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Generalizations of the numerical radius, Crawford number and
numerical index functions in the weighted case

Zameddin I. Ismailov?, Pembe Ipek Al**

*Department of Mathematics, Karadeniz Technical University, 61080, Trabzon, Turkey

Abstract. In this article, firstly, some simple and smoothness properties of the weighted numerical radius
and the weighted Crawford number functions are investigated. Then, some generalization formulas for
lower and upper bounds of the weighted numerical radius function are obtained. Later on, some evaluations
for lower and upper bounds of the weighted numerical index are given. The obtained results are generalized
some well-known famous results about the special weighted numerical radius and the special weighted

Crawford number functions in the recently literature. Also, important contribution is made to existing
literature by different and useful results.

1. Introduction

Throughout this article, H denotes a complex Hilbert space endowed with the inner product (-, -) and

associated norm || - ||. Let B(H) stand for the C*-algebra of all bounded linear operators acting on H. The
numerical radius of an operator A is given by

w(A) = sup{l{Ax,x)| : x € H, |lx]| = 1}.
The usual operator norm and the Crawford number of an operator A are, respectively, defined by
lAll = sup{llAx|| : x € H, |lx|| = 1}
and

c(A) = inf{{Ax, )| : x € H, |lx|| = 1}
[15].

Recall that for any A € B(H) the classical numerical radius w(A) is a norm on B(H) and equivalent to
the operator norm that satisfies the relation

%IIAII < w(A) < [lA] 1)
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(see, e.g., [15]).
For any A € B(H) one of improved formula for the numerical radius in form

jzllA*A +AA'|| < 0¥ (A) < %IlA*A + AA™|| (2)

has been obtained in [22].

For more results related to lower and upper bounds of the classical numerical radius we refer to studies
in recent years (see, [2], [3], [5], [11], [12], [22], [29]).

Assume that ¢ : [0,1] = R and ¢ : [0,1] — R are continuous functions. For A € B(H) and ¢ € [0, 1] the
weighted numerical radius and the weighted Crawford number functions will be defined by

w(p, P; A) = sup [(p(HA + P(HA") x, x)|
x€S1(H)

and
g, i) = nf (PO + YA %),

respectively, where S1(H) is a unit sphere in H.
Similarly, the weighted operator norm of any operator A € B(H) will be defined as

A1l = llp()A + (A, ¢ € [0,1].

It is clear that if @(t) = 1, ¥(t) = 0, t € [0,1], then w(1,0; A) and c(1,0; A) coincide with the classical
numerical radius w(A) and the classical Crawford number c(A), respectively.

Incase p(t) =1, P(t) =1-2t, 0 <t <land @(v) =v, P(v) =1-v, 0 <v <1, these special weighted
numerical radii have been investigated in [26] and [28], respectively. There in some upper bounds for the
weighted numerical radius have also been researched.

If we take @, 1 € C[0, 1] real-valued functions and

_0 1 .2 2
A—(3 0),A.C - C?,

then we obtain that

. 0 @ +3Y
(pA+1pA—(3(P+¢ 0 )

For x = (x1, x2) € C?, we also have
(A + YA )x, x) = (@ + 3Y)xx1 + B + P)x1Xs.
Hence, we get
(A + YA = (@ + 3P)xal* + |3 + P)x1 .
In this case, from Lemma 2 in [1] we have

1 ; ; 1 . . . .
P, i A) = 5 Suple(p +39) + VB + Yl = 5 suplp(e” +3¢77) + @3 +e )
€ €

forany t € [0, 1].
Also,
c(p, P; A) =0 and [|All; = (¢ + 3P)Bp + P)I(F).
In mathematical literature, also there is a constant on a Banach space, known as the numerical index of

the space, which relates the behaviour of the numerical radius with the usual norm of an operator. The
numerical index of the Banach space X is the constant

n(X) = inf{w(A) : A € B(X), ||All = 1},
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equivalent, 7(X) is the maximum of those k > 0 such that k||A|| < w(A) for every A € B(X). This notion was
introduced and studied in the 1970 paper [10], see also the monographs [6], [7] and the survey paper [17] for
background. Clearly, 0 < n(X) < 1, n(X) > 0 means that the numerical radius is a norm on B(X) equivalent to
the operator norm and n(X) = 1if and only if numerical radius and operator norm coincide. If X is a complex
Banach space, then % < n(X) < 1and if X is a real Banach space, then 0 < n(X) < 1. If X is a complex Hilbert
space, then n(X) = % and for a real Hilbert space X, n(X) = 0. Moreover, n(1) = n(lf") = n(lx) = n(l%) = 1,
where m € IN. All these results can be found in [6] and [17]. Some recent developments for the study of the
numerical index are [14], [23], [24], [25], [27].

