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Abstract. In the present paper, we introduce generalized Bernstein Kantorovich Schurer type operators
and its approximation properties. Firstly, we calculate the some estimates for these operators. Further,
we study the uniform convergence and order of approximation in terms of Korovkin type theorem and
modulus of continuity for the space of univariate continuous functions and bivariate continuous functions
in their sections. In continuation, local and global approximation properties are studied in terms of first
and second order modulus of smoothness, Peetre’s K-functional and weight functions in various functional
spaces.

1. Introduction

Indeed, approximation theory serves as a versatile tool across numerous disciplines, offering methods
to represent intricate functions with simpler ones. Its impact extends from mathematics to engineering,
encompassing computational science, data analysis, and computer graphics. In computational realms,
approximation theory aids in describing geometric shapes and tackling differential equations, crucial for
numerical analysis and efficient algorithm design.

In applied mathematics, approximation theory contributes significantly to control theory, where con-
cepts like control points and control nets are pivotal in studying parametric curves and surfaces, essential
for designing control systems in engineering applications ([1], [2]). With the surge of artificial intelligence,
data science, and machine learning, approximation theory has found fresh applications. Techniques rooted
in approximation theory are instrumental in the development of algorithms for data analysis, pattern
recognition, and predictive modeling, forming the basis for constructing models that approximate intricate
relationships within datasets.

Furthermore, in domains like computer graphics and computer algebra systems, approximation the-
ory is indispensable. It enables the representation of curves and surfaces using simpler mathematical
constructs, facilitating tasks such as rendering realistic images and efficiently solving symbolic equations.
Beyond these fields, many scientists in medical sciences and other areas are also leveraging the principles
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of approximation theory to advance their research ([3], [4], [5]).

The interdisciplinary nature and wide-ranging applications of approximation theory underscore its im-
portance as a foundational concept in modern science and engineering.

The first sequence of operators to support the above application part was introduced by Bernstein [7].
Although, his motive was to provide a short and elegant proof of Weierstrass theorem of approximation
with the assistance of binomial distribution as:

1

Bigiw) = Z( : )uva ~w=g(5), weo, )

v=0

where g belongs to C(0,1). He proved that these operators approximate uniformly on (0,1) to every
continuous function g € C[0, 1]. The Bernstein operators have been one of the most extensively examined
positive linear operators in the area of approximation theory. However, these operator are not applicable
for discontinuous functions.

Further, to achieve flexibility in approximation properties of Bernstein operators given by (1), Schurer [6]
constructed a new sequence of Bernstein operators [7] which is denoted as By, : C[0,1 + p] — C[0,1 + p]
and defined by:

I+p
Bl+p(g; u) = Z 9(17/)( l:p )uv(l - u)]+P—V/u c [0, 1+ p], (2)

v=0

where p € N U {0} and g € C[0,1 + p]. But these sequences of operations given in (2) are restricted to
C[0,1 +pl.

Over the past decade, many generalizations as well as modifications of Bernstein and Kantorovich
operators are presented by several authors and researchers, e.g., Alotaibi et al. ([8], [9]), Mursaleen et al.
([10] - [13]), Mohiuddine et al. ([14], [15]), Aslan et al. ([16], [17]), Nasiruzzaman. et al. ([18], [19]), Ayman
Mursaleen et al. [20], [21]), Ozger et al. ([22], [23]), Acu et al. ([24], [25]), Rao et al. ([26] - [28]), and Rani et
al. [29] etc.

Recently, Usta ([30]) presented a new sequence of Bernstein operators for the function g, which are
continuous and defined on (0, 1) with u € (0, 1) as follows:

!
S _ 1 l 2. v-1 I-v-1_(V
Pz<g,u>—7;(v)<v—lu>u (1-u) g(;), leN. 3)
Remark 1.1. These operators given in (3) are restricted for the space of continuous functions only.

