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Abstract. Let B(H) be the collection of all bounded linear operators on H , where H is an infinite
dimensional complex Hilbert space. For T ∈ B(H), we say property (UWΠ)( property (ω)) holds for T if
σa(T)\σea(T) = Π(T)(π00(T)), where σa(T) and σea(T) denote the approximate point spectrum and the essential
approximate point spectrum of T, respectively, also Π(T) and π00(T) severally denote the set of all poles
and all finite dimensional isolated eigenvalues. In this note, we introduce a new judgement method for
bounded linear operators and their function calculus satisfying property (UWΠ) and property (ω) together
by the deformed property. Meanwhile, we investigate the relationships among property (UWΠ), property
(ω) and hypercyclic property.

1. Introduction

Spectral theory has a vital role in functional analysis theory, while Weyl’s theorem as a significant
branch of it has appealed a great deal of attention since Weyl[18] found it in 1909. After that, plentiful results
appeared based on the Weyl’s theorem, such as the collection of operators fullfilling the Weyl’s theorem was
expanded (from [7, 8]) and the theorem were varied in many aspects ([4, 5, 14, 16]) which are called Weyl’s type
theorems. Property (ω) and property (UWΠ) as two Weyl’s type theorems, which proposed by Rakočević[14]

and Berkani[5] respectively, have catched numerous academicians([2, 9, 10, 15, 19]) eyes recently. We will go on
this subject. Let us begin with some symbols and terminologies.

In this note, let B(H) denote the set of all continuous linear operators defined on H , where H is a
complex and separable Hilbert space. For T ∈ B(H), N(T) (R(T)) stands for the kernel (range) of T and
T∗ denotes the adjoint operator, the nullity n(T) and deficiency d(T) are defined by n(T) = dimN(T) and
d(T) = dimN(T∗) respectively. T ∈ B(H) is said to be a semi-Fredholm operator when R(T) is closed and
min{n(T), d(T)} < ∞, in this case, the index of T is defined by ind(T) = n(T) − d(T). We say T is an upper
semi-Fredholm if the index exists and n(T) is finite. Analogically, T is called a lower semi-Fredholm when
the index exists and d(T) is finite. Particularly, if T is an upper semi-Fredholm operator with n(T) = 0, then
we say T is a bounded below operator. T ∈ B(H) is a Fredholm operator if ind(T) is finite. Especially, we
say T is a Weyl operator if ind(T) = 0. Moreover, if T is upper semi-Fredholm with ind(T) ≤ 0, then T is
called an upper semi-Weyl operator. The symbol asc(T) stands for the ascent of T which is a smallest integer
n making N(Tn) = N(Tn+1). Similarly, the descent des(T) is also a smallest integer n making R(Tn) = R(Tn+1).
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If for any n ∈N, N(Tn) ⊊ N(Tn+1) is always true, then we write asc(T) = ∞ (resp. des(T) = ∞), whereN is a
collection of all nonnegative integers. If asc(T) = des(T)<∞, then we say T is a Drazin invertible operator.
What’s more, T is said to be a Browder operator if T is a Drazin invertible operator with ind(T) < ∞.

Throughout the paper, C denotes the set of complex numbers. For T ∈ B(H), ρ(T), ρa(T), ρw(T), ρe(T),
ρSF+ (T), ρSF− (T), ρSF(T), ρea(T), ρD(T) and ρb(T), respectively, denote the collection of complex numbers λ
which make T − λI be a invertible operator, bounded below operator, Weyl operator, Fredholm operator,
upper semi-Fredholm operator, lower semi-Fredholm operator, semi-Fredholm operator, upper semi-Weyl
operator, Drazin invertible operator, and Browder operator. Meanwhileσ(T) = C\ρ(T) denotes the spectrum
of T. Similarly, σ∗(T) = C\ρ∗(T) denotes the corresponding spectrum, where ∗ ∈ {a,w, e,SF+,SF−,SF, ea,D, b}.

For a set M ⊆ C, we write ∂M, intM, accM and isoM as the set of boundary points, interior points,
accumulation points and isolated points of M, respectively. Simultaneously, M is denoted as the closure of
M. Let σ0(T) = σ(T) \ σb(T). Set σd(T) = {λ ∈ C : R(T − λI) is not closed } and ρd(T) = C \ σd(T).