The main aim of this study is to generalize some well-known results about the weighted numerical
radius and the weighted Crawford number functions in the mathematical literature [4], [15], [22], [26], [28],
as well as to provide different and useful results to this area.

This work is organized as follows: In Section 2, some simple and smoothness properties of the weighted
numerical radius and the weighted Crawford number functions have been investigated. In Section 3, some
evolutions formulas for lower and upper bounds of the weighted numerical radius function have been
obtained. Later on, in Section 4, some evaluations for lower and upper bounds of the weighted numerical
index have been given. These results are generalizations of some well-known results in the literature.

Note that each operator A € B(H) can be expressed in the Cartesian decomposition form as A =
ReA + ilmA, where ReA = 434 and ImA = 4% Here, A* denotes the adjoint of A. Throughout this study
we denote by |A| = (A*A)!/? the absolute value of an operator A € B(H).

2. Some properties of the weighted numerical radius and the weighted Crawford number functions

Let us begin this section with some simple properties of the weighted numerical radius and the weighted
Crawford number functions.

Proposition 2.1. For any A, B € B(H) and t € [0, 1], the following are true:
(1) w0, 9; A) = [Pl (A) and c(0, ; A) = [p(D)lc(A),
(2) wi(p,0; A) = lp(t)lw(A) and ci(p, 0; A) = |p(t)lc(A),
(3) wi(1,1;A) = 2|[ReAll and c1(1,1; A) = 2||ReAll,
(4) wi(1,-1;A) = 2ImA|| and (1, -1; A) = 2||ImA]|,
(5) wi(p, P;iA) = wip, —; A),
(6) Al < wi(p, ¥; A) < ||Al,
(7) w(p, P; A) < (Ipl + Y1) (Hw(A) and ci(ep, ; A) > lipl = [YlI(t)c(A),
(8) wilp, ;A) = 2lp(t)lw(ReA) = 2lp(t)l[[ReAll,
(9) @i, ; A) = 2p(Hlw(ReA) = 2l (t)|[IReAl,
(10) If A = A, then wi(p,; A) =l + PI(Hw(A) = lp + PIOIAI,
(11) wip, P; A) = w(, p; AY),
(12) If A = A*, then wi(p, Y; A) = (Y, ; A),
(13) wi(p, Y; A+ B) < wi(p, P; A) + wi(p, Y; B),
(14) ci(p, Y; A+ B) < wi(p, ; A) + ci(p, ¥; B),
(15) wi(p, ¥; AB) < (Ipl + I¢]) ()w(AB),
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(16) ci(@p, ¥; AB) < Ipl(He(AB) + [ |())(AB),
(17) llpAB + (ABYI2 < (IpP? + [W2) (DIABI? + lpyl()(ABY) + lpyl(Hw((B°A%)),
(18) wi(p1 + @2, Y1 + P2, A) < (@1, P1; A) + wi(@2, P2; A),

(19) c(p, Y; A) > inf{lp + Y|(t), lp — YI(t)} m(A), where m(A) = (Ax, x)|.

inf |
x€Sy (H)

Proof. To give an idea we will prove the 15th, 17th and 19th properties. Firstly, let us start with the proof of
the (15). For any A, B € B(H) and t € [0, 1], we get

K(p(HAB + ()B*A")x, x)[?

(@ (t)ABx, x) + ((t)B*A*x, x)|?

IPPBKABY, )P + (9P)(#) [(ABx, x)* + (x, ABx)*| + [pA(B)(x, ABx)?
(IpP() + 2lppl(t) + [P (£)) KABx, x)P

(Il + Y1) (HKABx, x)2.

IA

Then,
[K(p()AB + P(t)B*A")x, x)| < (Il + [P]) (HICABx, x).

Hence, for any ¢ € [0, 1] we have
wi(p,; AB) < (l¢l + [¢]) (Hw(AB).
Now, let us prove (17). For t € [0,1], x € S1(H) and A € B(H), we have
I(@()AB + (t)B"A")xl[}

l?|(t){ABx, ABx) + (pu)(t){ABx, B*A*x) + (p)(t){B*A*x, ABx) + |y[*(t)(B*A*x, B*A*x)
l?|(OIIABxI? + [yl () ((AB)?) + [yl (H)w((B*A*)?) + [ A (1)IIB*A*x|.

