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Abstract. In this paper, we establish the existence and uniqueness of solutions to nonlinear hybrid frac-
tional differential equations within the Atangana-Baleanu-Caputo framework. Our analysis incorporates
both linear and nonlinear perturbations. The proposed method relies on the nonlinear Leray-Schauder
alternative in combination with Banach’s fixed-point theorem, ensuring a robust mathematical foundation.
To illustrate the practical significance of our findings, we provide a concrete example that demonstrates

their applicability.

1. Introduction

Hybrid differential equations form an important and diverse area of study within differential equa-
tions.Focusing on quadratic perturbations of nonlinear systems.This area has gained significant attention
in recent years due to its extensive applicability in multiple scientific and engineering fields.The authors
studied the following hybrid differential equation with Linear and Nonlinear Perturbations[8]:

S20VP(, () = n(#, 9G] = (%, 8(%)), #€l=[0,T],T>0 o
1
3(0)p(0, 5(0)) + uS(T)p(T, 3(T)) = 1(0,9(0)) + un(T, (1)) + p.

The extension of hybrid differential equations, incorporating both linear and nonlinear perturbations, to
the framework of fractional calculus is presented in this work. [1].
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Motivated by the abovementioned problem, we consider the following boundary value problem for hybrid
differential equation:

{ ACDL[8G) P, 8(3) — (%, S(0)] = O(3, (%)), #x€]=1[0,T], T >0, %)
(0)9(0, 9(0)) + uS(T)(T, H(T)) = n(0, 5(0)) + un(T, S(T)) + B,

where ABCOZ); , denote Atangana-Baleanu-Caputo Derivative. of order (, ¢ € €(J xR, R\{0}),n € €(JXR,R),
and 0 € ¥(J] x R, R) are given functions and 8, 4 € R such that u # 1.

The structure of the paper is as follows: Section 2 provides a brief overview of the necessary prelimi-
naries. In Section 3, we investigate the existence and uniqueness of solutions to the initial value problem
(2) using the Banach contraction mapping principle (BCMP) and the Leray-Schauder fixed-point theorem.
Section 4 presents an example to demonstrate the applicability of our results. Finally, Section 5 offers
concluding remarks and suggests directions for future research.

2. Preliminaries

We define some essential definitions related to fractional calculus that is going to be used throughout
the paper:

Definition 2.1. If1 € R* and z € R, the Mittag-Leffler function is defined as:

n=oo z"
E.(2) = ;6 I'(ni+1)
where the Euler gamma function I'(+) is given by

I'(z) = f ) Fletdt (R(z) > 0).
0

Definition 2.2. [9] Let 9 € €(J,R) and 1 € [0, 1], the left Atangana-Baleanu-Caputo fractional derivative(ABC) of
O of order v is defined by

MBCODES(E) = 2L f (- 0)| (0o

where B(t) =1 — 1 + == > 0 is a normalization function satzsfymg B(0O)=B(1)=1.

r(L)

The associated fractional integral is defined by

1 —
ABGILH(E) = —— (&) +

B(L) o0 5‘9(5)

B()

where . .
o1:9(6) = 75 [ (€ =01 900

is the Riemann-Liouville fractional integral [10, 11] of 3 of order 1.
Lemma 2.3. [12]If 0 < 1 < 1, then APyt (4B, D% 8(8)) = 8(£) — 8(0).
Lemma 2.4. [13, 14] The equivalent fractional integral equation to the the ABC-FDEs

PEDE) = g(r, 9(E), £€]=[0,T],T>0
9(0) = o,
is given by
(&) =9 .

) g(é, (5))+ f (&= 0)"g(0, 9(0))do.

( )T( )
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Lemma 2.5. (Leray—Schauder alternative see [15]). Let W : X — X be a completely continuous operator and
Py ={xeX:y=06Wxforsome0 <0 <1}

Then, either the set Sy is unbounded or W has at least one fixed point.

3. Existence Result

In this section, we will prove the existence of a integral solution for problem (2). To obtain the existence
of a integral solution, we will need the following assumptions:

(P1): The map 9 +— dp(&, 9) — n(%, 9) is increasing in R for each & € J.

