x) is positive and increasing on (0, c0), the following equations

x €R;

x € R\J.

QI _
C oW

. . . Oy . ay
lima, =00, lima, =0; lim — =0, lim — = o
X—00 x—0* x—00 X x—0t X

hold.
Let w(x) € F(C?+). For x > 0, we put

, a
o(t) = inflay : ;x <t}
Because % is monotonically decreasing, there is a unique x > 0 such that

t= x,a(t):ax.

Hence
tllr(r)l o(t) = o0.
We also let
| x| 1
Dy(x) =: ‘1—— + ——, (x€R).
' o)l \T(e()
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In this paper, M(u) and N(v) are used to represent complementary N functions. The definition of the N
functions are as follows,

Definition 1.2 A real valued function M(u) defined on R and satisfying the following properties is called
the N function
(1) M(u) is even and continuous convex function;
(2) M(u) > 0 for u > 0, and M(0) = 0.
©) hr%@ =0, lim M® =

u—-

U—00

For details on the properties of N functions, please refer to reference [12].
In this paper, L},(R) represent the Orlicz spaces generated by the M(u) defined on R. For f € L}, (R), the
Orlicz norm is

Ifllm = sup
p(;N)<1

7

f fx)v(x)dx
R

where p(v;N) = fR N(v(x))dx represents the module of v(x) with respect to N(v).
By reference [12], the Orlicz norm can be also calculated by

1
Ifibe = inf 20+ [ Miafo)an

According to reference [12], it is known that weighted Orlicz spaces are
Ly (R)={f:IK>0, fM(Kf(x)w(x))dx < oo},
R
and

lfllMw = sup
p(o;N)<1

fz; fx)wx)v(x)dx

Let {p,} be orthogonal polynomials concerning a weight w(x), i.e.

fpn(x)pm(x)w2(x)dx = Omn,
R

and 6, = 0 for n # m.

For f € L}, (R), define the partial sum of Fourier series as

Su(H) = ) a(fpe(x),

0

=
—

>~
1l

where
a(f) = fR fOpe(yw? (Hdt.
According to [13][14], the partial sum of Fourier series can also given by
1109 = [ Kl 0 f0A0
where o
K, 1) = kz PePi(t).
=0

The de la Vallée Poussin mean V,(f) of f is defined by

2n
VW == Y S,

j=n+1
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Definition 1.3 For f € L}, (R), let

AP = flx+ 2) = fr=3).

Similar to the definition in reference [15], we define the continuous modulus in weighted Orlicz spaces as
follows.
If w is Freud-type, then

w(f, Hmwr®) =: sup A(HlImwix<oy + Infllf = cllvw(xzowm);
O<h<t ceR
If w is Erdds-type, then
(f, Dmwr =t sup 1A, (Hllmwir<oes) + Inf lIf = cllvw(xzo@n)-
O<h<t ceR

For f € L;\AW(R), p € P, (P, is the set of polynomials of order not exceeding n), we write that

E.(Hmwr) =: inf|lf = plimwr)

is the best algebraic polynomial approximation of f in L, (R).
Attention In this paper, C is used to represent constant, but C can represent different numberns in

different places.

2. Related lemmas

13][

Lemma 2.11811%1 For x > 0, we have

x /T(ax)

Ay

= Q'(ay),
i.e. there exist constants C;, C, such that
x+/T(a x+/T(a
v T(ax) < Q') <Cy VI( x).

ax Ax

G

Lemma 2.2 For every absolutely continuous function g with g(0) = 0, and g’ € Lyt (R), we have

Q' 9lIvw®) < CllG M)
Proof According to the result of Theorem 6 in reference [15], for 1 < p < oo, we have
Q" gwllr, &) < Cllwg'lIL, ®)-
For p =1, we have
f Q" ()g(x)w(x)ldx < C f g’ (x)w(x)ldx.
. R R
sup j}; Q' (x)g(x)w(x)v(x)ldx < C sup jz; |7’ (x)w(x)v(x)|dx.

p(o;N)<1 p(o;N)<1
Therefore,

Q' gllmwr) = sup
p(;N)<1

< sup j}; Q' (x)g(x)w(x)v(x)|dx

p(o;N)<1

f Q (W @w(x)o(x)dx

R

<C sup
p(;N)<1

=Cllg’ lvo(r)-

fR 17 (o(@o@ldx
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Thus, we get Lemma 2.2.

@
#, we have

Lemma 2.3115 When x and y satisfy |x| < 0(2t) and |x — y| < ¢
w(x) < w(y),

i.e. there exist Cq, C, such that

Crw(y) < wlx) < Cuw(y).