IN

Thus, we get

lpAB + Y(ABYII? < (IpF + [WP) (DIABIP + lpgl(Hlw((AB)?) + lpgl(Hla((B*A)).

If we take @(t) = 1 and (t) =1 - 2¢, 0 <t < 1 in the last result, we get the following inequality proved in
[26, Lemma 2.6]

(1 = 26)(AB)* + AB|* < (2 — 4t + 4t*)||AB|* + (1 — 2w ((AB)?) + (1 = 2w ((B*A*)?).

So, the property (17) in Proposition 2.1 generalizes [26, Lemma 2.6]
Lastly, let prove us prove (19). Fort € [0,1], x € S1(H) and A € B(H), by the following simple calculations
we have

(A + A )x, 0P = [{(pReA + PpReA)x, x) + i(pImA — YImA)x, x)? = lp + z,ljlz(t)l(ReAx, 0P + lp — l,blz(t)l(lmAx, x)2.
Then, we get
@, ; A) = (inf {lp + YIE), o = PION m(A).
0
Lemma 2.2. Let A,B € B(H) and t € [0, 1]. Then
D) lwip, Y; A) = w(p, ¥; B)l < wi(p, ;A = B),
(2) lel@, Y; A) = c(@, ¥; B)l < wil(ep, Y; A = B).
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Proof. Using the property (13) in Proposition 2.1, we have
wi(@, ; A) < wil@, P; A = B) + @i, ; B) and wi(@, ¥; B) < @@, ;A = B) + wi(p, ; A)
for any A, B € B(H) and t € [0, 1] which imply that
lwi(p, ¥; A) = wi(p, Y; B)l < wi(p, Y; A = B).
Similarly, using the property (14) in Proposition 2.1, we have
(@, ; A) < @, ;A = B) + e, §; B) and ¢(p, §; B) < wi(p, ;A = B) + cile, ; A)
for any A, B € B(H) and t € [0, 1] which imply that
let(, 3 A) = e, i B)| < wilp, ;A = B).
forany A,Be B(H)and t € [0,1]. O

Now, let us give smoothness properties of the weighted numerical radius and the weighted Crawford
number functions.

Theorem 2.3. If the sequences of functions (¢,) and (1) pointwise convergent to the functions ¢ : [0,1] — R and
Y :[0,1] = R, respectively, then for any A € B(H) and t € [0, 1],

wi(p, P; A) = r}ggo W(Pn, Pu; A) and c(p,P; A) = 35’& cH@n, Pu; A).

Proof. Since
K(@(OA +P(OAT) x, )l < K( = @) (DA + ([ = Pu)(A) x, X)] + K(@a(DA + Pu(HA") x, 1)
and
K(@n(DA + Pu(DA”) x, )| < K((@ — @u)(DA + ([ — Pu)(DAT) x, )| + K(@(DA + P(HA") x, x)|
forany A € B(H), t €[0,1], x € S1(H) and nn > 1, then
lwi(Qn, Pu; A) — wr(, P; A < wi(@n — @, Yn = Y3 A) < (Ipn — @I(t) + Pn — PIB) 1Al

and
lci(@n, Yu; A) = c(@, Y; A £ wi(@n — @, Yn — P; A) < (Ipn — @I(t) + [Pn = PI(E) [IAIl.

From the last inequalities and pointwise convergence of sequences (¢,) to ¢ and (¢,) to ¢, the validity of
theorem is clear. [J

Definition 2.4. [19] A sequence (A,) C B(H) is said to uniformly converge to A € B(H), if for any € > 0, there
exists a positive integer N such that for all n > N

lA, — All <e.

Theorem 2.5. If the operator sequences (A,) in B(H) uniformly converges with respect to norm || - ||, 0 <t < 1to
the operator A € B(H), then

@i, ; A) = lim wilp, ; An) and ¢, ; A) = lim ci(p, Y; Ay).
Proof. Fort € [0,1] and n > 1 by property (1) of Lemma 2.2, we have

i, Y; An) = @i, Y; A) < @@, ; An = A) < llpB)(An = A) + P()(An = Al = |4 = Allr.
Similarly, for t € [0,1] and n > 1 by property (2) of Lemma 2.2, we get

lce(, 5 An) — e, P; A)| < 1A, — Allr.

Then, the claims of theorem are clear. [
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Theorem 2.6. If , ¢ € H,[0,1], 0 < a < 1, then wi(p, P; A), ci(p,P; A) € Hyl0,1] for any A € B(H), where
H,[0, 1] is the class of Holder functions with degree a € (0,1] in [0, 1].

