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Wavelet-based approach for approximating Jacobi polynomial via
characterized Hausdorff matrix

H. K. Nigam?”, Manif Alam®

®Department of Mathematics, Central University of South Bihar, Gaya, Bihar, India

Abstract. In the present work, we aim to study the rate of convergence of Jacobi polynomial using
characterized Hausdorff matrix. Another important aim of the present work is to estimate the wavelet
approximation of Jacobi polynomial using characterized Hausdorff matrix.

1. Introduction

The approximation properties of Fourier series have been extensively investigated by various re-
searchers, including Oskilenker [20], Szego [23], Zygmund [24], and Moricz ([10, 11]). More recently,
this research has been extended to wavelet expansions by the investigators such as Kelly [6] and Mallat
[9]. It is crucial to acknowledge that wavelet expansions demonstrate oscillatory characteristics analogous
to those observed in Fourier expansions. Consequently, traditional summability techniques are not di-
rectly applicable to wavelet expansions due to the nature of the approximation, which involves infinite
partial sums. The exploration of Fourier series approximation has been a subject of interest for numerous
researchers, and the works of researchers like Oslinker [20], Szeg6 [23], Zygmund [24], and Moricz [10]
have significantly contributed to this field. Recently, attention has shifted towards extending these results
to wavelet expansions, with notable studies conducted by researchers such as Kelly [6], Mallat [9], Nigam
([14? -18]), Mursaleen and Mukheimer [12], Savas and Mursaleen [21], Agratini [1], Ayman-Mursaleen et
al. [3], Nasiruzzaman et al. [13], Gonska [4], Srivastava [19], Kumar et al. [7, 8] etc.

Wavelet approximation has gained prominence due to their ability to capture and represent signals at
different scales. They offer advantages over traditional Fourier series in handling non-stationary signals
and providing a localized representation of signal features.

It is crucial to recognize similarities and differences between Fourier and wavelet expansions. While both
exhibit oscillatory behavior, the direct application of the classical Hausdorff operator already proven effec-
tive in Fourier series. The adaptability of traditional techniques to the unique characteristics of wavelet
expansions becomes a central concern in advancing the field.

In response to these challenges, this paper deals with the wavelet approximation of of Jacobi polynomial
using Hausdorff matrix. The Jacobi polynomial, known for its versatility in various mathematical applica-
tions, has been proved to be a suitable tool for addressing the complexities of wavelet approximation.
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The Hausdorff method provides a novel perspective on wavelet approximation. By leveraging Jacobi poly-
nomial, this method aims to overcome the limitations encountered when applying traditional operators in
the wavelet domain. The incorporation of Jacobi polynomial offers a tailored approach, aligning with the
unique characteristics of wavelet expansion and facilitating more accurate and efficient approximation.

This paper primarily focuses on two key points of investigation:

1. The rapid rate of convergence of Jacobi polynomial using characterized Hausdorff matrix.
2. Wavelet approximation of Jacobi polynomial using characterized Hausdorff matrix.

2. Definitions

2.1. Fourier Series

(9]

The trigonometric Fourier series g(x) = Y2, ¢,/ is associated with a periodic real function g of
coefficients

1 " —i)x
c, = EI g(x)e™ dx. (1)

In this case, we consider the trigonometric polynomials

G

()@ = ) ce™, @)

=
where ¢ is a non negative integer (2) is called “partial sums” of the Fourier series g.

2.2. Jacobi Polynomial
The normalized Jacobi polynomial is defined as (see [2])

PP (cos 0)

(@p)
R: " (cos 0) =
p(ga/ﬁ)(l)

(©)
where Pga’ﬁ)(l) = (QZ“) # 0and w(a) = (1 —a)*(1 +a)f fora > —1, B > —1. It is important to note that (2) form

a full orthogonal system in the space L*([0, 7t]; w) such that IR(;M )(cos 9)| <1,where¢>0and a > —%.