In addition of above literature and to discuss approximation properties for lebesgue integrable functions,
we define generalized Bernstein Kantorovich Schurer type operators as follows H;ﬂg : Lg(0,1) — Lg(0,1),

(where Lp(0, 1) denotes the space of bounded and Lebesgue measurable functions):

I+p vl

. I+p+1
Hy g0 =Y Qo) [ gt @
v=0 Tep+l
where
(I+p+1D)( 1+ .- .
Ql+p,v(u) = lf_—p ( vp )(V - (l + P)u)zu 1(1 - u)l+p 1'
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Remark 1.2. Forany g,h € C(0,1) and a;,a, € R, we have

I+p 11;%11
Hy,(arg +azh;u) - = ZQHp,V(”) f ) (a1g + azh)(t)dt
v=0 T+p+1
L+p rT al T
= @) Qi) [ ot +a2” Q) [ e
v=0 1+;+1 v=0 1+;¥+1
= a1H7+P(g; u) + a2H1*+p(h; u).

Which implies that the operator H; +p(. ;.) is linear operator.

Remark 1.3. Also for any g > 0, we must have Hl*+p(g; u) > 0, which shows that the sequence of operators are
positive.

The structure of our research work is organized as: Section 1 compute some estimates for the operators
4 in terms of test functions and central moments. In section 2, we study the uniform convergence theorem
and approximation order via of Korovkin theorem and first order modulus of continuity for the space of
univariate continuous functions and bivariate continuous functions respectively. In section 3, we discuss
the local and global approximation results using first and second order modulus of continuity, Peetre’s
K-functional in several functional spaces.

To discuss the existence and convergence of operators (4), we Consider ¢;(t) = #,i=0,1,2,3. Then, in
the following Lemmas (2.1) and (2.2) we estimate the operators introduced in terms of central moments
and test functions.

2. Basic estimates
Lemma 2.1. For operators H;+p('; .) defined by (4), the following identities are as follows:
H;+p(€0; u) = 1,

o . 3 I+p-2 3

ppleriu) = I+p+1 u+2(l+p+1)’

. (I+p?-7(0+p)+6\ , (6(l+p)—8 7
Hip(e2i10) ( (I+p+1)2 e (I+p+1)2 u+3(l+p+1)2‘

Proof. From the result of Lemma 1 of [30] and the operators (4), we can easily prove above results of Lemma
21. O

Lemma 2.2. Let Ip;(t) = (t—u)',i =0,1,2. Then, we have the central moments of generalized Bernstein Kantorovich
Schurer type operators (4) as follows:

Hy ((t=w)%u) = 1,
H, (- whu) = Hp% (% —u) =y ()
1 7
Hip (-0 = s {1 =30+ py + G0+ p) - 110+ £}
= A;er. (Say)

Proof. On account of Lemma 2.1 and linearity properties, we can easily prove Lemma 2.2. [

Lemma 2.3. Let g € Cp(0,1). Then, IIHZ*+p(g)|| < igll.

Proof. In the light of Lemma 2.1 and norm defined for Cg(0, 1), we can easily prove the result. [
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3. Rapidity of convergence and order of Approximation

Definition 3.1. Let g € C(0, 1). Then, the modulus of continuity is defined as:

w(g; ) = sup |g(u1) — g(uz)l, uy,up €(0,1).

[u1—us|<7j

Theorem 3.2. Let H;+p(. ;.) be given in (4). Then, ¥ g € Cp(0,1)NE, H;+p(.; .) =3 g on each compact subset of (0,1),

where =3 symbol denotes uniform convergence and E = {g tu>0, gl is convergent for u — oo}.

1+ u?

Proof. Using Korovkin result which implies the convergence uniformly operators which are positive and
linear, it is adequate to see that

llim H. (f;u)=u',i=0,1,2,

o I+p

uniformly on (0, 1). In the view of Lemma 2.1, we can arrive at the desired result. [J

In the view of Shisha et al. [31], one can show that the order of approximation via Ditzian-Totik modulus
of continuity.

Theorem 3.3. Let g € Cp(0,1). Then, operators Hl*+p(.; .) given in (4), we have
IH],,(g; 1) = g(w)] < 20(g; 1),

where ] = /A;er.