Proof. For any 0 <t,s <1, we have

wi(@,P;A) w(p(hA + P()AT)

w(P)A + P(s)AT) + (((F) — @(s)A + (P(t) — P(s))AY)
w(P()A + P(S)A”) + lp(t) — ()] + [Y(E) — P(s)IIAI
ws(@, P; A) + Kplt —s|* + Kyt —s|*

ws(p,; A) + K|t — s, K = max{Ky, Ky}

IN NN

and similarly,
ws(@, P; A) < wi(p, ; A) + K|t — 5|

Consequently, we obtain for each 0 < t,s <1 and A € B(H) that
lwi(p, ; A) — ws(p, Y; A) < KJt - 5],
ie.
wt((Pr ¢r A) € Ha[or 1]

In a similar manner, the validity of second claim can be proved. [

Theorem 2.7. Let A € B(H). Then wi(@, ¥; A), ci(p,1; A) € C[O, 1], where C[0, 1] is class of continuous functions
on [0,1].

Proof. For A € B(H) and t,s € [0,1] we have
KA +p(HA)x, ) = K@) — @()A + (D) — P($))AN)x, x) + {(P(5)A + P(s)A")x, x)|
< Ke®) = p)A + (§(f) — P()A)x, )| + K(P()A + P(s)A")x, x)).

Let s be any fixed number in [0, 1]. Hence, we get

(@, P; A) < @(@(t) = @), Y() = Y(s);, A7) + ws(p, ; A).-

Similarly, we also get

ws(p, Y; A) < w((t) = @(s), Y(t) = P(s); A”) + wile, P; A).
Consequently, from the last two relations and property (7) in Proposition 2.1 we get

lwi(p, ; A) — ws(@, P; A)l (DA + P(HAT) = w(p(s)A + P(s)A™)]

w((@(t) = E))A + (W(t) — Y(s))A")

(lp(®) = () + [P (t) = P(s)]) w(A)

(lp(®) = @) + [p() = P(s)) NAIL

Since ¢ and ¢ are continuous on [0, 1], then the continuity of wi(p,;A), 0 < t < 1 is clear by the last
relation.

Similarly, from the subadditivity of the classical numerical radius function the continuity of function
ct(p, 1P; A) on [0,1] can be easily proved. [

ININ A

Later on, from the definitions of the weighted numerical radius and the weighted Crawford numbers
function, the next result follows immediately.

Proposition 2.8. If ¢, Y € D[0,1] and ¢ >0, 1 > 0, then for every A € B(H)
(1) wi(p,0;A) = wi(g’,0;A),
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(2) w(0,1;A) = w(0,¢"; A),
(3) ci(,0;,A) = ci(¢’,0; A),
(4) c;(0,9;A) = c(0,¢"; A),
where D[0, 1] is the class of differentiable functions on [0, 1].
Proposition 2.9. For A € B(H), the following are true:
(1) If o # =1, then

1 -1
IReAl < f o+ ¢|<t>dt] f i, v A)it,
0 0
(2) If  # 1, then
-1

1
[ImA|| < lp — wl(t)dt] wi(p,P; A)dt,
[r-om] |

0

(3) If gl # ||, then

Al <

1 -1 1 -7 4
lp + ¢|(t)dt] + [ lp - ll/|(t)df] wi(p, Y; A)dt.
/ Jrrmsouf |

Proof. For any x € S1(H) , we have

lp + PI(HKReAx, x)| < \/|<P + PPOKReAx, X)P? + @ — PP(OKImAx, ) = ((9A + PAT)x, x)]

and

lp — Yl(H)[{ImAx, x)| < \/I(p + YP(HKReAx, )2 + | — YPH)ImAx, x)> = (A + PA)x, x)|.

Hence, we get
lp + YIDIReA]l < wi(p, P, A) and o = YIBOIIMA|l < @i, P, A).
Consequently, from the last inequalities we have

(1) If ¢ # =1, then

-1 1

1
lp + wl(t)dt] wi(p, P; A)dt,
[iveson] [

0

[IReA|| <

(2) If ¢ # ¢, then
-1 1

1
ImAll < | | e~ llfl(f)dt] w(p, P; A)dt.
-] |

0

(3) Taking into consideration of (1) and (2), we easily obtain (3).
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Using the result obtained for the classical numerical radius and the classical Crawford number in [9], the
following theorem can be obtained for the weighted numerical radius and the weighted Crawford number
functions.