For T ∈ B(H), property (UWΠ) holds for operator T (write T ∈ (UWΠ)) if

σa(T)\σea(T) = Π(T),

and T satisfies property (ω) (write T ∈ (ω)) if

σa(T)\σea(T) = π00(T),

where Π(T) = σ(T)\σD(T) and π00(T) = {λ ∈ isoσ(T) : 0 < n(T − λI) < ∞}.
In paper [6], the author gave the definition of consistency in Fredholm and index property. Next, we will

provide a deformation property based on above property. And we can get the following Lemma 1.2 that
lists the judgement of operators having the deformed property by the similar approaches from Theorem
3.2 in [6].

Definition 1.1. Let T ∈ B(H). If for every S ∈ B(H), one of the situations occurs:
(1) Neither TS nor ST are Fredholm operators;
(2) TS and ST both are Fredholm operators and ind(TS) = ind(ST) ≤ ind(S),
then we say T has the property of consistency in Fredholm and nonpositive index, and T is said to a

CFI− operator.

Lemma 1.2. Let T ∈ B(H), then T is a CFI− operator if and only if one of the following conditions holds:
(1) T is a Fredholm operator and ind(T) ≤ 0;
(2) R(T) is not closed;
(3) R(T) is closed and n(T) = d(T) = ∞.

Then, the new spectrum is defined by

σ1(T) = {λ ∈ C : T − λI is not a CFI− operator},

and ρ1(T) = C \ σ1(T). Hence by above Lemma 1.2, we can prove that σ1(T) ⊆ σ(T) is an open set and
isoσ(T) ⊆ intρ1(T) easily.

Let us see some examples in the beginning.

Example 1.3. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0, x2, 0, x4, · · · ),

then we see that σa(T) = σea(T) = {0, 1}, π00(T) = ∅, Π(T) = {0, 1}, namely T ∈ (ω). But T < (UWΠ).
Hence, property (ω) holds does not imply property (UWΠ) holds.



J. Yi, X. Cao / Filomat 39:11 (2025), 3537–3546 3539

Example 1.4. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0, 0,
x2

2
,

x3

3
· · · ),

then we get that σea(T) = σa(T) = {0}, π00(T) = {0}, Π(T) = ∅. Thus T satisfies property (UWΠ). However T
does not satisfy property (ω).

Hence, property (UWΠ) holds does not imply property (ω) holds as well.

Example 1.5. Let A,B ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x2, x3, x4, · · · ), B(x1, x2, x3, · · · ) = (0, x1,
x2

2
,

x3

3
· · · ).

Make T =
(

A 0
0 B

)
, then we have σa(T) = σea(T) = {0, 1}, π00(T) = {0}, Π(T) = {1}. Thus T < (ω) and

T < (UWΠ).
Hence, we can find T ∈ B(H) which both property (ω) and property (UWΠ) don’t hold.

From above examples, we can conclude that there is no association between property (ω) and property
(UWΠ). Consequently, our purpose in section 2 is to describe the situation that bounded linear operators
obeying property (ω) and property (UWΠ) together. Moreover, in section 3 we also give the sufficient and
necessary conditions in terms of the issue that property (ω) and property (UWΠ) holds for functions of
bounded linear operators. In the last section 4, we will explore the associations among hypercylic property
and these two Weyl’s type theorems.

2. A new judgement of property (ω) and property (UWΠ)

For convenience, in this paper T ∈ [(UWΠ) ∩ (ω)] is a notation that T satisfies both property (ω) and
property (UWΠ).

Theorem 2.1. let T ∈ B(H), then the following statements are equivalent.
(1) T ∈ [(UWΠ) ∩ (ω)].
(2) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C :

des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

Proof. (1) ⇒ (2). First, take arbitarily λ0 which does not belong to the right side of the equation, without
loss of generality, assume that λ0 ∈ σ(T), then n(T − λ0I) > 0.

Claim. d(T − λ0I) < ∞. If not, then d(T − λ0I) = ∞, we will consider two cases.
Case 1 Assume that n(T − λ0I) < ∞. If λ0 < accσ(T), then λ0 ∈ π00(T), according to property (ω), we

know T−λ0I is a Browder operator; if λ0 < σSF+ (T), then λ0 ∈ σa(T)\σea(T), T−λ0I also is a Browder operator
by condition (1).

Case 2 Assume that des(T − λ0I) < ∞, then n(T − λ0I) ≥ d(T − λ0I)( [1, Theorem 1.22]). If λ0 < accσ(T),
we get that λ0 ∈ Π(T), then λ0 < σb(T) from T ∈ (UWΠ); if λ0 < σSF+ (T), then T − λ0I is a Fredholm operator.

Whenever case 1 or case 2 happens, it always creates a contradiction with d(T − λ0I) = ∞. Hence, it
follows that λ0 < σ1(T). By the definition of ρ1(T) and d(T − λ0I) < ∞, we get λ0 < σb(T) easily. And the
opposite inclusion is obivious.