Theorem 3.4. (See[31]) Suppose that L : C[c,d] — Blc,d] be the positive linear operator and consider y, be a
function defined by

Buly) = ly — ul, (u,y) € [c,d] X [c, d].

If g € Cp([c, d]), for u € [c,d] and 6 > 0. Then, the operator L verifies the following results:

I(Lg)(w) = gQu)| < lg(u)lI(Leo) (1) — LI(Leo) () + 77" ) (Leo) )(Ly5 (u))ewy(7)-

Theorem 3.5. Let g € Cp(0,1). Then, for the operator Hl*+p(.,' .) presented by (4), we have

|H;+p(g; u) — g(u)| < 2w(g; 1), where fj = /A;+p;u.

Proof. In view of Lemma 2.1, 2.2 and Theorem 3.2, we have

H, (00 = 9] < {1+ 177 [ Lotgin,

which prove the Theorem 3.5 choosing 7j = A;er. O
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4. Direct Results

Here, we recall a functional space as: Cp(0, 1), where Cg(0, 1) denotes a space of continuous and bounded
functions and Peetre’s K-functional is as:

K@= inf {lg=Hlcyon + T lgon )
2(9, 1) he(lsg;(o,n g = Allcso) + M lcz0,0)

where Cé(O,l) = {h € Cg(0,1) : W, h"” € Cp(0,1)} endowed with ||g]| = sup |g(u)|. Further, we call second

O<u<1
order Ditzian-Totik modulus of continuity is as:

wy(g; \/ﬁ) = sup sup |g(u+2v) —2g(u+v) + g(u)|.
O<v<+fA u€0,1)

We also have a relation from [32] page no. 177, Theorem 2.4 as follows:

Ka(g; 1) < Can(g; M), (5)

where C is an absolute constant. Next, in order to discuss the approximation result, we consider the
auxiliary sequence of operator as:

H:, (g:u) = H, (g; 1) + g(u) - [p-2 u+ 3 (6)
bt = BT T I\ e p 1) T 20w p+ 1))

where g € C3(0,1), u > 0.
Lemma 4.1. Let g € C3(0,1). Then, for all u > 0, one has

IH;,, (9:1) = g@)] < Enp@)lg

where
_(U+pP—-15(1+p)?-381+p)—24\ 5 (FU+pP-FLl+p) +45) ,
Frpltt) = ( +p+17 e T+ 1p "
[‘%(l+p)—25] 15
u-+ .
I+p+1)3 41+p+1)3

Proof. For the auxiliary operators are given in the Definition (6), we have
H;,,(Lu) =1, Hy, (m;u) = 0and |H;, ,(g;w)| < 3lgll. ?)

In view of Taylor’s expansion and g € C3(0, 1), we have

g(t) = g(u) + (t —u)g (u) + f (t —w)g (w)dw. ®)

Operating (6) both the side in above equation, we have
t
H;, (g;u) = g(u) = g wHj, (¢ = w;u) + H],, ( f (t - w)g (w)dw; u).
u

From (6) and (7), we get

—_ t ”
i, ( IREECA u)

u

¢
H;+p (f (t- w)g” (w)dw; u)

H;,,(g;u) - g(u)
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(%)MJW(I%P”) l+p—2 3 " d 9
_fl; i M+2(l+p+1)—wg(w) w. ©)
Since,
t . %
[ = @] < ¢ 211 o
u
Then, we get
(R s (14 p—2 3 :
/ ((1+P+1)u+2(l+77+1)_w)g (oo
l+p-2 3 :
S((1+p+1)u+2(l+;9+1)_u) 7l o

Applying (10) and (11) in (9), we obtain

I+p-2 3 "
" 2. N
{le((t uysu) +(l+p+1)u+ 2(l+p+l)}“g I
Ep)llg"l,

We arrive the required result. [

IA

[H;,, (510 - g(u)|

Theorem 4.2. For g € Cé(O, 1). Then, there exist a constant C > 0 such that

[Hy, (51) = 9)] < Can(g; \JErp) + @(g: Hyy Gy 1),

where &1, (1) is defined by the Lemma 4.1.