Theorem 2.10. If for any n > 1, H, is a Hilbert space, A, € B(H,), H = @ H, and A = P A,, A € B(H), then

n=1 n=1

(1) wi(p, P;A) = sup wi(p, P; Ay),

n>1

(2) when Re(A,) = 0 (or Re(A,) <0),n>1, c(p, Y, A) = ir;fct((p, Y; Ap).

3. On the lower and upper bounds of the weighted numerical radius

In this section, some estimates for lower and upper bounds of the weighted numerical radius are given.
Firstly, we give some well-known auxiliary results of [4].

Lemma 3.1. Let A € B(H). Then

(1) w(A) > 141 4 LReAl-mAl

(2) @H(A) 2 YA*A + AAY|| + URAPImAR |

7

2 2 2 2
(3) a)z(A) > %HA*A + AA*” 4 (ReA)42—c (ImA) + |HReA|\2£\|ImA||2 4 ¢ (ImA)ZC (ReA)

(4) w*(A) > LIA'A + AA")? + 4R (A2)]| + L [IReAll* - IImA]IY|.
We obtain the following lower bound for the weighted numerical radius of bounded linear operators.

Theorem 3.2. Let A € B(H) and t € [0,1]. Then
(1) @i, P A) > inf{lg + YI(0), lp — i)} (15! + LRALLmALL,

(2) @3, ¥ A) = (inf (i + YI(©), kp = PION? (LIA"A + A4 + URALmALT)

. . . 2 2 2_ 2 2 _2
(3) @, i A) = infllp + P10 9 — PIOD? (HIAA + AAT] 4 SEDIZD | RALTIAR | Sy et

(4) wi (@, P;A) 2 (inf {lp + YIE), lp = YIOD* (HIAA + AA"? + 4Re2(A?)]] +  [IIReAll* - ||TmA]I*]).

Proof. (1) For any x € S1(H), we have

K(pA + A )x, 0)F (g + P)ReA + (p — P)ImA)x, )2
= |@ + YPKReAx, ) + | — P[(ImAx, x)[2

(inf {lg + Y1), lp — Y1 (KReAx, )P + KImAx, ) ).

v

Then,
wi(p,P; A) 2 inf{lp + PI(t), lp — YI(t)} max {[[ReAl|, [ImAll} .

From the last inequality and property (1) of Lemma 3.1, the validity of first claim is clear.
(2) For any x € 51(H), we get

(@A + pA )%, 0P 2 (inf{lg + ¢I®), lp = Y1) (KReAx, 0)P + KImAx, )P ).
Thus, we have

W}, 3 A) 2 (inf{lg + PIE), p = YION max {[ReAIP, lTmAIP}
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Then, from the last inequality and property (2) of Lemma 3.1 the validity of second claim is clear.
(3) For any x € S1(H), we have

KA+ A, = K@+ PPKReAx, x)P + o — PP [(ImAx, x)I*
> (inf{lp + YI(t), lp — P|(£)})* max {||ReA||2 + A(ImA), IImA|> + cz(ReA)} )

From the last inequality, definition of the weighted numerical radius and property (3) of Lemma 3.1, third
claim of theorem can be obtained.
(4) For any x € S1(H) we have that

K(pA + A ), ) > (inf {lg + Y1(8), I — YI(O})* max {IReAll*, IITmAlI*}
From the last inequality and property (4) of Lemma 3.1, fourth claim of theorem can be obtained. [

Remark 3.3. If we take p(t) = 1, Y(t) =0, 0 < t < 1 in Theorem 3.2, then Theorem 3.2 and Lemma 3.1 coincide.
So, Theorem 3.2 generalizes Lemma 3.1.

Example. In the complex Hilbert space L2(0, 1) consider the following classical Volterra integration operator
V:1*0,1) — L*0,1), Vf(x) = f f(tydt, feL?*0,1).
0

It is known that ||V]| = %, [|ReV]| = %, and |[ImV]| = % (see [20]). Then, by Theorem 3.2, we have

Tt

W, $34) = infflp + 90, o — i) .

Note that w(V) = %, w(ReV) = %, and w(ImV) = % (see [21]). It can be easily shown that

2
IV'v+vvi=—.
U
The operator V*V + VV*: [2(0,1) — L%*(0, 1) is compact, selfadjoint and positive. Then,
V'V +VV =sup{A:Aea(V'V+VV)},

here o(-) is defined as the set of spectrum of an operator (see, [16]). Consider the following spectral problem

(V'V+VV)f=Af, A#0, fe€L*0,1),

fl fy F(tydtdy + f fl F(bydtdy = Af.
x 0 0y

If f is chosen to be a twice differentiable function on (0,1), from the last equation we have
A = -2f,
Af(0) + f(1)) = Oflf(t)dt,
fO+f@)=0.

f@® :cos[\/%t), 0<t<l

i.e.