(2) ⇒ (1). It is clear that [σa(T)\σea(T) ∪ π00(T) ∪ Π(T)] ∩ {[σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈
σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}]} = ∅, so
σa(T)\σea(T) ∪ π00(T) ∪Π(T) ⊆ σ0(T), which means that T ∈ [(UWΠ) ∩ (ω)].

Remark 2.2. (i) Assumes T ∈ [(UWΠ) ∩ (ω)], then every part of the decomposition of σb(T) in Theorem 2.1
can not be avoided. The following instances can account for it:
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Example 2.3. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ),

then T ∈ [(UWΠ) ∩ (ω)] and σb(T) = D. But {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C :
des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}] = T, where D denotes the unit disk and T is the unit circle.
Hence σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞} can not be avoided.

Example 2.4. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0, x1, 0, x2, · · · ),

then T ∈ [(UWΠ)∩ (ω)] and σb(T) = D. But [σ1(T)∩ {λ ∈ C : d(T − λI) < ∞}]∪ [accσ(T)∩ σSF+ (T)]∪ [{λ ∈ C :
des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}] = T. Hence {λ ∈ σ(T) : n(T − λI) = 0} can not be avoided.

Example 2.5. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0,
x2

2
,

x3

3
, · · · ),

then T ∈ [(UWΠ) ∩ (ω)] and σb(T) = {0}. But [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) =
0} ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}] = ∅. Hence accσ(T) ∩ σSF+ (T) can not be avoided.

Example 2.6. Let A,B ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1,
x2

2
, · · · ), B(x1, x2, x3, · · · ) = (0, x1, 0,

x3

3
, · · · ).

Make T =
(

A 0
0 B

)
, then T ∈ [(UWΠ) ∩ (ω)] and σb(T) = {0}. But [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈

σ(T) : n(T − λI) = 0} ∪ [accσ(T)∩ σSF+ (T)] = ∅. Hence {λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞} can
not be avoided.

(ii) From the proof of Theorem 2.1, it is obvious that T ∈ [(UWΠ) ∩ (ω)] ⇐⇒ σb(T) = [σ1(T) ∩ {λ ∈ C :
d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ isoσ(T) : des(T − λI) = ∞} ∩ {λ ∈ C :
n(T − λI) = ∞}].

By the Theorem 2.1 and consistency in Fredholm and nonpositive index property, it is easy to prove that
σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞} ⊆ σ1(T) ∩ intσea(T) ⊆ σ1(T) ∩ accσea(T) ⊆ σ1(T) ∩ σea(T), hence we have the
following result.

Corollary 2.7. Let T ∈ B(H), then the following statements are equivalent.
(1) T ∈ [(UWΠ) ∩ (ω)].
(2) σb(T) = [σ1(T) ∩ intσea(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(3) σb(T) = [σ1(T) ∩ accσea(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(4) σb(T) = [σ1(T) ∩ σea(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

Corollary 2.8. Let T ∈ B(H), then the following statements are equivalent.
(1) T ∈ [(UWΠ) ∩ (ω)].
(2) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF(T)] ∪ [{λ ∈ C :

des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(3) σb(T) = [σ1(T)∩ σSF+ (T)]∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T)∩ σSF(T)]∪ [ρSF+ (T)∩ accσea(T)]∪ [{λ ∈

C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(4) σb(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF(T)] ∪ [ρSF+ (T) ∩

accσea(T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
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Proof. (1) ⇒ (2). By the Theorem 2.1, we get that σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) :
n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}]. To begin with,
we have accσ(T) ∩ σSF+ (T) = [accσ(T) ∩ σd(T)] ∪ [accσ(T) ∩ {λ ∈ C : n(T − λI) = ∞}]. And it is easy to get
that accσ(T) ∩ {λ ∈ C : n(T − λI) = ∞} ⊆ [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ {λ ∈ C : n(T − λI) =
d(T − λI) = ∞}], thus “ ⊆ ” is proved combining with σSF(T) = {λ ∈ C : n(T − λI) = d(T − λI) = ∞} ∪ σd(T).
The clusion “⊇ ” is evident. Hence, (2) is right.

By the definition of σ1(T), we can rapidly get that σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞} ⊆ [σ1(T) ∩ σSF+ (T)] ∪
[ρSF+ (T) ∩ accσea(T)] and [σ1(T) ∩ σSF+ (T)] = [σ1(T) ∩ {λ ∈ C : n(T − λI) = ∞}], therefore (2) ⇒ (3) ⇒ (4) is
valid.