Proof. For g e C%(O, 1), g € Cp(0,1) and in account of the definition of H;er('; .), we have

g((l+p_2)u+ & )—h(u)‘.
I+p+1 2(0+p+1)

IH;,, (g50) = gl < 1H;, (9 = 1501 +1(g = h)Y@)] + F;,, (5 1) — h(u) +

In the direction of of Lemma 4.1 and inequalities in (7), we yield

I+p-2 3
g((l+p+1)u+2(l+p+1))_g(u)’

4lg = hll+ Epap @I | + (g; H, (i ).

IA

[Hi (g5 = 90| < llg = Hl+ 1H;,, (g50) - 0] +

IA

In view of Peetre’s K-functional
[F,, 0310 = 90| < e (55 \Jersp(1) + (g3 G100,
we arrive the required result. [J

Here we recall Lipschitz-type space here [33] as: Consider p; > 0 and p; > 0, are two fixed real values.

Ligly () = {7 € CoO,1) + Igto) ~ ) < M— =1
LA U T (t+ pru+ pou)r2
O<y<L

s u,t € (0, oo)}, M > 0 is a constant and
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Theorem 4.3. For g € Lip}y™ (y) and u € (0, 0). Then, the operators defined by (4), one has
(u) 2
. (e TNi+p (U 2
Hl+p(gl u) g(”)| < M(Plu T quz) (12)

where y € (0,1) and np.,(u) = H;+p(£lz+p; u).

Proof. For y =1and u € (0,1), we get

* * + t_ u
HHp(g; u) — g(u)| < Hl+p(|g(t) —h(u);u) < MH’+p ((t " p1|u - p|2u2)1/2;u) .

Therefore

1 1
<
t+p1u+ pau  (p1u+ pou?)’

for all u € (0, 1), one has

M . N
s pai (Hisglt =% 0)

L)

p1u + ‘021/!2

+ 1/2
H;,,(g1) - ()

IN

In view of Holder’s inequality, the Theorem 4.3 now holds for y = 1 and y € (0,0). with ;1 = 2/y and
g2 =2/2 — 7y, one has

H., 030 = 96| < (H, 190 ~ b))

/2

t— 2 )i

oy (="
+p t+p11/l+p21/l2

1
<
F+ pru + pou?  prut+ pout?

Since, for all u € (0, 00), we get

H (1t - uP;u))"? W \
. ! Mrp (1)
H, (g0 - gl < M| —2———| < M(Lz) '
p1u + pau p1u + pau
We arrive the required result.

Now, we recall 7" term order Lipschitz-type maximal function suggested by Lenze [34] as follows:

w(g;u) = sup M, re(0,1), (13)

t#u, t€(0,1) |t - ulr

andu € (0,1). O
Theorem 4.4. Let g € Cp(0,1) and r € (0,1). Then, for all u € (0, 1), one has

H;+p(g} u) = gu)| < @ (g; u)(Niep (u))}'/z ‘
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Proof. We know that
[H;, 0510 - 90| < HE,, (198 = g0 w)
From equation (13), one has
13,950 - 90| < & (g5 w)(E e = w500
By Holder’s inequality with q; = 2/r and q, = 2/2 — r, we have

l+p(glu) (u)‘<a)r(g, )( l+p|t—u|2;u>r/2.

Which completes the required result. [

5. Approximation Properties Globally

Let v(u) = 1+ u?,0 < u < 1 is a weight function. Then, B,,(0,1) = {g(x) : lg(u)| < M,(v(1)), here M, is a
constant based on g and C,,)(0, 1) represents the space of continuous function in B,,(0, 1) equipped with

lgQ)ll, = sup lZEZ;' and Ck(u)(O 1) ={g € Cyuy(0,1) : hm ( ) = k, where constant k is depending on g}.
ue(0,1)

