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Abstract. In this paper, we employ Riemann-Liouville fractional integrals to derive two primary integral
findings concerning the a— pre-Griiss inequality and the (a, §)— pre-Griiss inequality. Our results extend
existing integral inequalities reported in the literature. Additionally, we discuss some applications of our
results for continuous random variables (CRYV, for short) with bounded probability density functions. Some
new estimates are provided in this context, along with classical results obtained as special cases from our
results.

1. Introduction
We begin the present introduction by recalling the following well-known integral inequality of Griiss
[7]:
(M —m)(P - p)
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where f and g are two integrable functions on [g, b] that satisfy the conditions:
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In the case where the integrals exist and f satisfies (2), we have the 1-order pre-Griiss inequality:
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The inequalities (1) and (3) have garnered considerable interest within the research community, prompting
a wealth of explorations into their generalizations, variations, and extensions. A plethora of scholarly
works, including those by [5, 8-12], have delved into this topic, offering diverse perspectives and insights
into their applications across different domains, especially in probability and statistics [1, 2].

The authors in [4] used an alternative integral approach to prove the following theorem, which generalizes
the Griiss result mentioned above:

Theorem 1.1. Let f and g be two integrable functions on [0, oo[ satisfying the condition (2) on [0, co.[ Then for all
t>0,a >0, we have:

1 fo = 0190 < (555

T (M = m)(P = p). @
It is to note that if we apply Theorem 1.1 for @ = 1, we obtain (1) on [0, f].

The main aim of this paper is to derive two primary integral results concerning the a— pre-Gruss inequality

and the (a, §)— pre-Griiss inequality by using the fractional integrals of Riemann-Liouville. Our results

extend existing integral inequalities reported in the literature. Additionally, we discuss some applications

of our results for continuous random variables (CRV, for short) with bounded probability density functions.

Some new estimates are provided in this context.

2. Preliminaries on fractional calculus

Definition 2.1. The Riemann-Liouville fractional integral operator of order e > 0, for an L' function f defined over
[a, b] is given by:

() = i [t =0 f(odT; a>0,

5)
Jf(t) = f(b).
We recall the property:
JIPf(t) = J**Pf(1), @ 2 0,8 2 0. ©

For more details, the reader can consult [6].

3. Main results

3.1. An a-order pre-Gruss fractional integral inequality

Theorem 3.1. Let f and g be two integrable functions on [a, b], such that f satisfies the condition (2). Then for all
a > 0, we have:
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Based on Lemma 3.2 of [4], we can prove the following lemma over [a, b]:

= fat) ~ I* O ) )

Lemma 3.2. Let u be an integrable function on [a, b] satisfying the condition of f given in (2). Then for any a > 0,
and t € [a, b], we have:

(t—a)*
T'a+1)
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Proof. [Proof of Theorem 3.1] Let us consider the quantity defined by the expression:

H(z, p) == (f(7) = f(p))(g(7) — 9(p)); T, p € (a,t). )
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Multiplying (9) by w > TP € (a1), then integrating with respect to 7 and p over (g, t)?, we can

observe that

t t
r21 ) f f (t — 1)t — p)* ' H(z, p)ddp (10)
J fa(t) = 2]* f(1)]*g().

a+1)

Thanks to Cauchy Schwarz inequality, it yields that

(" fo0) - I“f(t)]“g(t))z )

(R "0 - 0 FOR (s "0~ 07 9).

Using the fact that (M — f(x))(f(x) — m) > 0, we deduce by Riemann Liouville integration that the integral
inequality

(t—a)*
T'a+1)

J*M = fFO)f(E) =m) = 0 (12)

is valid for any t € [a, b].
Consequently, we can write

(t-
T'la + 1)
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Thanks to Lemma 3.2 and taking into account both (11) and (13), we can state that
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On the other hand, since 4pg < (p + 9)%p,9 € R, we can write
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By (14) and (15), we get (7). DO

Remark 3.3. Applying Theorem 3.1 for a = 1,t = b, we obtain (3).
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3.2. An (a, B)-pre-Gruss fractional integral inequality
Our next result is the following theorem which is a well-known property of the probability density
function of any continuous random variable (CRV).