Assume that
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Then, f = =2 f is satisfied and from the boundary condition f'(0) + f (1) = 0 we have

n= m, n € IN.
In this case malx A=A = %
On the other hand,
1 1
ffl(t)dt = fcos(, [it] dt =0,
A
0 0

£(0) + f1(1) =1 + cosm = 0.

Then, for A1 = % and fi(t) = cos ( \/%t), 0 <t £1 the condition

1
mm@+ﬂm=fﬁmm
0

is satisfied. Hence, ||[V*V + VV*|| = 3.

It is known that ||V|| = 2, |[ReV|| = , lImV]|| = 2 and w(V) = }, ¢(ReV) = 0, and c(ImV) = 0 (see, [20],
[21]). Then, by Theorem 3.2 we have

Wi, 3 V) > inf{lp + YIE), o — Y1) 24+_n”
and :
W, ¥;V) 2 S inf {lg + I, o — ¢}

Now, we give a few well-known inequalities that are essential for proving our theorems, starting with
Buzano’s inequality.

Lemma 3.4. [8] Let x,y,e € H with |le|| = 1. Then

(xeXe 1 < 5 (G 1+ Il
The next lemma pertains to a positive operator.
Lemma 3.5. [26] Let T € B(H) be a positive operator. Then for all r > 1 and x € H with ||x|| = 1, we have
(Tx,x)" <(T"x, x).
Next, we present the generalized mixed Schwarz inequality.
Lemma 3.6. [13] If T € B(H), then forall x,y € Hand « € [0, 1]
KTx, P < (TP )Ty, y).
We obtain the following upper bound for the weighted numerical radius of bounded linear operators.
Theorem 3.7. Let A € B(H) and t € [0, 1]. Then

(Il + [YD(H)

W (@, ¥; A) < lpP (D (A) + lpyl(w(A®) + > [PIOIAA + AAT]|.
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Proof. Fort €[0,1] and x € 5;1(H), using Lemma 3.4 and 3.6 we have

K(@(HA + P(HA)x,
< lpPOKAx, 0P + 2ol (HKAx, )KA™x, )] + [P (KA, x)
= PP (OKAx, 0 + 2lppl(t)KAx, )(x, A0 + [PP(KAx, )
P BCA, P + lpul() [KAx, A" + IAXIIAXI] + [3I()AN, X)(Alx, %) (using Lemma 3.4 and Lemma 3.6)
P (DKAx, ) + [pwl(£)KA%x, )] + I(Pl,bl(f)%((lz‘ll2 + A" P)x, x) + |1,b|2(t)%<|A|2 + A" P)x, x)

< lpP®)w*(A) + lppl(Hw(A®) + wlgbl(t)llA*A + AAY.

From the last inequality and the definition of the weighted numerical radius the validity of claim is clear. [J

IN

IA

Now, if we take ¢(t) = 1-2¢, (t) =1, 0 < t < 1, and A instead of A* in Theorem 3.7, we get the following
corollary which proved in [26, Th. 2.4]. So, the inequality obtained in Theorem 3.7 generalizes [26, Th. 2.4].

Corollary 3.8. Let A € B(H) and t € [0, 1]. Then
W (A) < (1= 2t20?(A) + (1 - 2H)w(A?) + (1 - H]JA*A + AAY||.

Remark 3.9. Ifwe take ¢(t) = 0, P(t) =1, 0 <t < 1in Theorem 3.7, we get the following corollary which coincides
with the right side of inequality (2). So, the inequality obtained in Theorem 3.7 generalizes the right side of inequality
(2).

In the next theorem we obtain another upper bound for the weighted numerical radius.

Theorem 3.10. Let A € B(H) and t € [0,1]. Then
1 * * *
Wi (p, P; A) < §(|<P|2 +[PP)OIAA + AA"|| + [Pl (Haw(A? + (A)).

