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Abstract. This article carries out the investigation of a 4-dimensional Lorentzian manifold M4 endowed
with a type of semi-symmetric non-metric connection (SSNMC) whose associated vector field is parallel
with respect to the semi-Riemannian connection. We investigate gradient Ricci solitons, gradient η-Ricci
solitons and gradient Yamabe soliton with respect to SSNMC and we obtain several interesting results on
perfect fluid spacetimes..

1. Introduction

The semi-Riemannian geometry plays an important role in differential geometry and theory of relativity.
A differentiable manifold M of dimension n with a non-degenerate metric 1 of signature (p, s) is known as a
semi–Riemannian manifold of dimension n, where p+ s = n [6]. As a particular case, if we choose s = n− 1
and p = 1 or s = 1 and p = n − 1, then the semi-Riemannian manifold converts into a Lorentzian manifold
and it has great importance in Physics (specially in the general theory of relativity and cosmology).

In this paper, we study the impact of gradient solitons on perfect fluid spacetimes admitting a type
of semi-symmetric non-metric connection (shortly, SSNMC) . Many years ago, on a differential manifold,
Friedman and Schouten [19] presented the concept of semi-symmetric linear connection. In 1932, Hayden
[23] introduced the notion of metric connection with torsion on Riemannian manifold. Later , in 1970 the
idea of semi-symmetric metric connection on a Riemannian manifold was further developed by Yano [34] .

Let M4 be a 4-dimensional Lorentzian manifold with the Lorentzian metric 1 of signature (-,+,+,+).
Let ▽ denote the semi-Riemannian connection corresponding to the Lorentzian metric 1 on M4. A linear

connection ▽̃ defined on M4 is said to be semi-symmetric if the torsion tensor T̃ of ▽̃ defined by

T̃(X1,Y1) = ∇̃X1 Y1 − ∇̃Y1 X1 − [X1,Y1] (1)
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satisfies

T̃(X1,Y1) = ω(Y1)X1 − ω(X1)Y1, (2)

for all vector fields X1, Y1 on M4, where ω is a 1-form associated with the fixed vector field ρ1 and
satisfies ω(X1)=1(X1, ρ1).

Again, a linear connection ▽̃ on M4 is said to be metric if ▽̃1=0 and if ▽̃1 , 0, then it is said to be non-
metric [23]. Here, we consider SSNMC, that is ▽̃1 , 0 and the connection satisfies the equation (1). Agache
and Chafle [1] introduced the idea of SSNMC on a Riemannian manifold. After that, several researchers
studied the properties of SSNMC on manifolds with different structures ( [7], [10], [17], [18], [24], [25], [28],
[29], [32], [33], [35], [36]) and many others.

In 1982, the notion of Ricci flow was introduced by Hamilton [20], to find the canonical metric on a
smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian or semi-Riemannian
manifold M4 defined as: ∂∂t1 = −2S, where S and 1 are the Ricci tensor and the metric tensor respectively.
A Ricci soliton [21] on a Riemannian or semi-Riemannian manifold ( M4, 1 ) satiesfies the equcation

LW11 + 2λ1 + 2S = 0, (3)

where W1 is the potential vector field, L is the Lie derivative, S is the Ricci tensor of the manifold. If
W1 is a Killing vector field or zero then the Ricci soliton becomes trival or reduces to an Einstein manifold
respectively. The Ricci soliton is steady, expanding or shrinking according as λ = 0, λ>0 or λ<0. If W1 = D f ,
where D indicates the gradient operator and f is a smooth function on M4 , then 1 is called a gradient Ricci
soliton and in such case equation (3) becomes

∇
2 f + S + λ1 = 0. (4)

As a generalization of Ricci solitons, the notion of η-Ricci solitons was introduced by Cho and Kimura
[8]. An η-Ricci solitons is a tuple (1, W1, λ, µ), where W1 is the potential vector field, λ and µ are real
constants and 1 is a Riemannian (semi-Riemannian) metric satisfying the equcation

LW11 + 2S + 2λ1 + 2µη ⊗ η = 0, (5)

where η is the 1 dual 1-form of W1 and it is closed. Again if, W1 = D f then it is a gradient η-Ricci solitons
and (5) takes the form

∇
2 f + S + λ1 + µη ⊗ η = 0. (6)

If µ = 0, then η-Ricci soliton(or gradient η-Ricci soliton ) turns into Ricci soliton (or gradient Ricci soliton
) respectively.