2.3. Hausdorff Matrix
A Hausdorff matrix (see [5]) H = (a,;) is an infinite lower triangular matrix with non-zero entries

(4)

I (j)A‘?*fu], 0<7<c¢c
“77 0, 1>,

where A represents a forward difference operator, denoted by Au. = u. — u._1 and A u. = N(Au). If

H is regular, then u. is referred to as a moment sequence, which can be represented as u. = j(;l v°d((v),
where ((v) is referred to as the mass function. {(v) is continous at v = 0 and it belongs to BV[0, 1] such that
C(0) =0, C(1) = L;and for 0 < v < 1, {(v) = LU0

A Hausdorff matrix (4) can also be written as

¢ 1] - ) =
o, = QR PA=DTd0), 5=012 .
0, 1>
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2.4. Characterizated Hausdorff Matrix

Following [22], we establish a relation of the positivity and monotonicity of the matrix a.;,0 < j <
¢; ¢ = 0,1,2,.. for the matrix (5) to its mass function. As defined in [22], 4.0 =1 for ¢ = 0 and for ¢ > 0

1 c—
mig b (=00 =0
ac, = JB(],¢1—1+1) fol DA =D el = pydl, 0<j<c ©
1= g Jy 7y, I=c
O 1>

where B(m, ¢) is the beta function.

2.5. Multiresolution Analysis

Let’s denote the approximation space at level & as pg, and the collection {p; : & € Z} constitute a mul-
tiresolution analysis for the space L*(R). A scale relation holds true between two consecutive subspaces

as g(-) € ps = g(2) € pes1. A size-adjustment function ¢ € L?(R) such that {¢i,§(') = 2%9{)(2‘5. -] € Z}
constitutes an orthogonal basis for ps. Let 1z be the orthogonal complement of p; in pg1, expressed as
Pe D MNe = Pest, )

where 7 are commonly known as detail spaces at level &. We have ---p_» Cp_1 Cpo Cp1 Cp2 Cp3--- C
P& C pes1 C --- , where {p¢} is a multiresolution analysis at level &. Thus,

Pe=pPo®1NOMD- D11

and L*(R) = pg ®c»0 n:. Consider pg as the orthogonal projection of L2(R) on to pg. If (-, -) represents the
standard inner product in the space L*(R), then using (7), we have

Pgirg = Peg + Z de e,

1€Z.

where d;¢ ; = <g, l,bé,]> are the wavelet or the detail coefficients and g € L*(R).

3. Known Result
Askey [2] proved the following theorem:

Theorem 3.1. If Y72 a. converges to s, then

o)

u(r,0) = Z a;Rga’ﬁ)(cos O)rc
¢=0

tendstosforr - 1,0 =01 -r). Ifa > % then u(r, 0) tends to s for r — 1,0 — 0, without the restriction
6=0(1-r).
4. Main Results

4.1. Rate of convergence of Jacobi polynomial using characterized Hausdorff matrix
In this section, we prove the following theorems:

Theorem 4.1. (i) If @ = r then d a positive constant Ky such that

I = sllee < Ky#°



H. K. Nigam, M. Alam / Filomat 39:10 (2025), 3527-3536

(ii) Ifr < a then 3 a positive constant K, such that
I = slleo < Kor*
(iii) If o < r then 3 a positive constant Kz such that
I = slleo < Kar*
Proof. (i) Let Y22 ac be an infinite series with ¢’ partial sums

s;:Zav V¢ > 0.

v=0

If
ﬁ fol(l - l)?l?/(l)le(a P (cos 0)r+,

7+1
i 1- B(g i) fo It (Z)le(a ’S)(cos 0)r 1,
0,

then using Theorem (3.1), we define

g (Sg)

5 — Dy (DR, (cos O)r*sodl

1
—TB(TQ =D j(; el G ) i (< B T)’)/(l)leaﬁ)(COS O)rt+t,

=0
O<t<c

T=¢
T>c+1,

Z"(]B(] i+ f U = DTNl = )y (RS, (cos O)rdl |5,
1 /

+ (1= =—— | E9(0)dDRY (cos O)rdls,
0 gy [ R cos oy,
Now, we get

IIZH(Sg) = 5l

f (1-01y (ORZ; (cose)r»“sodl

3(1 0)
-1

(5c —5)

f 1Yy ()RS (cos O)rdl

Z(Sv - S)
v=0 o

* '1 BGD)

(o]

<|solr*™ + A Z AR +0
J=1

¢—1
= lso|r*t + A Z Pyl
=1

(7 =)