(P2) : There exist positive constants y,, and y,, such that
lp(3t, 9) = g,
In(Gt, )l < yy.

(P3) : There exists positive constants Ay, A, and A, such that

lp(#, ) — p(k, w)| < Ayl — wl,
In(%, 9) = N, w)l < 44|19 - wl,
10(x,9) = 0(%, w)| < Agld — wl.

foreach %t € Jand 9, w € R.
Denote ¢ := €(J,R), the space of all continuous mapping defined on | into R endowed with the norm
1911 = sup¢; I9GYII.

Lemma 3.1. Let h € €(J,R), then 3 is an integral solution of (2) if and only if it satisfies the following integral
equation:

o B B u(@ = 0)o(T, N(T)) B i T et

S0 = 00t 5G0) ~ BOA + ot 9G0) (L + WBET W9, sm»f (T =760, S ds
n#x, (%)  1-10(%,9R)) L -1 .
T3 T B0 9t 5G) T BETW 9, sm»f (* =900 ) ds, Ke]

Proof. Suppose that 3 is a solution for (2), then we obtain

()5, 9(2)) =3(0)p(0, 9(0)) — (0, $(0)) + (%, $(30)) ML () 05, 9(3))

_a (M e )
" B()I'(1) ]0‘ (5 =5)7"0(s,9(s))ds, forx €] 3)
Then we get
ES(D)P(T, (1)) =3O 0, S(0)) = (0, S(0) + (T, (D))
WQ(T (D) + B(u) F(L)f (T —5)"10(s, 9(s)) ds. @)

Hence, we get

3(0)p(0, 9(0)) + ud(T)p(T, (a)) =(u +1)9(0)(0, 3(0)) — un(0, 5(0)) + pn(T, 5(T)) + H%Q(Tr (1)
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_ o1
L)T(L) f (T —s)7"0(s,9(s)) ds. (5)

By using the second equation in (2), we obtain

p

S0)p(0, 9(O) =10, 9O = 7 - “B(L)a_ + 1)

O(T, 3(T)) — f (T - 5)710(s, 9(s)) ds.

(6)

B(L)F(L (y +1)

By replacing in (3) , we obtain:
b B pu( = 0o(T,5(1)) _ e el
M+ et SG) ~ BOA+ et S(R) (L + mBOTON H(ﬁ))f (T =s)760s, 3(s) ds

NG90 1 -1 0%, 9(5) ~ .
SG ) B0 pG IR SOTTeE, S f (=906, 3N ds, Kel ()

3G =

O

To reduce the form of mathematical expressions, consider the following notations:

B, #-Y (M Ak 1A9]

Ao+ —Ap + —
yalu+17" BOA+w 27 27 e

/\o A A n
L @ f — Aot + _/\k + 7/_/\
(1 + ”)B(L)F(L) L Vgu y(p V(p 7/(%’ V(p
-0 Agr /\k Ag [ T L
+ — A+ e Ag— + ———
B(1) ( 2 a 2 (P] B(O)(9))g e B()T(1))3
__ B -l (uedet g+ A T

1+uly. BOA+wlye 11+ wBOIIWy. ¢

vy MdA

Yo B(t) 7.
[1—1 Ag (1 = 0)lAg N (utho + |p + 1edg) T

BO) 7. BO@+ e 10+ mWBOI@Wy, ¢

Theorem 3.2. Suppose that (P1) — (P3) are satisfied. In addition, assume that the following condition is verified:

M =

Tt
/\(ﬂT (Agr + Ap),

T3 =

i <1.
Then, the problem (2) has a unique solution.
Proof. Let us set sup;,.; 0(%,0) = Ax < o0, and define a closed ball B, as follows:
={de?: I8,
where
T2

r= .
1—’/‘(3

Also, we define the following operator i on ¢ by

p u(1 — )6(T, () pt

YR = o o)~ BOA + Wk, 5(0) 1+ WBQL g0 SG)

T
f (T —5)"10(s, 9(s)) ds
0
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NGSG)) 1 -1 63, S() »
Gt B 3G BTG f (= 5760, () ds,

The proof will be made in two steps:

(i) : WB, C B,. Indeed, for 9 € B, and % € |, we have

) Bl (1~ )II6(T, S(T)) - (T, 0) + 6(T, 0)
WO <o s T BO + 1)pG, SG)]
e !