Hamilton [20] proposed the idea of Yamabe flow, defined as follows:

∂
∂t
1(t) + r1(t) = 0, 10 = 1(t), (7)

where t indicates the time and r being the scalar curvature of M4. A Riemannian or semi-Riemannian
manifold equipped with a Riemannian or semi-Riemannian metric 1 is named a Yamabe soliton if it satisfies

LW11 − 2(r − λ)1 = 0, (8)

r is the scalar curvature of the manifold and W1 is the potential vector field. If W1 = D f , then Yamabe
soliton is called a gradient Yamabe soliton and the above equation becomes

∇
2 f = (λ − r)1. (9)

If f is constant or W1 is Killing vector field on M4, then gradient Yamabe soliton(or Yamabe) soliton
becomes trivial.
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A time-oriented 4-dimensional Lorentzian manifold is said to be a spacetime. Alias et al. ([2], [3])
introduced the concept of generalized Robertson-Walker (shortly, GRW) spacetimes. An n-dimensional
Lorentzian manifold M is called a GRW spacetime if it is constructed as a warped product M = −I ×φ2 M∗,
where I is an open interval of the real line, M∗ is an (n − 1)-dimensional Riemannian manifold and φ > 0 is
a scalar function. It says that φ is a warping function or scale factor. The spacetime turns into Robertson-
Walker (shortly, RW) spacetime if M∗ is of constant curvature and of dimension three. The geometrical and
physical properties of GRW spacetimes have been studied by many researchers but few are ([5], [14], [26] ).

Einstein’s field equations without the cosmological constant satisfy

S = kT +
r
2
1, (10)

where k and T indicate the gravitational constant and the energy momentum tensor, respectively.
In a perfect fluid spacetime (shortly, PFS), T is described by

T = (p + σ)ω ⊗ ω + p1, (11)

σ and p denote the energy density and isotropic pressure of the PFS [22].
In PFS, the Ricci tensor S takes the form

S = a1 + bω ⊗ ω, (12)

a and b being the smooth functions, ω is a non zero 1-form defined by ω(X1)=1(X1, ρ1) for all X1 and ⊗
symbolizes the tensor product. Here ρ1 is a unit time-like vector field, that is, 1(ρ1, ρ1) = −1. Combining
the equations (10), (11) and (12) , we infer that

a =
k(p − σ)

2 − n
, b = k(p + σ). (13)

Moreover, σ and p are connected by an equation of state of the type p = p(σ) and the PFS is said to
as isentropic. Further, if p = σ, the PFS is known as stiff matter fluid. If p + σ = 0, p = 0 and p = σ

3 ,
respectively, the PFS is considered to be the dark era, dust matter fluid and the radiation era [9]. The
universe is undergoing an accelerating phase when p

σ < −
1
3 . It describes the phantom era if p

σ < −1 and
quintessence phase if −1 < p

σ < 0.

Every RW spacetime is a PFS [27]. For 4-dimension, the GRW spacetime becomes a PFS if and only if it
is a RW spacetime. The properties of PFS have been investigated by many authors ([4], [13], [30]) and others.

A Lorentzian manifold is said to be a quasi-Einstein spacetime [16] if the Ricci tensor satisfies the relation
(12) and a , b are non-zero real constants.

On the otherhand, the Weyl tensor, also known as the conformal curvature tensor, is crucial in both
geometry and relativity theory. Several researchers have characterized spacetimes with Weyl tensor. The
Weyl tensor C is defined by

C(X1,Y1)Z1 = R(X1,Y1)Z1

−
1

n − 2
[1(QY1,Z1)X1 − 1(QX1,Z1)Y1 + 1(Y1,Z1)QX1 − 1(X1,Z1)QY1]

+
r

(n − 1)(n − 2)
[1(Y1,Z1)X1 − 1(X1,Z1)Y1]

for all X1, Y1, Z1 ∈ X(M), R being the Riemann curvature tensor and Q being the Ricci operator expressed
by 1(QX1,Y1) = S(X1,Y1). Further, we known that

(div C)(X1,Y1)Z1 =
n − 3
n − 2

[{(∇X1 S)(Y1,Z1) − (∇Y1 S)(X1,Z1)} (14)

−
1

2(n − 1)
{(X1r)1(Y1,Z1) − (Y1r)1(X1,Z1)}],
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‘div’ denotes the divergence.