,
= |so|r*™t + A
Isol 71

1 1 +1
+Z m f U7 = el = )y (RS (cos O)r*dl

]
Z(Sv —s)
v=0 o
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P2 - 1)
r2—1

= [solr*! + B(r** 72 - 1)

< |solr=*! + Br*<~2

1 e
= |so|r**" + B—
)

=|solrt + A

< [solrt + Br—2

;
— B G
= (Isolr + ﬁ)r
= Klrg

U
Proof. (ii) Using (8), we get
c-1

B (s0) = slls < lsola*! + A )" 1+
J=1

c—1
=lsola*™t + By (ar)
Isol
=1

ar)s —ar

= |solas™ + B—( )
ar—1
2¢ _ 0(2

a
< |sola**' + B
Isol 1

< Isolas™t + C(a* — a?)

= |solac™ + Ca*

< |sola“*! + Ca*

= (Isola + C)a*

= Kya®, where K, = [sgla + C

|
Proof. (iii) Using (8), we get

c—1
1 (s2) = slle < Isolr! + A Y ¥
=1

c-1
= |so|r**' + B Z(ozr)]

=1
(ar)c = (ar)

Car—-1

= [solr**" + C((ar)* — (ar))

< lsolr*! + C(ar)® ae(0,1)
<lsolr*! + Cr*

= (Isolr + C)r*

< |solr**' + B
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= Ksre, where |so|r + C = K3
|

Now, we prove the following theorem:

Theorem 4.2. (i) Ifa =1 then

c+1 _ G _ 42
||l£’<s;>—s||w=o(“ (c+Dr-r ”’)

(r—1)2

(i) Ifr < a then

Hoy e —(c+Das—a’+2a
”lg (SC) S”oo - O( (0( _ 1)2

(iii) If o <7 then

c+1 _ G _ 42
||l?(sg)—s||m=0(“ e+ D —r +27)

(r=1)
Proof. (i) Using (8), we get

¢l J
17(s0) = slloo = Isol 71 + B Y| rf“( rv]
7=1 0=0

c—-1

< Iso| < *1 +BZr1+1(1+r+r2+---+rf)
7=1
c-1

= |so| ™1 +BrZ(rf 4+t 2 +-~-+r21)
1=1
c—1

< [so] ¥**! +BrZ(r1 +r+r 4+ 7)
7=1

c-1
= [so| ***' + Br Z((] + 1)1)
7=1

c-1
< (lsol ¥+ Br) ) (7 + D))
1=1

= (lsol **** + Br) (grﬁl (e ort Zr)

(r—1y
(et =+ D=+ 2r
) O( (r-1 )

|
Proof. (ii) Using (8), we get

c-1

]
pt Z llso = sllco

H 1
11 (5¢) = slloo < ls0l 7" + A
=1 v=0
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c—1 ]
= Iso| ¥ + A Z P+l [Z cza”], C, >0
7=1 v=0

c-1

= |so| <™t +BrZr](1 +a+--+d)
=1
c—1

< |so| ra© +BrZa](1 +a+---+ad)
1=1
c-1

= lsol ra® + Br ) (e + a*! + - + a¥)
7=1

c—-1
= |so| ra® + Brz(] + 1)/
7=1

c—1
< (Isol 7 + Br) Z(] +1)ad (r<a)

7=1
ca™t = (c+1ac —a® +2a
< (Isol 7 + Br)( @17
_0 ca™t = (c+1)ac —a? +2a
) (a=1y
O
Proof. (iii) Using (8), we get
1 J
B (s0) = sllew < Isol 1+ A Y #1Y Hlsy = sl
7=1 v=0
c—1

]
= sl +AY Z Csa’, C3>0

=1 0v=0
c—1
:|50|rg+1+Br2r7(1+r+r2+-~-+rf)
J=1
c—1
= |so| 7t + BrZ(r] +r 4 %), rel0,1)
J=1
c—1
Slsol**™ +Br)y (W +v +--+r
< <+l L B ] 4 4] ]
J=1
c—1
— ¢+l ]
=lso|**" +Br ) (j+1)r
=1

c-1
< (Iso| ¥ + Br) Z(] + 1)7/
7=1
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B st —(c+ e =12 +2r
= (Isol 7 + Br)( 17