Proof. For every t € [0,1] and x € S;(H), using Lemma 3.5 and Lemma 3.6 we have

K(@(HA + P(HAM)x, )
(lp(HA + P(HA X, x){p(H A" + P(t)Alx, x) (using Lemma 3.6)

IA

IN

% [<|(P(t)A + ll’(t)qux/ x) + (Jp(HA™ + 1P(t)A|2x, x)] (using Lemma 3.5)

IA

% KA + (AN P(A" + (D A)x, x) + ((P(NA" + (D A)P(HA + P(HA ), x)]
- % [(PPOAA" + p(OP(HAA + pOP(HA'A" + YDA A+
+ [pPOAA + pOP(DAA" + () (HAA + [YRHAA ), 1))
= % [<I(p|2(t)(AA* + ATA) + 20O Y(HATA* + 20D (HAA + [P (H)(ATA + AAY))x, x)]
= % [(IpP () + ROIA'A + AA") + 20O ()(A°A" + AA)x, 1))
From the last relation, we also have
Wi (g, Y; A) < %(kpl2 +IPP)DIATA + AA' + oyl (A + (A)?).

O

Now, if we take ¢(t) =1 -2¢, P(t) =1, 0 <t < 1 in Theorem 3.10, we get the following corollary which
proved in [26, Th. 2.7]. So, the inequality obtained in Theorem 3.10 generalizes [26, Th. 2.7].
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Corollary 3.11. Let A € B(H) and t € [0,1]. Then
W} A) < (1 =2t +2P)[|A"A + AA™|| + (1 = 2H)w(A? + (A")?). (3)

Remark 3.12. If we take @(t) = 0, P(t) = 1, 0 < t < 1 in Theorem 3.10, we get the following corollary which
coincides with the right side of inequality (2). So, the inequality obtained in Theorem 3.10 generalizes the right side
of inequality (2).

Now, another estimate from upper bound of the weighted numerical radius will be given.

Theorem 3.13. Let A € B(H) and t € [0,1]. Then,

1
(9, 9;A) < (IpF + 19F) (D™ (A) + | (A%) + Slpyl(DIAA" + A"All.
Proof. For eacht € [0,1] and x € S1(H), using Lemma 3.4 we have

K(@(HOA + p(HA ), )P

(PIOKAx, 0 + [PIOKA X, 0I)*

POKAx, D + 2l l(HIKAx, x)(x, Ax)] + [YR(EKAX, )P

(9 + 19P) (DA%, P + ol (KA, A0 + [plOIAXIIA™X]  (using Lemma 3.4)

(Ipl? + ) (DK Ax, )P + lpyl(HI(A%x, 1)) + %kplm(t) (I1AxIP + 1A°xP)

IN

IA

IN

1 * *
(IlpP + 1P) ()0 (A) + oyl (B (A%) + SIpPIBIAA" + A*All.
From the last estimates and definition of the numerical radius validity of theorem is clear. [

Now, if we take ¢(t) =1 -2¢, P(t) =1, 0 <t < 1 in Theorem 3.13, we get the following corollary which
proved in [26, Th. 2.9]. So, the inequality obtained in Theorem 3.8 generalizes [26, Th. 2.9].

Corollary 3.14. Let A € B(H) and t € [0,1]. Then
1
wH(A) < (2 — 4t + 47)0*(A) + (1 - 2H)w(A?) + E(l —2D||A*A + AAY.

Remark 3.15. Let A € B(H) and t € [0, 1]. Then from Theorem 3.13 we have

IA

o A) < (Ipf + 0P) () + pylOw(A) + ZIpPlBIAA + A°A|

IA

(IpP + W) BIAIP + lpl®IAI + %kpw(t)zuAnz
(il + ) I1AIP.

Clearly, for p(t) =0, Y(t) =1, 0 <t < 1 the upper bound improves the second inequality in (1). So, the inequality
obtained in Theorem 3.13 generalizes the second inequality in (1).

Example 2. In the complex Hilbert space L?(—1, 1), consider the following Skew-symmetric Volterra integra-
tion operator

A:L*(-1,1) » L*(-1,1), Af(x) = f f(dt, fel*-1,1).

It is known that A is a nilpotent operator with index, ||A|| = 2 w(A) = % (see [15], [18]).

i’
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On the other hand, in [22] Kittaneh proved that if A2 = 0, then ||A|]> = ||A*A + AA"||. Using by Theorem
3.7,3.10, and 3.13, we have

|

W}, ;A) < = (19l + 2P ) + 2eyl(r),

|

W, 5 4) < =5 (19P + 10P) 0,
and

W, 54) < =5 (1P + )0+ Slpwl) = 5 (ol + ) ),

respectively.

4. Weighted numerical index in complex Hilbert spaces

In this section, the lower and upper evaluations for the weighted numerical index in Hilbert spaces are
given.