Here we recall Shepley and Taub,s theorem for a 4-dimensional PFS to be a RW spacetime.
Theorem A ([31]) A 4-dimensional PFS with div C = 0 and subject to an equation of state p = p(σ) is

conformally flat and the metric is RW , the flow is irrotational, shear-free and geodesic.
Some interesting results on perfect fluid spacetime admitting solitons have been investigated in ([11], [12],
[15]) and also by others.

Motivated by the above works in this paper we are interested to investigate the impact of gradient
solitons in perfect fluid spacetime with a type of semi-symmetric non-metric connection.

The paper is organized as follows: After introduction in Section 1, the fundamental results of SSNMC
have been mentioned in Section 2. In the next Sections we study gradient Ricci solitons, gradient η-Ricci
solitons and gradient Yamabe solitons respectively on PFS endowed with a type of SSNMC.

2. Semi-symmetric non-metric connection

Agreement. Throughout the paper we assume that the associated vector field of the SSNMC is parallel
with respect to the semi-Riemannian connection.

A linear connection ∇̃ on M4, defined by

∇̃X1 Y1 = ∇X1 Y1 + ω(Y1)X1, (15)

where ∇ is the semi- Riemannian connection on M4, is a semi-symmetric non-metric connection. It satisfies
[1]

(∇̃X11)(Y1,Z1) = −ω(Y1)1(X1,Z1) − ω(Z1)1(X1,Y1). (16)

Let R̃ and R denote the curvature tensor with respect to the semi-symmetric non-metric connection ∇̃ and
semi- Riemannian connection ∇ respectively. Then R̃ and R are connected by [1]

R̃(X1,Y1)Z1 = R(X1,Y1)Z1 − α
∗(Y1,Z1)X1 + α

∗(X1,Z1)Y1, (17)

for all X1,Y1,Z1 on M4, where α∗ is a (0, 2)- tensor field defined as follows:

α∗(X1,Y1) = (∇X1ω)(Y1) − ω(X1)ω(Y1). (18)

Throughout this article, we consider the vector field ρ1 is a unit timelike vector field on M4 and it is parallel
with respect to the semi-Riemannian connection ∇, that is ∇ρ1 = 0 and ω(ρ1) = 1(ρ1, ρ1) = −1 . Then
∇X1ρ1 = 0 infers that

R(X1,Y1)ρ1 = 0 (19)

and

S(X1, ρ1) = 0. (20)

Also, using ∇X1ρ1 = 0, we get

(∇X1ω)Y1 = 0. (21)

Using (21) in (18) infers α∗(X1,Y1) = −ω(X1)ω(Y1). Then using the above equation in ( 17) we obtain,

R̃(X1,Y1)Z1 = R(X1,Y1)Z1 + ω(Z1)[ω(Y1)X1 − ω(X1)Y1]. (22)

From the foregoing equation, we have

S̃(X1,Y1) = S(X1,Y1) + 3ω(X1)ω(Y1), (23)
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where S̃ and S denote the Ricci tensor of ∇̃ and ∇ respectively.
Contracting the above equation, we reveal

r̃ = r − 3, (24)

r̃ and r are the scalar curvature of ∇̃ and ∇ respectively.
Using (19), we have from (22)

R̃(X1,Y1)ρ1 = ω(X1)Y1 − ω(Y1)X1. (25)

So, we get relations

ω(R̃(X1,Y1)Z1) = 0, (26)

and

S̃(X1, ρ1) = −3ω(X1), Q̃ρ1 = 3ρ1. (27)

where Q̃ is the Ricci operator with respect to the semi-symmetric non-metric connection ∇̃ defined by
1(Q̃X1,Y1) = S̃(X1,Y1).