_o =+ s =r>+2r

- (r-1)

O

4.2. Wavelet approximation of Jacobi polynomial using charaterized Hausdorff matrix
Theorem 4.3. Let P; be the orthogonal projection of the space L*(IR) onto the approximation space V¢ such that

1H(Peg)
_ o _ _ atl
=— (1-@-n)
”gﬂpog + A( ){]PO.‘J + Z Z 1o Yo, + (7 — Ddyygpr,, + - + d1—1,]¢;—1,])H
0=0 jeZ

Proof. From (8), it follows that
12 (Peg)

1
= ﬁ f (1= D=y (IR (cosO)r*1 Pog

c-1
- () N
+[Z (mf Jand G I ) R (= NyDIR 7 (cosO)r’ 1)]

J
[Z Pv?} Z ( B(gl— D j(; lg_l)/(l)dl) Rﬁ“’ﬁ)cose 7/ [; Pvg]

=

Using mass function y(I) = a fos(l —5)*ds in above equation, we get

B )f(l—l)C f(1—s)‘*dsdlr“lR(“ﬁ)(cosﬂ)Pog

1

Z(]B(], 7 f P =1l - pa f (1—s)“dsdlrf“R;i'f)(cose))

[]Pog t] Z Z do, o, + (7= 1) Z Z dry +ooot Z Z dj—l,ﬂ/’]—l,]]

v=0 jeZ v=0 jeZ v=0 &eZ

=) crip@p)
B(1 g)f( 1 dl R 1 (cosO)Pog

1-(1-9)" @h)
Rl - — L1 = 1 -1 Bl S Y |
’ Z‘ (]B(JrC 7+ f P e - R s

£ £
[]Pog +] Z Z do, o, + (7= 1) Z Z diry + oot Z Z dj—l,f%—l,f]

v=0 jeZ v=0 jeZ v=0 jeZ

__ 1 1-@-s
"B a+l

1
CHREif)(COSQ)POgL (1-1D°%dl
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-1

'

1-(1-s)!
]B(],g 7+ 1) a+1

[]POQ +] 2 Z do, o, + (7= 1) i 2 dry +oeo t 2 Z d]—l,ﬂ/’]—LJ]

v=0 j€Z v=0 jeZ v=0 j€Z

+

f“R(”ﬁ’(cos@) f A = 1Yl - )dl)

i gl

1-(1-s)**

1
_ A+ R@p) 1 e
=a o R]Jr1 (cosQ)PogB(L ) fo (1=1Dcdl

1-(1 _S)a+1 c—1 @) 1 fl - -
ta——— |} IR (c0s0) gy | V=D

=1
3 3 3
JPog + ] Z Z do, o, + (7= 1) Z Z diyry o Z Z d-1,9)-1,
v=0 jeZ v=0 jeZ v=0 jeZ
1-(1-s)*tt SHREH) 1-(1-s)*! - 1 p(@p)
< T R 1 (cosO)Pog + (IT ; (Ar R]Jrl (cosG))
3 3 &
[]POEJ +] Z Z do, o, + (7= 1) Z Z diry + oo+ Z Z d]—l,ﬂl’]—l/J]
0=0 jeZ 0=0 jeZ v=0 jeZ
1-(1-9)* 1-(1-9"1
_a—oz+1 r Pog+A0¢—OH_1 Flr
3 3 £
JPog + 7 2 Z do, o, + (71— 1) Z Z dyyry o Z Z dj-1,9)-1,
0=0 ]EZ 0=0 jeZ v=0 jeZ
H a+1
= 1 (Peg) = —~ (1 - @=r

re—r
r*Pog + A (m) JPog + Z Z (]dO,J‘POJ + (= Ddyypr, +-o- + dJ—LJ‘/’J—LJ) }

0=0 jeZ

5. Conclusions

The results obtined in Theorems 4.1 and 4.2 give the rate of convergence of Jacobi polynomial by applying
chracterized Hausdorff matix while Theorem 4.3 studies wavelet approximation of Jacobi polynomial by
applying chracterized Hausdorff matix.
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