Now, the first and second Ditzian-Totik modulus of smoothness for the function g are given by

wy(g,7) = sup  sup  {lg(u + tb(u)) — g(u)l}

0<t<fj u,u+tb(u)e(0,1)

and

wg(g, f]) = sup sup  {lg(u + tb(u)) — 2g(u) + g(u — tb(uw))|},

0<t<fj u,u+tb(u)e(0,1)

respectively, where b(u) = {u(1 - u)}z and fj > 0. Suppose that

Kol = inf o= fll+ S 11 £ € GGO,D)

be the corresponding K-functional, where
W2(b) = {f € C3(0,1) : f € AC™(0,1), [[b*f”|| < oo} (14)

Here AC¢(0, 1) denotes the set of all locally continuous functions defined on (0, 1). Also It is clear from [32]
that there exist a real constant C > 0 such that

Clwb(g, ) < Koy (g; 1) < Cai(g, ). (15)

Now we establish a global approximation for the defined operators (4).
Theorem 5.1. For g € Cp(0,1) and u € (0, 1) there exists C > 0

T ) oo )

MWmWhWme@MﬁWWMm=MMWWWﬂM—M%

H;,, (g50) = )] < Calg, (16)
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Proof. For g € C(0,1), already we define the auxiliary operator in (6) such as:

-, . I+p-2 3
Hl+p(g;u):Hl+p(g;u)+g(u)_g I+p+1 u+ 21+p+1) :

Let x = Au+ (1 — A)s, where A € [0,1]. As b? is concave on (0,1), we must have the condition b?(x) >
AB? (1) + (1 — A)b?(s). Then, we have

|s — x| Alu —s| |s — ul
b2(x) ~ Ab2(u) + (1 — A)b2(s) ~ b2(u)
Also, in view of Lemma (2.3), for the operators (16), we have
I, (;0) — gl < 1H;, (g — fu)l + |H;,, (f;u) = F@)] + (g(u) - f(w)
4llg = Il + 1H;,, (f) = F). (17)

In view of Taylor’s formula, we have

IA

— S u+¢'l+p(”)
00 - o) < #( [ airmta) | [ e gy - @l
u u
S U (1) —
2 rrr Ly s — x| . ) . f+1/’ln |u+¢l+p(u) x| ’

< W] | G ) e | s

< BRI I, (5 - D)+ b2 £, ()

<

b2 )6 £ Nty (1) + 7, ()]
By using the above inequality, (17) yields

IH;,, (9;14) = gu)| < 4llg = £l + b2 GOI0 £ Nlptap (1) + 97, (10)].

Now by using (17) and taking the infimum over all g € ‘W?(b), we have

Lap(u) + l/)lzﬂ,(u)
R

2b(u)

[H;,.,(9;4) - g(a) < Ca}

But, In view of definition of first order Ditzian-Totik modulus of smoothness, one has

g(u + b(u)l’b;;;(;l)) - g(u)‘ < a)b(g, 17[)2(’;(;{)).

|9 + Prp(u)) = g(u)] =

Hence, we get

{ll+p(u) + 17[)12+p(u) lzbl"'l’(u)
) + a)h(g, )’

|H\f+p(9; u) — gl < ng(g, 2b(1) b(u)

which is the required result. [
Theorem 5.2. ([35], [36]) Suppose that the sequence of positive linear operators (L,)us1 acting from C,(0,1) to
B,(0, 1) satisfies the conditions

lim ||L,(e;.) —eill, =0, wherei=0,1,2,
n—o0

then, for g € CE(O, 1), we have
lim |IL,g = gll, = 0.