Existence of a unit timelike parallel vector field on a 4-dimensional Lorentzian manifold endowed with
a SSNMC has been proved [7].

3. Gradient Ricci solitons

The soliton equation ( 4) can be written as

∇̃X1 D f = −Q̃X1 − λX1, (28)

for all X1 ∈ X(M4).Then using the above equation ,the subsequent relation

R̃(X1,Y1)D f = ∇̃X1∇̃Y1 D f − ∇̃Y1∇̃X1 D f − ∇̃[X1,Y1]D f (29)

yields

R̃(X1,Y1)D f = −(∇̃X1 Q̃)(Y1) + (∇̃Y1 Q̃)(X1). (30)

Contracting the above equation, we have

S̃(Y1,D f ) =
1
2

(Y1r̃). (31)

With the help of equations (23) and (24), equation (31) takes the shape

S(Y1,D f ) =
1
2

(Y1r) − 3ω(Y1)(ρ1 f ). (32)

Again, from the equation (12) we have

S(Y1,D f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (33)

Combining the equations (32) and (33) we get

1
2

(Y1r) − 3ω(Y1)(ρ1 f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (34)
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Setting Y1 = ρ1 in (34) and using ω(ρ1) = −1, we find

ρ1r = 2(a − b − 3)(ρ1 f ). (35)

From (30) it follows

1(R̃(X1,Y1)ρ1,D f ) = 0. (36)

Again , equation (25) infers

1(R̃(X1,Y1)ρ1,D f ) = ω(X1)(Y1 f ) − ω(Y1)(X1 f ). (37)

Comparing the equations (36) and (37) we get

(Y1 f )ω(X1) − (X1 f )ω(Y1) = 0. (38)

Setting Y1 = ρ1 and using ω(ρ1) = −1 in (38), we obtain

X1 f + (ρ1 f )ω(X1) = 0. (39)

Now we suppose that the scalar curvature remains invariant under the velocity vector field, that is, (ρ1r) = 0.
Then (35) entails that either (ρ1 f ) = 0 or (ρ1 f ) , 0.

Case I: (ρ1 f ) , 0 implies (a − b − 3) = 0 follows from (35). Therefore from equation (13), we obtain
3p + σ = constant which represents the equation of the state p = p(σ) of the PFS and the PFS is isentropic.

Case II: (ρ1 f ) = 0 . Then equation (39) gives f = constant and hence equation (28) gives

S̃(X1,Y1) = (−λ)1(X1,Y1). (40)

Now using (23) in the above equation we infer

S(X1,Y1) = (−λ)1(X1,Y1) − 3ω(X1)ω(Y1), (41)

which implies that the PFS becomes a quasi-Einstein spacetime.
Hence, we can state the result as:

Theorem 3.1. If a PFS endowed with a type of SSNMC admitting a gradient Ricci soliton whose scalar curvature
remains invariant under the velocity vector field ,then either

(i) The perfect fluid spacetime is isentropic , or
(ii)The perfect fluid spacetime reduces to a quasi-Einstein spacetime..

If we assume div C = 0 in a 4-dimensional PFS , then in view of the theorem A, we can state the following:

Corollary 3.2. A PFS endowed with a type of SSNMC admitting a gradient Ricci soliton whose scalar curva-
ture remains invariant under the velocity vector field and satisfying divergence free conformal curvature tensor is
conformally flat and the metric is RW, the flow is irrotational, shear-free and geodesic, provided f , constant.

4. Gradient η−Ricci solitons

The soliton equation ( 6) can be written as

∇̃X1 D f = −Q̃X1 − λX1 − µη(X1)ρ1, (42)

for all X1 ∈ X(M4). Using (42) and the definition

R̃(X1,Y1)D f = ∇̃X1∇̃Y1 D f − ∇̃Y1∇̃X1 D f − ∇̃[X1,Y1]D f (43)
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we reveal

R̃(X1,Y1)D f = −(∇̃X1 Q̃)(Y1) + (∇̃Y1 Q̃)(X1) − µ[η(Y1)X1 − η(X1)Y1]. (44)

Contracting the above equation, we have

S̃(Y1,D f ) =
1
2

(Y1r̃) − 3µη(Y1). (45)