While for (4)⇒ (1), the method is same as Theorem 2.1.

Since σ1(T) is an open set, then σ1(T) , σ1(T). Because of [σa(T)\σea(T)∪π00(T)∪Π(T)]∩ [σ1(T)∩ {λ ∈ C :
d(T−λI) < ∞}] = ∅, then we gain the following corollary from the Theorem 2.1, Corollary 2.7 and Corollary
2.8.

Corollary 2.9. Let T ∈ B(H). Then the following statements are equivalent.
(1) T ∈ [(UWΠ) ∩ (ω)].
(2) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C :

des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(3) σb(T) = [σ1(T) ∩ σea(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}].
(4) σb(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF(T)] ∪ [ρSF+ (T) ∩

accσea(T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

3. Property (ω) and property (UWΠ) for operator functions

Let us see some examples to explain there is no direct connection between operators and their functions
satisfying both property (UWΠ) and property (ω) together.

Example 3.1. Let A,B,C,D ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2 ⊕ ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ), B(x1, x2, · · · ) = (x1, 0, · · · ),

C(x1, x2, · · · ) = (x1,
x2

2
,

x3

3
, · · · ), D(x1, x2, · · · ) = (0, x1,

x2

2
, · · · ).

Make T =


A 0 0 0
0 B + I 0 0
0 0 C + 3I 0
0 0 0 D − 4I

 , then σa(T) = T ∪ {−4, 2, 3, 4, 7
2 ,

10
3 , · · · }, σea(T) = T ∪ {−4, 3}, Π(T) =

π00(T) = {2, 4, 7
2 ,

10
3 , · · · }, which means that T ∈ [(UWΠ) ∩ (ω)].

Let p(T) = (T − 2I)T, q(T) = (T − 4I)(T + 4I). By calculations, for polynomial p(T) we can gain that
0 ∈ σa(p(T))\σea(p(T)), but 0 < π00(p(T)) ∪ Π(p(T)). And for polynomial q(T) we get that 0 ∈ π00(q(T)), but
0 < σa(q(T))\σea(q(T)).

Therefore, T both satisfies property (ω) and property (UWΠ) does not entail p(T) ∈ [(UWΠ) ∩ (ω)] for
arbitrary polynomial p.

Example 3.2. Let A,B,C ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, · · · ) = (x1, 0, x3, · · · ), B(x1, x2, · · · ) = (0, x1,
x2

2
, · · · ), C(x1, x2, · · · ) = (0, x1, 0, x2, · · · ).

Make T =


5
4 A − 1

4 0 0
0 B − I 0
0 0 C + I

 , then we have σa(T) = σea(T) = {λ ∈ C : |λ − 1| = 1} ∪ {−1,− 1
4 },

π00(T) = {−1}, Π(T) = {− 1
4 }, that is T < (ω) and T < (UWΠ).
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Let p(T) = T2, then σa(T2) = σea(T2) = {reiθ : r = 2(1 + cosθ)} ∪ {1, 1
16 }, π00(T2) = Π(T2) = ∅, so

T2
∈ [(UWΠ) ∩ (ω)].
Therefore, p(T) ∈ [(UWΠ) ∩ (ω)] for some polynomial p does not entail T ∈ [(UWΠ) ∩ (ω)].

Hence we will characterize the case that property (UWΠ) and property (ω) hold for function calculus
through the new spectrum in the following. We have a fact that if for arbitrary polynomial p, p(T) obeys
property (UWΠ) or property (ω), then for any λ, µ ∈ ρSF+ (T), ind(T − λI)ind(T − µI) ≥ 0.

Theorem 3.3. Let T ∈ B(H), then for each polynomial p, p(T) ∈ [(UWΠ)∩(ω)] if and only if the following assertions
hold:

(1) T ∈ [(UWΠ) ∩ (ω)];
(2) For any λ, µ ∈ ρSF+ (T), ind(T − λI)ind(T − µI) ≥ 0;
(3) If σ0(T) , ∅, then σb(T) = [σ1(T)∩ {λ ∈ C : d(T−λI) < ∞}]∪ [accσ(T)∩ σSF+ (T)]∪ [{λ ∈ C : des(T−λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

Proof. Necessity. We only need to prove (3). Let Bo(λ0; ϵ) = {λ ∈ C : 0 < |λ−λ0| < ϵ}. Since T ∈ [(UWΠ)∩(ω)],
then by Theorem 2.1 we have σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈ σ(T) : n(T − λI) =
0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}]. Among that we know
{λ ∈ σ(T) : n(T − λI) = 0} = {λ ∈ isoσ(T) : n(T − λI) = 0} ∪ {λ ∈ accσ(T) : n(T − λI) = 0}.