Theorem 3.4. Let f and g be two integrable functions on [a, b] such that f satisfies the condition (2). Then for all
a>0,>0,t¢€ [a,b] we have:

(lgta + 1)] fa®)+ I"(ﬁ 1)]afg(t = J*fOTFgt) - PFBOT*g9(D) ) (16)
(t — o ( lZ)
< KMT(+1)—If(XWﬂﬂ—mFW+1Q

. (t=ay' \,
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(t—a) (t-ap N
e/ 70 r(ﬁ+1)] 7 =290 (1)

The proof of Theorem 3.4 requires the following lemmas, which are extensions of Lemma 3.4 and Lemma
3.5 of the paper [4], valid over any arbitrary interval [a, b].

Lemma 3.5. Let f and g be two integrable functions on [a, b]. Then for any a > 0, > 0, € [a, b], we have:
(t—

(lfia f):)]ﬁf 6+ F(ﬁ n 1)]af!7(t = J°f O gt) - TP g9(D) ) (17)
(t N N
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Lemma 3.6. Let u be an integrable function on [a, b] satisfying the condition (2) on [a, b]. Then for any a > 0, >
0,t € [a, b], we have:

(t -0 (t-a)f .
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Proof. [Proof of Theorem 3.4] Since (M — f())(f(t) —m) > O, for any ¢ € [a, D], then can write

(t—a)* (t—a)f
F(a+1) re+1)

Applying Lemma 3.6 to f, then using Lemma 3.5 and by (19), we obtain (16). [

JP(M = FENCf() = m) — J* M = fO)(f(E) —m) < (19)

Remark 3.7. (i) Applying Theorem 3.4 for o = 8, we obtain Theorem 3.1.
(ii) Applying Theorem 3.4 for a« = B = 1,t = b, we obtain (3).
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4. Applications
We begin this section by recalling the following properties [3, 4]:
(b —a)® (b—a)**t  a-a)

I=ravy’ M= Tar2 * Tary
and

N _2(b—a)**? N a?(b — a)®

T [bz] = m + 2a] [b] - m

Let us also recall the following fractional integral expectation [13]:

1 b
N.T@) fa - T)a_l’[f(’[)d’[,

where N, := [*[f(b)].
Remarque that when a = 1, we have N; = 1 which is a well known property of the probability density
function of any CRV.

Theorem 4.1. Let X be a CRV having the probability density function f defined over [a,b], such that f satisfies the
condition (2). Then for all & > 0, we have:

(b - ﬂ)a _ (b - a)a (b ) o 2 o 2 %
T+ 1) <Ny <F(a M- m))[r(a eyl -(0) |
Proof. [Proof of Theorem 4.1] We take g(t) = t in Theorem 3.1, we can write
(t B a)a a2 a 2 %
|F(a+1) (F(ac+1)( )[I‘(a+1)] ! (] t) ] '
Taking t = b, yields the following estimate

Eo(X) :=

Eo(X) -]
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that is
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HEC0 1Y < (r M=) - I
O

Remark 4.2. If we take a« = 1, then N1 = 1, so we obtain Theorem 4 of [2].

Theorem 4.3. Let X be a CRV having the probability density function f defined over [a, ], such that f satisfies the
condition (2). Then for any a > 0, > 0,t € [a, b], we have:

(N 00 + Ny 0 o0 Nop ) )
(0 =N )

(= M - )

x(ﬁaf)l)]ﬁ p e & ﬁ+)1)1“b2 2J7bJPb).

Remark 4.4. (i) Applying Theorem 4.3 for o = 8, we obtain Theorem 4.1.
(ii) Applying Theorem 4.3 for a = B = 1, we obtain the inequality (3) .
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5. Conclusion

In summary, our study has demonstrated the effectiveness of Riemann-Liouville fractional integrals in
deriving significant integral results concerning the a-order pre-Griiss fractional integral inequality and the
(o, B)-order pre-Griiss fractional integral inequality. The above main results have extended existing integral
inequalities reported in the literature, thereby opening new avenues in this research domain. Additionally,
we have explored new applications of our results for continuous random variables with bounded probability
density functions, thereby making valuable contributions to probability theory and mathematical analysis.
Furthermore, our study has yielded new estimates along with the rediscovery of classical results as special
cases of our main theorems. These contributions enrich the existing body of knowledge and provide useful
tools for eventually solving practical problems in various application domains.
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