In the light of equations (23) and (24), equation (45) becomes

S(Y1,D f ) =
1
2

(Y1r) − 3µη(Y1) − 3ω(Y1)(ρ1 f ). (46)

Again, from the equation (12) we have

S(Y1,D f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (47)

Combining the equations (46) and (47) we get

1
2

(Y1r) − 3µη(Y1) − 3ω(Y1)(ρ1 f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (48)

Setting Y1 = ρ1 in (48) and using ω(ρ1) = −1, we find

ρ1r = 2(a − b − 3 + 3µ)(ρ1 f ). (49)

From (44)

1(R̃(X1,Y1)ρ1,D f ) = µ[(Y1 f )ω(X1) − (X1 f )ω(Y1)]. (50)

Again , from equation (25), we obtain

1(R̃(X1,Y1)ρ1,D f ) = ω(X1)(Y1 f ) − ω(Y1)(X1 f ). (51)

Comparing the equations (50) and (51) we get

µ[(Y1 f )ω(X1) − (X1 f )ω(Y1)] = ω(X1)(Y1 f ) − ω(Y1)(X1 f ). (52)

Setting Y1 = ρ1 and using ω(ρ1) = −1, in (52) we find

(µ − 1)(X1 f + (ρ1 f )ω(X1)) = 0. (53)

For µ , 1, equation (53 gives D f = −(ρ1 f )ρ1.
Thus we can state the following:

Theorem 4.1. If the Lorentzian metric of a perfect fluid spacetime equipped with a SSNMC be a gradient η-Ricci
soliton satisfying µ , 1, then the potential function of the gradient η-Ricci soliton is pointwise collinear with the
velocity vector field of the perfect fluid spacetime.

Suppose potential function remains invariant under the velocity vector ρ1, then from equation (53) we
get f = constant. Then (49) infers ρ1r = 0 and hence equation (48) gives µ = 0.

Considering f = constant and µ = 0 we obtain from equation (42)

S̃(X1,Y1) = (−λ)1(X1,Y1). (54)

Now using (23) in the above equation we get

S(X1,Y1) = (−λ)1(X1,Y1) − 3ω(X1)ω(Y1), (55)

which infers that the PFS becomes a quasi-Einstein spacetime.

Corollary 4.2. A PFS endowed with a type of SSNMC admitting a gradient η-Ricci solitons whose potential function
remains invariant under the velocity vector field represents a quasi-Einstein spacetime with µ , 1.



A. R. Baidya et al. / Filomat 39:11 (2025), 3695–3704 3702

5. Gradient Yamabe solitons

Let M4 admit a gradient Yamabe soliton, then (9) implies

∇̃Y1 D f = (r̃ − λ)Y1. (56)

Differentiating (56) covariantly along the vector field X1, we obtain

∇̃X1∇̃Y1 D f = (X1r̃)Y1 + (r̃ − λ)∇̃X1 Y1. (57)

Interchanging X1 and Y1 in the above equation and then utilizing the preceding equation in R̃(X1,Y1)D f =
∇̃X1∇̃Y1 D f − ∇̃Y1∇̃X1 D f − ∇̃[X1,Y1]D f , we lead

R̃(X1,Y1)D f = (X1r̃)Y1 − (Y1r̃)X1. (58)

Contracting the previous equation over X1, we get

S̃(Y1,D f ) = −3(Y1r̃). (59)

In the light of equations (23) and (24), equation (59) takes the form

S(Y1,D f ) = −3(Y1r) − 3ω(Y1)(ρ1 f ). (60)

Again, from the equation (12) we have

S(Y1,D f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (61)

Comparing the equations (60) and (61) we get

−3(Y1r) − 3ω(Y1)(ρ1 f ) = a(Y1 f ) + bω(Y1)(ρ1 f ). (62)

Now putting Y1 = ρ1 in (62) and using ω(ρ1) = −1, we find

ρ1r =
(3 − a + b)

3
(ρ1 f ). (63)

From (58)

1(R̃(X1,Y1)ρ1,D f ) = ω(X1)(Y1r̃) − ω(Y1)(X1r̃). (64)

Again, from equation (25), we find

1(R̃(X1,Y1)ρ1,D f ) = ω(X1)(Y1 f ) − ω(Y1)(X1 f ). (65)