Remark 5.3. Throughout the paper, we consider test function as e;(t) = #i=0,1,2.
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6. Bi-variate generalized Bernstein Kantorovich Schurer operators

Take T? = {(u1,u2) : 0 < u; < 1,0 < up < 1} and C(T?) is the class of all continuous function on T?
equipped with norm ||f|lcq2) = SUP (4, 1y)eT? |f(u1,u2)|. Then, for all g € C(T?) and I + p,lo +p € N, we
established a bivariate sequence as:

I+p I+p v+l vp+1

I +p+1 Ip+p+1
Mm%@%m>§:ZQMMWWMmmf ‘fmgm@wwb (18)

v1=012=0 11+p+1 Iy+p+1

where

Qy +p,h4pvv2 (11, up) Qll+p,v1 (ul)le+p v (U2), and

Li+p+1)( 1+ . A
Quupnt) = SR (P Y= ppu i -
itp
fori = 1,2.
Lemma 6.1. Let ey, ,,(u1, u2) = uy'uy’. Then, for the operator (18), we get
Hy yppiplC00iur,u2) = 1,
. , h+p-2 3
HI1+p,lz+p(e1,Ol ul/ uz) (ll + p + 1) 2(11 + p + 1)1
. ) _ lz + p- 2 3
Hyppap(ori i i2) = (12 Tp+ 1) T rpr1)
. . (Lh+pP-7L+p)+6\ , [(6(Li+p)—8 7
Hjpsp (€207, 102) ( i +p+ 1P S VARG 1 L YR
. _ (L+pP-7L+p)+6\ , [(6(l+p)—8 7
Hispipep(C02711,12) ( (h+p+ 1) G 2) T 3G p
) ' (h +p)P® —15(L +p)> =381 +p) =24\ , (ZW+p? - +p+45) ,
Hy (€207 11, 12) ( Grprlp e (h+1p .
2l +p)-25 15
(11 +p+1)3 4(11 +p+1)%
) . (U pP =150 +p)> - 38(h+p) —24) , (Fa+pP - +p)+45)
Hy pppCositn i) - = ( (L+p+1)p u2” + (I, + 1)? w2
2 +p)-25 .\ 15
(L+p+1)y3 4L +p+ 13

Proof. From (2.1) and linearity, property we get

Hyypapteoon,ue) = Hy,, o (eo;us, u)H L) (€0; 1, 102),
H;1+p,12+p(31,0}u1/”2) = H11+p12+p(elzulzuZ)H11+p12+p(30/u1/u2)/
Hy yppapleorsun,uz) = Hp o (eosun, u)H L, (€150, 102),
Hy yppaple20iin,uz) = Hp, o (eo;un,u)H L, (e0; 1, 102),
Hy yppaplCo2iin,uz) = Hp . (eosun, u)Hy L, L (25101, 102),
Hyppaplesoiin,uz) = Hp,,, . (es;un,u)H L, L (e0; 1, 102),
Hy ppapleosiin,ug) = Hy,,,  (eosun,u)Hy L (635000, 1),
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7. Degree of Convergence

For g € C(72) the modulus of continuity of the second order is

@ (g;0n,1,) = sup {l gt,s) — glur, uz) |: (t,5), (u1,u2) € T2},

(u1,u2)€T?

with |t —uy [< 1y, |5 —up <7, and 1 > 0, given by the partial modulus of continuity as follows:

wi(g;n) = sup  sup {| g(x, u2) = g(xz, uz) I},

0<up <00 |x1—x2|<n

w2 (g;n) = sup  sup {| g(ur, 1) — g(ur, uz) |}.

0<uy <00 [ug—1p|<n

Theorem 7.1. For any g € C(7 %), we have

| Hj o 1yap (95 101, 12) = g (101, 102) |< Z(wl(y; Ouy ) + w2(g; 6zz,uz))-

Proof. In order to proof of above Theorem 7.1, generally, we use the well-known Cauchy-Schwartz inequal-
ity. Then, we have

| Hj i@, u2) = gQu,uo) IS H; o (Lg(s) — g(un, u2) 1 i, u2)
< H e (I gt,9) = g(uy,s) [;ur, uz) + Hy pip (I g(uy,5) — g(u, u) |; u1, un)
< Hiphip (1(g; | t = uy 1), ur, u2) + Hi ey (w2(g; 15 = uz [);ur, u2)
< wi(g;6p) (1 +0; 1Hfl+p pep(l E= 1 ]; Ml,uz)) + wa(g; 61,) (1 +0, 1H71+p Lap(ls =12 ;Ml,uz))
<

a)l(gléll)(l +— \/ L+p,la+p ( - Ml)z; ui, uZ))

+  wa(g;61,) (1+ \/ 11+plz+p( uz)z;ul,uz)).