Claim 1. {λ ∈ isoσ(T) : n(T − λI) = 0} = ∅.
If not, take µ ∈ {λ ∈ isoσ(T) : n(T − λI) = 0} and λ ∈ σ0(T), then put p(T) = (T − λI)(T − µI). Since

λ, µ ∈ isoσ(T), then there exist Bo(λ; δ1) and Bo(µ; δ2) such that ∀t ∈ Bo(λ; δ1) ∪ Bo(µ; δ2), we have T − tI is
invertible. Let δ = min{δ1, δ2} and for all λ0 ∈ Bo(0; δ2), set p(T) − λ0I = (T − λ′I)(T − µ′I) , then we claim
{λ′, µ′} ⊆ Bo(λ; δ1) ∪ Bo(µ; δ2), if not we obtain |λ0| = |p(λ′)| = |p(µ′)| > δ2, namely λ0 < Bo(0; δ2). So it implies
0 ∈ isoσ(p(T)). Combining with 0 < n(T − λI) < ∞, it follows that 0 ∈ π00(p(T)). From the condition, we
have µ < σb(T), a contradiction.

Claim 2. σD(T) = σea(T).
In fact, because of T ∈ (UWΠ), then “ ⊇ ” is evident. For the converse, take λ0 < σea(T) arbitrarily, then

λ0 ∈ ρa(T) ∪ [σa(T)\σea(T)]. Then it must have λ0 ∈ σa(T)\σea(T). If not, then λ0 ∈ ρa(T). Take µ0 ∈ σ0(T) and
let p(T) = (T − λ0I)(T − µ0I), it follows that 0 < σb(p(T)). Hence λ0 < σb(T), contradicted with λ0 ∈ ρa(T).
Thus λ0 < σD(T) easily.

By claim 2, we have {λ ∈ accσ(T) : n(T − λI) = 0} ∩ ρd(T) = ∅. Then it follows that {λ ∈ accσ(T) :
n(T − λI) = 0} ⊆ accσ(T) ∩ σSF+ (T).

Therefore, the condition (3) holds due to claim 1 and claim 2.
Sufficiency. There exists two cases.
Case 1 Assume that σ0(T) = ∅. Combining with T ∈ [(UWΠ) ∩ (ω)], it follows that σea(T) = σa(T)

and π00(T) = Π(T) = ∅. Since for any λ, µ ∈ ρSF+ (T), ind(T − λI)ind(T − µI) ≥ 0, then σea(T) satisfies
spectrum mapping theorem( [17, Theorem 2]). Hence, for any polynomial p, we have σea(p(T)) = p(σea(T)) =
p(σa(T)) = σa(p(T)). BecauseΠ(p(T)) ⊆ p(Π(T)) and π00(p(T)) ⊆ p(π00(T)), then π00(p(T)) = Π(p(T)) = ∅. Thus
p(T) ∈ [(UWΠ) ∩ (ω)].

Case 2 Assume that σ0(T) , ∅. From the condition (3), it entails that σea(T) = σb(T) and {λ ∈ isoσ(T) :
n(T − λI) < ∞} = σ0(T). Take λ ∈ σa(p(T))\σea(p(T)) and suppose that

p(T) − λI = a(T − λ1I)n1 (T − λ2I)n2 · · · (T − λtI)nt ,

λi , λ j if i , j, where i, j = 1, 2, · · · , t. Then λi < σea(T) where i = 1, 2, · · · , t, it follows that λi < σb(T).
Thus σa(p(T))\σea(p(T)) ⊆ σ0(p(T)). Take λ ∈ π00(p(T)) and p(T) has above decomposition. Without loss of
generality, let λi ∈ σ(T) where i = 1, 2, · · · , t, then we can gain that λi ∈ isoσ(T). From n(p(T)− λI) < ∞, then
n(T−λiI) < ∞. Hence λi ∈ {λ ∈ isoσ(T) : n(T−λI) < ∞}, it follows that λi ∈ σ0(T). Thus π00(p(T)) ⊆ σ0(p(T)).
Because σD(T) satisfies spectrum mapping theorem and σea(T) = σb(T) = σD(T), we can show thatΠ(p(T)) ⊆
σ0(p(T)).