Combining the equations (64) and (65) we obtain

ω(X1)(Y1 f ) − ω(Y1)(X1 f ) = ω(X1)(Y1r̃) − ω(Y1)(X1r̃). (66)

Using equation (24) in (66) we get

ω(X1)(Y1 f ) − ω(Y1)(X1 f ) = ω(X1)(Y1r) − ω(Y1)(X1r). (67)

Setting Y = ρ1 and using ω(ρ1) = −1, we infer

ω(X1)(ρ1r) + (X1r) = ω(X1)(ρ1 f ) + (X1 f ). (68)

Using equation (63) in the above equation we get

(X1r) =
(a − b)

3
ω(X1)(ρ1 f ) + (X1 f ). (69)
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Using equation (69) in equation (62) we find

(a + 3)(X1 f + (ρ1 f )ω(X1)) = 0, (70)

which shows that either X1 f + (ρ1 f )ω(X1) = 0 or, X1 f + (ρ1 f )ω(X1) , 0.
Case I:
X1 f + (ρ1 f )ω(X1) = 0 implies D f = −(ρ1 f )ρ1.
Case II:
X1 f + (ρ1 f )ω(X1) , 0 implies (a+ 3) = 0 follows from equation (70).Therefore from equation (13), we can

conclude that p = σ + constant. This represents the equation of state of the PFS.
Hence, we state the result as:

Theorem 5.1. If the Lorentzian metric of a perfect fluid spacetime equipped with a SSNMC be a gradient Yamabe
soliton, then either

(i)The gradient of Yamabe soliton potential function is pointwise collinear with the velocity vector field of the
perfect fluid spacetime, or

(ii) The state equation is p = σ + constant.

Next, we consider (a + 3) , 0. The covariant derivative of D f = −(ρ1 f )ρ1 yields

∇̃X1 D f = −(ρ1 f )∇̃X1ρ1 − (X1(ρ1 f ))ρ1.

Using equation (56) we get
(r̃ − λ)X1 = −(ρ1 f )∇̃X1ρ1 − (X1(ρ1 f ))ρ1.

If f is invariant under velocity vector field ρ1 that is ρ1 f = 0, then we can find from the foregoing
equation r̃ = λ , a constant. Hence from (24), we infer that r = constant i.e M4 is of constant scalar curvature.

Again ρ1 f = 0 implies D f = 0, gives that f is constant and hence the gradient Yamabe soliton becomes
trivial.

Corollary 5.2. Let a PFS endowed with a SSNMC admits a gradient Yamabe soliton with a , −3. If f is invariant
under the velocity vector field , then

(i) The scalar curvature is constant in M4.
(ii)The soliton becomes trivial.

6. Conclusion

The semi-symmetric connections have applications in sub-manifold theory, HSU-unified structure man-
ifolds, warped product manifolds, statistical manifolds and theoretical physies. In [25] the authors have
provided the application of SSNMC in a nice way.

Solitons are nothing but the waves which is physically propagate with some loss of energy and hold
their speed and shape after colliding with one more such wave. In non-linear partial differential equations
describing wave propagation, solitons play an important role in the treatment of initial-value problems.

In the present paper we characterize perfect fluid spacetime endowed with a SSNMC admitting gradient
Ricci solitons, gradient η-Ricci solitons and gradient Yamabe solitons. Among others we establish that a PFS
endowed with a type of SSNMC admitting a gradient Ricci soliton whose scalar curvature remains invariant
under the velocity vector field and satisfying divergence free conformal curvature tensor is conformally flat
and the metric is RW, the flow is irrotational, shear-free and geodesic, provided f , constant. Moreover,
we prove that a PFS endowed with a type of SSNMC admitting a gradient η-Ricci solitons whose potential
function remains invariant under the velocity vector field represents a quasi-Einstein spacetime with µ , 1.
Finally, it is shown that a PFS endowed with a SSNMC admits a gradient Yamabe soliton with a , −3 and
if f is invariant under the velocity vector field, then the scalar curvature is constant in M4 and the soliton
becomes trivial.

In near future we may consider the same problem for the generalized Robertson-Walker spacetimes.
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