Lemma 2.4 For w € F(C?+),p € P,, we have
IPllmew®) < Cllplmwix<a,)-

Proof According to Lemma 2 in reference [14], for w € F(C?>+) and 0 < p < +o0, we have
llpwllL, ) < ClipwllL, (xi<a,)-

Using the above inequality for p = 1 and combining it with Hélder inequality in Orlicz spaces(cf.[12, P.78]),
we have

T — j}@mmquxSCJﬁMWWWM=Cwmm®
R R

p(r;N)<1

<CllpwllL,(xi<a,) = C f [p(x)w(x)|dx < ClIpllmwixi<a) IUINGxi<a,) < ClPIMw(xi<a,)-

|xl<ay

Lemma 2.5 Let w € F(C?+), wf € Lw(R). There exists a positive constant C = C(w) such that

w
”Vn(f)F”Lm(R) < CllfwllL®)-
4

Lemma 2.6['* Let w € F(C?+) and T(a,) < C(fn)% (C > 0). For Ti fw € Lo(R), there exists a positive
constant C = C(w) such that

IVu(Hwlliomy < CITT fllrw)-

Lemma 2.7 Let w € F(C?>+) and T(a,) < C(uﬂn)% (C>0).
For T+ f € L}, (R), there exists a positive constant C = C(w) such that

IV (Allviao®) < CITH fllwwmy; 2.1)

For f € L]*w,w(R), there exists a positive constant C = C(w) such that
1
IVa(f )F“M,w(R) < CllflMew()- (2.2)
Proof Since K (x, t) = Ky, (t, x), we see fR Su(f)()g(x)w?(x)dx = fR F(x)Sm(g9)(x)w*(x)dx, and hence

f Vn(f)(x)g(x)wz(x)dx: f f(x)Vn(g)(x)wz(x)dx.
R R
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Using Lemma 2.5, we have

IVi(HlIMwr) = sup
p(r;N)<1

= sup sup fV (Hx)g (x)w*(x)v(x)dx

p@N)<1 llgwlle <1

= sup sup fR f(x)V,,(g)(x)wz(x)v(x)dx

p@N)<1 llgwlle <1

= sup sup f (T4
p@:N)s1 [lgwllLe, <1 [/ R

1
< sup  sup |l Vu(@)wll,

poN)<1 gl <1 T4

fR Va(H@)w(x)o()dy

fR T3 (%) f (¥)w(x)v(x)dx

<C sup sup |lgwll,
p(U;N)<1 |lgwllL,, <1

fR T4 (x) f (x)w(x)o(x)dx

fR T3 (x) f () w(x)v(x)dx

<C sup
p(;N)<1

=CIIT? fllma)-

Thus, inequation (2.1) is established. Nextly, we prove inequation (2.2). According to Lemma 2.6, we

have
1
f GCE

f Va (f)(X) 9:) w?(x)v(x)dx
R T (x)

w(x)v(x)dx

IV ( f)—||Mw(R)— sup
p(v;N)<1

= sup sup
p(@;N)<1 lgwllLe, <1

= sup sup
p(@;N)<1 lgwllLe, <1

f f (x)Vn(—l)(x)wz(X)v(x)dx
R Tz

< sup sup [V (Dl fR FEwEo@)d

p;N)<1 llgwlle, <1

<C sup sup |lgwll.,
p(O;N)<1 [lgwlle, <1
<C sup

p(o;N)<1 ff(x)w(x)v(x dx

=Cl| fllm,w(r)-

Thus, inequation (2.2) is established.
Lemma 2.8 Let w € F(C?+) and T(a,) < C(ﬁ)% (C>0). For f € L;\/Lw(R), there exists a positive constant
C = C(w) such that

f f@)w(x)o(x)dx

Vo (FlIvoty < CT @)l
Proof Based on the properties of T function and combining Lemma 2.4 and Lemma 2.7, we have
”Vn(f)HM,w(R) SC”V (f)”Mw [—ay,a,]

gyt VP

”M w[—ay,,a,]
4

SCT%(an)”f”MﬂWR)'
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Lemma 2.9"6117] There exists ny € N* such that for f € L}, (R) and n > ny,
an
En (f)M,w(R) < Ca)(f; ;)M,w(R)

holds.

3. Theorems

Theorem 3.1 Let w € F(C?+). For absolutely continuous function f with f’ € L}, (R) and every n € N¥,
we have

a
Ev(Hmwr) < C;nll F llmw®)-

Proof Because the proof of the Freud-type is similar to the Erdds-type, we will only discuss the latter.

For |x| < 0(2t) < o(t), we have ®;(x) < 2. According to Lemma 2.3 and the Minkowski inequality, for
every h with 0 < h < f, we have

@) Dy (x Dy (x
AR, () (lIMa(xi<ory = sup f w){f(x+h a )) flx—h ( )) Yo(x)dx
p(;N)<1 |V -o(2t) 2
@5 xth 20
. (Slill)jl f (2t) () 7 20 F(yldyoidx
p(o;N)< -0 x—h=5=
@) xth 2
< sup f o GO0 [ OO
p(v; -0

<C sup f f w(x +s)f'(x + s)dsv(x)dx
po:N)<1

<C||f (- +38)f' (- + s)dsllm)

<C fh llw(- +8)f'(- + s)llmwyds

<C2HIf Imw(r)
<CHIf Imw(r)-

And then,

sup [|An, ) (HliMwix<on) < CHIf IMwr)-
O<h<t

If we put 4t = %, by Lemma 2.1, we have

: o 0VI@) _ TOUH) VA
Q'(0(4) = Q@) > C— - - Y2 T

Owing to the monotonicity of Q’(x), we have Q’(|x|) > Q’(c(4t)) for |x| > o(4f). And combining with Lemma
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2.2, we get