2 52—
If we choose 6} = o7 = Hj . . ((

achieve our results O

t — u1)% u1, up) and 62 = 6122 by = H71+p,12+p((5 — )% u1,Up), then we get

Now, we analyse the convergence in terms of the Lipschitz class for bivariate functions. Maximal Lipschitz
function space on E X E C T2, forM>0and (,C € (0,1)is given by

L (EXE)

{9 sup(t + D1+ 5 (et 5) = gectan, w)

1 1
< M }
(1 + ul)C (1 + u2)C
where g is taken as continuous and bounded function on 72 and

| g(t,8) — g(ur, u2) |
|t =y s —up ¢

gect,s) — goc(ur, uz) = (t,5), (u1,u2) € T2 (19)
Theorem 7.2. For g € L (E X E). Then, for any C, C € (0, 1), there exists M > 0 such that
|y, g, | < MG EE +(32,,)°)
x (G E) 4 (22,)7)

+ (A, BY @, D)) |,
where 6y, ,,, and by, ,,, defined by above Theorem 7.1.
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Proof. Consider | u; — xo |= d(uq, E) and | up — yo |= d(up, E), for any (u;, up) € 772, and (xo, Yo) € EXE.
Let d(uq, E) = inf{| w3 — uy |: up € E}. Thus, we write

| g(t,s) = g(ur, u2) I< M| g(t,5) = g(xo, o) | + | g(x0, o) = g(tr, u2) | . (20)
Apply H} o +p(.; .,.), we have

| H oy pap(@5 i, u2) - = gl u2) |
Hy sy 1ep (19001, u2) = g(xo, o) | + 1 9(x0, yo) — g(ur, u2) 1)

MHll +p lz +p

IA

IN

(1t =20 s = yo 1% 1, u2)

M |uy—x0 |t —yo [°.

+

For every A,B > 0 and C € (0, 1), by using inequality (A + B)® < A® + BS, therefore,
|t —xo [°<t—up |©+ | ur —xo 5,
ls—yol°<Is—u [*+ur—yo I°.

Thus,

| Hi oy pyip (@1, u2) - = gun, 1) |

MH; e (1= s = 51, u0)

IN

+ Mlwm-x " H,,., (I's— w2 5 u1,ur)
+ Mlu—yo|°H L+ tp (l t—up |5 M1,M2)
+ 2M | up —xo [fuz —yo I° Hj sy (005 111, 112) -

Apply Holders inequality on we get

I+pl+p(’ ")

* A
Hi ey <| t—up s —uz |5 Ml,uz) = U (| t—u | Ml,uz)
A
X (Vl;] (I S—Up |C/ us, uZ)
C
* 2
< (Hl1+l7 12+P(| F=wn | aay uz))
2-C
X ( 11+p12+p(}loo,u1,u2))
C
2 2
X (H1+P 12+P iz | ;ul’uZ))
2-C
X ( l1+p[2+p(f100/u1/u2))

Thus, we can obtain

M (07, )" (0F.,)°

+  2M (d(uy, E))° (d(uz, E))°
¢

+ M@, EB)(5,.)°

+ L (d(MZ/ E))C ( I ul)2 :

IN

| Hj 4 gyp (95 11, 12) = 9(it1, 112) |

Which completes the proof. O
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8. Conclusion

In this study, we introduce generalized Bernstein Kantorovich Schurer type operators and estimate
some lemmas to support approximation results in subsequent sections in terms of test function and central
moments. Next, the convergence results and approximation rate in the sense of Korovkin theorem and
classical modulus of continuity are studied. Further, we investigate direct results of approximation via
Peetre’s K-functional, modulus of continuity of second order, Lipschitz space of functions and Lipschitz type
" order maximal function. In the last section, we discuss global approximation results and convergence
results in terms of statistical approximation.
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