NS _
T+ BT Ol SGO) J, (17 (063D =06 01106 O s

(G, SG))  1-116(%, 9(%)) - 0(%,0) + 6(%,0)|
19(%, ()| B() lp(%, S())|
+ : f S()2)(9(12) =) (16(s, 9(s)) — 6(s, 0)] + 16(s,0)]) ds
B(OT(Dlp(3, S())I Jo ' ' '
Il . lu(1 = 0lAl(T)| . (1 = D)l
Tl4plye  BOA+Plye  IBOA+ wlye

$)'™ (Aol9(s)| + Ax) ds

<1+u)B<L>|r<L>y<pf (-
Vi, L= AGlSG | L0 &
V«) B(1) Yo B(1) 7o

: " 90 - 9 (AelSE) 4 Ay) d
+mfo (36 = 9! (Lal9E) + Ag) ds
Bl N lu(1 = olAer N (1 = )|k
T +plye  BOA+Wlye  BOA+ Wiy
(Ao + |u + 1tAg) zr (WA + [+ 1eAy) 2
I(1+ 0)BOIT(W)ye ¢ I(T+ wBOI()ye ¢
Vi I1—1|M+I1—Llﬂ
Yo  BO ve  BO e
I8l . (1 = 0)lAx
T+ plye  BOA+ Wy,
(uiAg + |u+ 1|L/\k)z . Ya N u&
1T+ wBOIWyy ¢t 7o BO 7
1 - & lu(1 = v)lAg (utdo + |u + 1tAg) z ]
B(1) vo BOA+wlye 11+ wBOII(W)ye ¢

Hence, we get

Bl N (1 = 0)IAx
T+ ulyy,  BOA+ wlye
(WA +|u + 1|£/\k)z N Ya N 1 - L|ﬁ
T+ wBOIIWye t Ve  BO) Yo
1-dAo [u(1 = 0)lAg N (uido +|p + 1lidg) T )
B(1) vo BOA+wly, 1+ wBOILW)y, ¢

[P <

3763

)
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From (8), it follows that
Y@l <.

(ii) W is a contraction:
Forv,w € B, and t € I, we have

o P
W0 = Y@ < s = T oG G)

pd-9 OTSM)  OTND) 0T NT) _ T (D)
B+ ) o, 3(%) ¢, w0()  S0,w®) O, w()

Lt 1 T ot 3 1 ! oyl )
(1+#)B(L)F(t)( xwo)fo (T =5)786, 5s)) ds <p(t,w<ﬁ>>fo (T =)™ 66, wle)) ds

NG 3(3)  nG,wG9)  nGwG) 16, o)
P 3H) @, () e, 900) @G w(3))
1-1, 00, 900) 0G4, 9(0) | 0(, () 0%, w()
B() "@(,3(%)) ot o) eGLw() ¢, w()

+]
|

L

1 x N — 1 > . L_
+ B()T' (1) (qo(ﬁt, (%)) j; (B —5)7'0(s, 9(s)) ds — m fo (3t —5)710(s, w(s)) dS)

Bl o arn PN
ST lp(3, S(3)) — (&, w(R))]
(-1 (o, S(T)) P 1 _
B(ﬁt)(1+M)( g 1PU 00 el eGl s o 3O Q(T'wm)']

P - )
T B L)r(l)(yq)I (T'=9)"716(s, 9(s)) = 0, w(s))|ds)

L@(% () — p(%, w ()| f (T —5)"'0(s, w(s)) ds
(1+ wBOIWy

+ y—ln(fc, () = n(t, w()| + —;'|<P(ft, S(R)) = S0, w(3))|
¢ ¢

) (w(x BRE)]