Therefore, property (UWΠ) and property (ω) hold for p(T) for each polynomial p.
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From the proof in Theorem 3.3, we can see the fact:

Corollary 3.4. Let T ∈ B(H),
(1) If σ0(T) = ∅, then p(T) ∈ [(UWΠ) ∩ (ω)] for any polynomial p if and only if T ∈ [(UWΠ) ∩ (ω)] and for any

λ, µ ∈ ρSF+ (T), ind(T − λI)ind(T − µI) ≥ 0;
(2) If σ0(T) , ∅, then for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] if and only if σb(T) = [σ1(T) ∩ {λ ∈ C :

d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

In the sequel, we continue to explore the sufficient and necessary conditions of operator functions
obeying both property (UWΠ) and property (ω).

Lemma 3.5. Let T ∈ B(H). Then σ0(T) = ∅ and for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] if and only if one of
the following assertions holds:

(1) σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [{λ ∈ C :
des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

(2) σ(T) = [σ1(T)∩σSF+ (T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}∪ [{λ ∈ C : des(T−λI) = ∞}∩{λ ∈
C : n(T − λI) = d(T − λI) = ∞}] ∪ [acc{λ ∈ C : n(T − λI) > d(T − λI)} ∩ {λ ∈ C : n(T − λI) = ∞}].

Proof. If (1)(or (2)) holds, we can prove that σ0(T) = ∅ and for any λ ∈ ρSF+ (T) ind(T−λI) ≥ 0 (or ind(T−λI) ≤
0). Using Theorem 2.1 and Corollary 3.1, it is easy to prove that the sufficiency of this corollary. Next we
will show the necessity.

Since T ∈ [(UWΠ) ∩ (ω)] and σ0(T) = ∅, it follows that σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ {λ ∈
σ(T) : n(T − λI) = 0} ∪ [accσ(T)∩ σSF+ (T)]∪ [{λ ∈ C : des(T − λI) = ∞}∩ {λ ∈ C : n(T − λI) = ∞}] by Theorem
2.1. Accordingly for any λ, µ ∈ ρSF+ (T), ind(T − λI)ind(T − µI) ≥ 0, then there are two situations.

Case 1 Suppose that λ ∈ ρSF+ (T), ind(T − λI) ≥ 0, then σa(T) = σ(T), it entails that (1) is correct.
Case 2 Suppose that λ ∈ ρSF+ (T), ind(T − λI) ≤ 0, then it follows that [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] =

[σ1(T)∩σSF+ (T)] and [{λ ∈ C : des(T−λI) = ∞}∩{λ ∈ C : n(T−λI) = ∞}]∪[accσ(T)∩{λ ∈ C : n(T−λI) = ∞}] ⊆
[{λ ∈ C : des(T−λI) = ∞}∩{λ ∈ C : n(T−λI) = d(T−λI) = ∞}]∪ [acc{λ ∈ C : n(T−λI) > d(T−λI)}∩ {λ ∈ C :
n(T−λI) = ∞}]. Hence σ(T) ⊆ [σ1(T)∩σSF+ (T)]∪[accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}∪[{λ ∈ C : des(T−
λI) = ∞}∩ {λ ∈ C : n(T−λI) = d(T−λI) = ∞}]∪ [acc{λ ∈ C : n(T−λI) > d(T−λI)} ∩ {λ ∈ C : n(T−λI) = ∞}].
The inclusion “ ⊇ ” is obvious. Thus the condition (2) is proved.

According to the Corollary 3.4 and Lemma 3.5, we can get:

Theorem 3.6. Let T ∈ B(H), then for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] if and only if one of the following
assertions holds:

(1) σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [{λ ∈ C :
des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

(2) σ(T) = [σ1(T)∩σSF+ (T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}∪ [{λ ∈ C : des(T−λI) = ∞}∩{λ ∈
C : n(T − λI) = d(T − λI) = ∞}] ∪ [acc{λ ∈ C : n(T − λI) > d(T − λI)} ∩ {λ ∈ C : n(T − λI) = ∞}].

(3) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C :
n(T − λI) = ∞}].

We claim that: If for any polynomial p, p(T) ∈ (ω) and T ∈ (UWΠ), then p(T) ∈ (UWΠ) for arbitrary
polynomial p.

In fact, since for any polynomial p, p(T) ∈ (ω), then we can get σa(p(T))\σea(p(T)) ⊆ Π(p(T)). For the
opposition, ∀λ ∈ Π(p(T)) and p(T) has the same decomposition like Theorem 3.3, it follows that λi < σD(T).
Also because of T ∈ (UWΠ), then we haveλi < σb(T). It implies thatΠ(p(T)) ⊆ σ0(p(T)). Hence p(T) ∈ (UWΠ).

According to Theorem 3.6, we can gain a conclusion as follows.