) w
i?g” f — cliMaw(xi>oan) S||Q'§(f — FONaw(xsoa)

1
SWHQ/W(JF — FO)Imq> o)

<ACHIQ w(f — f(O)lIM(xi>otary
<4ACHw(f — £(0)) lmqul>otan
=CHIf'lIMw(ixi>o(n)

<CHIf lIMew(r)-

Therefore, according to the definition of continuous module, we have
o (f; Omaw®) < CHIf IMwr)-

Take t = ”7" If there exists ny € N*, for n > ny, then Lemma 2.9 shows
Lan An |y
E.(Hmwrw) < Calf; ;)M,w(R) < C;ll £ IMaw(R)-

i.e.
a
Ev(Hmwr) < C;nllf'llM,w(R)-

Letn < ng.
For |x| > 1, according to | ‘lim |Q’(x)| = o0 and combining with Lemma 2.2, we have
X[—+00

Ilf = FOMewix=1) < ClLF IMew(x=1);
and for |x| < 1, using Minkowski inequality, we have
Ilf = fFO)IMmewix<t) < ClLF Imaw(x<t)-
Based on the above, it can be concluded that
Ilf = fFOIMewr) < Cllf M wr)-

Therefore,
'’ a ’
E.(Hmar) < Eo(Hmor) < IIf = fFOlMaor) < Cllf IMwr) < CEHH FlIMwr)

holds, where C > Cmax{%;l <n < npl.
Finally, combining 1 > 1y and n < ny, we get Theorem 3.1.

Theorem 3.2 Let w € F(C?>+) and T(a,) < C(aﬂ”)% (C>0).

For f € L}, (R), there exists a positive constant C = C(w) such that

IF - Vn(f»%nM,w(m < CEA(Dn; (3.1)
If = Va(Ollmwry < CTi(an)En(f)M,w(R)- (3.2)

For Ti f € Lj,,,(R), there exists a positive constant C = C(w) such that

If = ValPllwaow < CE(Dyyrt (3.3)
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Proof Since V,(p) = p for every p € P,, we have V,(f) = p + V,,(f — p). Therefore, according to the
properties of the T function and combining with inequation (2.2), we have

I(f - V(f)) ||Mw(R =|I(f —p = Vau(f = P))—HM(R)
<I(f - p) lnsote + 1Va(f —p) 1||Mw(R>

<I(f - P) ||Mw(R) + Cllf = pllmww)
SCHf—PHM,w(R).

Let € > 0. According to the definition of the infimum, there exists p € P, such that

lf = Pllvawr) < Ex(fMmwr) + €-
So
lI(f = Viu( f)) ||Mw(R) < CEx()Mu(r) +

For the arbitrariness of ¢, we have
1
I(f — Vn(f))F”M,w(R) < CEx(f)Mu(r)-
4

Thus, inequation (3.1) is established.
Secondly, we prove inequation (3.2). By Lemma 2.8, we have

”f _ Vn(f)HM,w(R) S“f — P“M,w(R) + ||Vn(f - P)”M,w(R)
<IIf = Pl + CTH@If = Pl
<CTH @)l = pllvaw)-

Let ¢’ > 0. According to the definition of the infimum, there exists p € P, such that

CTH @) f = Plvwm < CTH@n)En(Hatam) + €'-

Because ¢’ is arbitrary, we get inequation (3.2).
Finally, we prove inequation (3.3). It is similar to the proofs of (3.1) and (3.2). Let ¢” > 0. For the
arbitrariness of ¢” and inequation (2.1), there exists p € P, such that

If = VilOllmwr) SIf = Plivwr) + 11Valf = PlIMor)
<N = pllva) + CITE(f = Plivar)
<ITH(f = P)lIvew + CITE (F = Pl

<CIT*(f = P)lImaie)
<CEu(f), 1 +&"

M, T4w(R)
<CE.(f )M,T% w(R)’

Theorem 3.3 Let w € F(C*+). For f € ;. (R), we have

M,w

11m||(f Vf) ||Mw(R) 0.
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Proof According to inequation (3.1) of Theorem 3.2 and combining the property of best approximation,
ie. lim E,;(f)Mwr) = 0, thus we get Theorem 3.3.
n—o0

Theorem 3.3 is a convergence theorem for algebraic polynomial approximation. wTi may not belong
to F(C?+), so the similar result of Theorem 3.3 cannot be directly used for (3.3). To overcome this difficulty,
reference [18] introduced a modified weight function. Let w € F;(C3+) with (0 < A < %). Afterwards, we

can establish a new weight function w* € F(C?+) which satisfies wTi < w*,a, < a,, T < T*. Therefore, we
obtain E”(f)MTiw < CE,(f)mur-

Theorem 3.4 Letw € Fy(C*+) (0 < A < 3). For Ti f € L;, (R), we have

y}i_r&IIf = Vu(FlIMwr = 0.
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