0 lp(3, 3(2)) - p(%, w(%))|+y—|9(% () - 9(ﬁ,w(ﬁ))|]

Vo

5@ (w f G s 106, 9(9) = 06 “’(S))'ds)

lp(, 3(2)) - p(%, w(%))lf (% —5)710(s, w(s)) ds

()F()2

Bl
ﬁ olld — ol

p(d =1 /\QT /\k
+ 19 = coll + 22,19  all + ——A6llS -
(t)(1+y)[ 2 Mo e Yo ! )

it Ag Ap Ag
S 19 = wll + =2 AgrlIS — wll + —2 Al® — wl|
(1+y)B(L)r(l) . [ 2 7

+ —||\9 —wll + —A 19 = wll
Yo V% Y
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- A A
+ LD A07) s — w4 XA 118 - al+ 505 -
B(t) y(P V(p
[ T
+ ——Ag—||8 — + —A,9 — Ao + A
TR MIBUH) ol Ml(ar b
1-
( Bl Ao+ p -0 (/\grA /\_;A(N_ ﬁ]
Volu+1] B+ )\ y? Vo Vo
)\ /\
LT ﬁ /\gr+—)\k +—+ﬁ/\
T+ wBOTW < 7y Ve Ve Yo Ve
(I-10)(Aer Ak Ao a Tt
+ Sy Ao+ 2|+ =———N0—
MO(yéq e ] BTy, " 1

L

+ —
B(OT()y5

which shows 1 is a contraction.

Thus, 1 is a contraction. Then, the existence and uniqueness of the solution is guaranteed by Banach’s
fixed-point theorem.

Our second result focuses on establishing the existence of solutions for the problem (2) using the Leray-
Schauder alternative. For brevity, let us set:

Tl
A“’T (Agr + A 1S — wll) < mlld - wll,

A1 =1 =y, (10)
Ta

N 1

M= 500y, an

Theorem 3.3. Suppose that (P1) and (Ps) are satisfied. In addition, assume that there exist y1,y2 > 0, such that

|60, 9)| < y1 + 29, for each (%,9) € ] X R.
Also, y2Ag < 1. Then, problem (2) has at least one solution.

Proof. Let % C ¢ be a bounded subset. Then, there exists v¢ > 0 such that

1O(%, S())| < vo.

for each 9 € # and % € . The proof will be given in several steps:

(i) W is uniformly bounded:
For 9 € # and % € |, we have

8 (@ = )II6(T, (D))
T+ dlo G, G0 T 120 + wlleG, SGO)
e L[ZT—GY4Gﬂ59@»Mh
Y+ 92O ORG, SG0 Jo /
G SGO 1 — 110, SG)
w0, S0 T 20 I, 9G]
L SEPAVES |
+@mnmwxwmnﬁ(% 7866, s
B, 0 =0
T+ pulys  1BOA+ Wlys

[P0l <
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Utve T + + [1—1 Vo N e I
|(1 +wW AWy, ¢ A1) ve BOTWye t '
Then, ¢ is uniformly bounded.

pd =0 | (T, T) o, ¥T)
B+ u) [pler,9(e1))  @(e2, 9(e2))

p B p
1+ we(er, der)) (1 + wp(er, 9(e2))

i 1 1 T -1
(1+y)%’(t)r(t)( ERIE) _(p(ez,S(ez»)fo (T 97106, 9Ids
+ ||TI(61,9(61)) (e, 9(12)) | 1€, S(e2)) (e, H(ea))
ple1, (1))  @ler,der))  lpler, der))  @lez, (e2))
1—1||6(e1,9(e1))  O(e2, 3(e2))

%(l) @(81,9(61)) - ([7(82, \9(62))
! B . _ o)1
|(P(€1 S(Sl))f (él S) G(S,S(S)) ds

f (€2 —5)"71O(s, 9(s)) ds|

[P(9)(e1) = p(9)(e2)l <

L
" ‘%(n)ra)