Corollary 3.7. Let T ∈ B(H), then for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] if and only if T ∈ (UWΠ) and one
of the following assertions holds:

(1) σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ {λ ∈ C :
n(T − λI) = ∞}.
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(2)σ(T) = [σ1(T)∩σSF+ (T)]∪[accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}∪{λ ∈ C : n(T−λI) = d(T−λI) = ∞}].
(3) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ C : n(T − λI) = ∞}.

Corollary 3.8. Let T ∈ B(H), then for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] if and only if T ∈ (ω) and one of
the following assertions holds:

(1) σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [{λ ∈ C :
des(T − λI) = ∞} ∩ σa(T)].

(2) σ(T) = [σ1(T)∩σSF+ (T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}∪ [{λ ∈ C : des(T−λI) = ∞}∩{λ ∈
C : d(T − λI) = ∞}] ∪ [acc{λ ∈ C : n(T − λI) > d(T − λI)} ∩ {λ ∈ C : n(T − λI) = ∞}].

(3) σb(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}] ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C :
n(T − λI) > 0}].

Proof. First, it is evident to show the necessity due to Theorem 3.6. Next, we finish the proof of sufficiency.
If the condition (1) or (2) holds, we have that σ0(T) = ∅ and for any λ, µ ∈ ρSF+ (T), ind(T−λI)ind(T−µI) ≥

0. Also, we obtain that Π(T) = ∅. It follows T ∈ (UWΠ) from σ0(T) = ∅ and T ∈ (ω). Thus, we show that
p(T) ∈ [(UWΠ) ∩ (ω)] for every polynomial p. If the condition (3) holds, it implies that Π(T) ⊆ σ0(T) and
isoσ(T) ⊆ {λ ∈ C : n(T − λI) > 0}. Moreover, combining with T ∈ (ω) we can get σea(T) = σb(T) and
σ0(T) = {λ ∈ isoσ(T) : n(T − λI) > 0}. Then we can prove for any polynomial p, p(T) ∈ [(UWΠ) ∩ (ω)] from
the proof in Theorem 3.3.

4. Hypercyclic property and Weyl’s type theorems

For h ∈ H , the orbit of h under the bounded linear operator T is defined as Orb(T, h) = {Tnh : n ∈N}. A
element h is said to be hypercyclic regarding to T if Orb(T, h) is dense inH . We denote HC(H) the collection
of all bounded linear operators which have hypercyclic vectors. In 1974, Hilden and Wallen put forward
hypercyclic property in [13]. Later, many authors have greatly interests on it and have obtained a lot of
outcomes in ([3, 11, 12]). Then we will use the new tool to research it sequentially.

Lemma 4.1. [12] Let T ∈ B(H), then T ∈ HC(H) if and only if the following assertions hold:
(1) σw(T) ∪ T is a connected set;
(2) σ0(T) = ∅;
(3) ρ−SF(T) = {λ ∈ ρSF(T) : ind(T − λI) < 0} = ∅.

In the following , we can take some examples to illustrate there is no relevance among property (UWΠ),
property (ω) and hypercyclic property.

Example 4.2. Let A,B,C ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, · · · ) = (x1, 0, · · · ), B(x1, x2, · · · ) = (0, x1,
x2

2
, · · · ), C(x1, x2, · · · ) = (0, x1, x2, · · · ).

Put T =

 A 0 0
0 B 0
0 0 C − 2I

 , then we can get T ∈ [(UWΠ) ∩ (ω)] but T < HC(H) due to Lemma 4.1. That is

T ∈ [(UWΠ) ∩ (ω)]⇏ T ∈ HC(H).

Example 4.3. Let A,B,C,D ∈ B(ℓ2) and T ∈ B(ℓ2 ⊕ ℓ2 ⊕ ℓ2 ⊕ ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ), B(x1, x2, · · · ) = (x2, x3, · · · ),

C(x1, x2, · · · ) = (0, 0,
x2

2
,

x3

3
, · · · ), D(x1, x2, · · · ) = (0, x2, x3, · · · ).

Put T =


A + iI 0 0 0

0 B + iI 0 0
0 0 C − I 0
0 0 0 2D − I

 , then we can get T ∈ HC(H). However T < (ω) and T < (UWΠ).

That is T ∈ HC(H)⇏ T ∈ [(UWΠ) ∩ (ω)].
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Theorem 4.4. let T ∈ B(H), then T ∈ HC(H) and T ∈ [(UWΠ)∩ (ω)] if and only if σ(T) = [σ1(T)∩{λ ∈ C : d(T−
λI) < ∞}]∪{λ ∈ σa(T) : n(T−λI) = 0}∪[accσ(T)∩σSF+ (T)]∪[{λ ∈ C : des(T−λI) = ∞}∩{λ ∈ C : n(T−λI) = ∞}]
and σ(T) ∪ T is connected.