(P(€1 \9(51

_ o)1
+‘c%’(t)l"(t) |(p(sl,9(el))f0 (e2 =) 0(s, 9(s)) ds
1 2

T (€2, 9(22) Jo

(e2 = 5)710(s, 9(5)) ds|

SWI(p<el,8<n>)—<p<62,9<62>>| - : 2 Jp(er, S(en) — plea, 3(ea))
T y;;f)r(l)y = lpter, ) — ez, 3(e)| too In(el,S(en) — n(e2, S(e2))|
- ;—é [p(er, (1)) - plea, S(e2))] + %(L)L Y0 |o(er, S(er) - plea, S(ea))|
T (E—f - T—f) %(L;;ZW 2 Jotes, S(en) - plez, Sea)] — 0,
as & — e W)

Hence, 1) is equicontinuous.

(iii) Py is bounded:
We denote by
Py ={3eR:3=0¥YI),0<6<1}.

Letve Py and t € |, we have

o (1 = Olve W Ty Ledve 1+ palSD T
[S()| < + + — + + + "
N3 iy, T 1200+ 0y, T 10+ 02Oy, © 70 7, T ATy, €
which implies that
- : _ ST
1560l < I8l lu(1 = lve ptve T Vn l—=dve y1+729)T

+ e T —.
L+ulye 1200 +Wlye 1A+WBOTOYe ¢ ve  2BO) vy  BOTWye ¢
which, in view of (10), can be expressed as:

I < 1 Il N lu(l - Dlve N ptve T + + i-dve 91 T
ATy, 1ZBOA+ Py, 1+ m)BOTOY, ¢ B vy BOTWye t)

19(30)
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This demonstrates that the set 7 is bounded. As a result, all the conditions of Lemma 2.5 are satisfied.
Therefore, the operator W has at least one fixed point, which corresponds to a solution of problem (2). This

completes the proof. [

Now, we give an example to illustrate the obtained results.

4. Example

ABCODE[S(}%)@(% 9(30)) = n(, S(#))] = 6(%,9(1)), #e]=10,1]
3(0)p(0, 9(0)) + 178(T) (T, (T)) = n(0, 8(0)) + 17n(T, (1)) + 1,

Here, we have
arctan(#)

1
160l + 4,

P(%, 5(2)) =

1
+ ?9(2),

O, 9(%)) = %> + @).

N, 960) = 3

We can easily verify that
. N 1
InG¢, 92) =0, 91 < 7192 = 84,

and
N A 1
16(%, 92) — O(&, 91| < 5|92 - H].

We can easily verify that

1 1 1 1
l:Elﬁ:1/u=17//\k:0//\(p=1rA9:EIAI]ZEI)/@:Z/)/@ZE'
and
Il pd -0 (Agr Ak 1
T = Ay + — Ao+ A+ —A
PR T B0+ 522
p T (Ao Ap Ay Ay 7
| — + A+ A+ — + A
L+ )W) ¢ (y(p TR e 2

(1_L) M &A +@ +; z
20 272 ) BTy,

L
‘ /\(DTT (Aor + Ay) = 0.2987564231.

+ S —
OO

(13)

As all of the assumptions in Theorem 3.2 are satisfied, our results can be directly applied to the problem

(13).
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5. Conclusion

The study on the existence and uniqueness of solutions for boundary value problems involving nonlinear
hybrid differential equations with the Atangana-Baleanu-Caputo ABC-fractional derivative establishes that
unique solutions can be ensured under specific assumptions, utilizing fixed-point theorems such as Banach’s
and nonlinear Leray-Schauder alternative. The findings highlight that the ABC-fractional derivative, with
itsnon-singular kernel and non-local properties, offers a powerful framework for modeling complex systems
characterized by memory effects and hereditary behavior. The role of boundary conditions is emphasized
as crucial for ensuring the mathematical coherence and robustness of the solutions. Additionally, the study
underscores the significance of hybrid equations in representing real-world systems that integrate both
discrete and continuous dynamics. This research also opens pathways for future exploration, including
the development of numerical methods for approximating solutions and the study of alternative fractional
derivatives, with potential applications spanning control theory, viscoelasticity, and biological modeling.
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