Proof. For the necessity, suppose that T ∈ HC(H), then σa(T) = σb(T) = σ(T). Thus σ(T) = [σ1(T) ∩ {λ ∈ C :
d(T−λI) < ∞}]∪{λ ∈ σa(T) : n(T−λI) = 0}∪[accσ(T)∩σSF+ (T)]∪[{λ ∈ C : des(T−λI) = ∞}∩{λ ∈ C : n(T−λI) =
∞}] according to the Theorem 2.1. Meanwhile, it follows that σb(T) = σw(T) from T ∈ [(UWΠ)∩ (ω)]. Hence,
σ(T) ∪ T is connected by Lemma 4.1.

For the sufficiency, we can obtain that ρ−SF(T) = σ0(T) = ∅ and σw(T) = σ(T) when the equation holds,
thus T satisfies all three properties due to Theorem 2.1 and Lemma 4.1.

Remark 4.5. (i) There also exists some instances which can explain the four compositions of σ(T) are
independent when T ∈ HC(H) and T ∈ [(UWΠ) ∩ (ω)].

(ii) By the definition, it is clear that if T obeys all three properties, then σ1(T) = {λ ∈ C : n(T − λI) >
d(n − λI)} and ρ1(T) = ρ(T) ∪ {λ ∈ ρd(T) : n(T − λI) = d(T − λI) = ∞} ∪ σd(T).

(iii) Suppose that T ∈ HC(H) and T ∈ [(UWΠ) ∩ (ω)], then we obtain σ(T) = σ1(T) ∪ {λ ∈ σa(T) :
n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}]. But there is an
operator T(x1, x1, · · · ) = (0, x1, x2, · · · ) which can declare hypercyclic property doesn’t hold when σ(T) has
above construction and σ(T) ∪ T is connected.

Since [σa(T)\σea(T) ∪ π00(T) ∪ Π(T) ∪ ρ−SF(T)] ∩ {λ ∈ C : n(T − λI) > d(T − λI)} = ∅, then it follows a
conclusion from (i) and (ii) in Remark 4.5.

Corollary 4.6. let T ∈ B(H), then T ∈ HC(H) and T ∈ [(UWΠ)∩ (ω)] if and only if the following conditions hold:
(1) σ(T) ∪ T is connected;
(2) σ1(T) = {λ ∈ C : n(T − λI) > d(T − λI)};
(3) σ(T) = σ1(T) ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C :

n(T − λI) = ∞}].

Subsequently, we continue to explore the equivalent depictions of bounded linear operators meeting all
three properties. By the means of Corollary 2.7 and Corollary 2.9, there is a corollary.

Corollary 4.7. let T ∈ B(H), then the following statements are equivalent.
(1) T ∈ HC(H) and T ∈ [(UWΠ) ∩ (ω)].
(2) σ(T) = [σ1(T) ∩ {λ ∈ C : d(T − λI) < 0}] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF(T)] ∪ [{λ ∈ C :

des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}] and σ(T) ∪ T is connected.
(3) σ(T) = [σ1(T) ∩ σea(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) =

∞} ∩ {λ ∈ C : n(T − λI) = ∞}] and σ(T) ∪ T is connected.

In section 2, we give some equivalent characterizations that T both obeys property (ω) and property
(UWΠ). And we note that suppose T ∈ HC(H), then T ∈ [(UWΠ) ∩ (ω)] if and only if σea(T) = σa(T) and
π00(T) = Π(T) = ∅. So we will make out above mentioned case through σb(T) and σ1(T) when T ∈ HC(H)
in the following. A fact is that if T ∈ HC(H), then σ1(T) = σ1(T) ∩ {λ ∈ C : d(T − λI) < ∞}. Hence, a result
will be seen through this fact and Theorem 4.4.

Corollary 4.8. Let T ∈ B(H), suppose that T ∈ HC(H), then T ∈ [(UWΠ)∩ (ω)] if and only if σ(T) = σ1(T)∪ {λ ∈
σ(T) : n(T − λI) = 0} ∪ [accσ(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : des(T − λI) = ∞} ∩ {λ ∈ C : n(T − λI) = ∞}].

From the Theorem 3.6 and Theorem 4.4, we can get a corollary regarding to function calculus as follows.

Corollary 4.9. Let T ∈ B(H), suppose that T ∈ HC(H), then the following assertions are equivalent.
(1) T ∈ [(UWΠ) ∩ (ω)].
(2) For any polynomial p, p(T) satisfies both property (UWΠ) and property (ω).
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