Theorem 4.1. Let A € B(H) and t € [0,1]. Then the following inequalities hold for the weighted numerical radius
function and the weighted numerical index

inf{lp + PI(6), lo — YIO} w(A) < wilp, P; A) < sup {lp + PI(B), o — PI(B)} w(A)
and , ,
5 infllp + 9i(8) lp ~ YIO) < m(p, v;H) < 5 sup llp + ¥i(e) by = Yi(B),
respectively.
Proof. For the A € B(H) and x € S1(H), we have
QA+ YPA" = (p + P)ReA + i(p — P)ImA

and

inf {lp + Y|(t), lp — YI(£)} \/(R@Ax,x>2 + {ImAx, x)?
\/<I(p + Yl(HReAx, x)? + (| — PI(H)[mAx, x)2.

inf{lp + YI(t), lp = YI(D)} KAx, )]

IA

Then,
inf{lp + Y1), lp — It} ©(A) < wil(@, P; A).
On the other hand, for x € S1(H) since
(@A + pAT)x, x)| (¢ + P)ReA +i(p — P)ImA)x, x)|
V(@ + 9)OReAx, 12 + (¢ — 9)(BImAx, x)?
sup {lp + YI(t), lp — YI(t)} V(ReAx, x)? + (ImAx, x)?
= sup{lp + Y1), lp — YIt)} KAx, x)l,

then
(@, P; A) < sup {lp + PI(t), lp — PI(B)} w(A).

From the first claim of this theorem, the definition of the numerical index, and the result n(H) = % [6], [17]
the second claim of this theorem can be obtained. [

Using the inequalities the first claim of Theorem 4.1 and (2) we get the following corollary.
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Corollary 4.2. Let A € B(H) and t € [0,1]. Then

31 (inf {lp + YI(1), |p — YIBO) I|A°A + AA"|| < w(@, P; A) < % (sup {l@ + YI(t), lp — YION IATA + AA.

Remark 4.3. If we take p(t) =1, P(t) =0, 0 < t < 1in Corollary 4.2, we get the inequality (2). So, the inequality
obtained in Corollary 4.2 generalizes (2).

Corollary 4.4. Let A € B(H). Then

1

1 1
f inf{lp + YI(8), Ip — I} dbaw(A) < f i, s At < f sup (I + YI(8), lp — PI(H) dtalA).
0 0

0

Remark 4.5. If we take p(t) =1, Y(t) =0, t € [0, 1], we get

inf{lp + ¢I(t), lp — YI(H)} =1 and  sup {lp + PIt), lp — YI(H)} = 1.
By the first claim of Theorem 4.1 we obtain n(1,0; H) = %, t € [0, 1], which founds in [6] and [17].

Remark 4.6. If we take p(t) =1, Y(t) =1 -2t, t € [0, 1], we get

lp +I(5) =2 -2t lp —l(H) =2t, £ € [0, 1],

then
. . 2t 0<t<i,
a(t) = inf{lp + YI(t), lp — YI(t)} = inf {2 — 2¢,2t} = {2 ot l<i<1
and
B ~ _|2-2t, 0<t<y,
A() = supf{lo + YI(t), lp — PI(t)} = sup {2 — 2t,2¢} = {Zt, % <r<1”
Thus, by Theorem 4.1

%a(t) <n(l,1-24H) < %A(t), tel0,1].
In particularly, when t = %, from the above relations we have
1
mi(H) = n(1,0;H) = 2, t€[0,1]
which founds in [6] and [17].

Remark 4.7. If we take ¢(t) = sin(}lt) , Y(t) = cos (%t) , t €0, 7], then

inf {lo + VI, I — i) = sin(jzt) and sup {lp + YI(t), lp — YI(B)} = cos (}Lt), t e [0,7l.
So, by Theorem 4.1 we have
%sin(jzt) <n(p,Y;H) < %cos(jzt), te0,m].

In particularly, when t = 7, it is obtained that

n((P(ﬂ), 1111(77),[‘1) = n(%/ %,H) — 2_%

Now, we give one approximation for the weighted numerical index.
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Theorem 4.8. For any A € B(H) the following are true

(1) If o1, @2, Y1, P2 € C[0,1], then |n(p1, Y1, H) — n(@a, Yo; H)| < o1 — @al(t) + [P — Yol(t), t €[0,1],
(2) If , Y, @u, Py € C[O,1] and sequences (@) and (Y,) converge to the functions ¢ and , respectively, then

n(p, Y; H) = Jgﬂ, (@, Pu; H).

Proof. (1) For x € H, ||x|]| = 1, we have

Kp1(HA + P1(HA)x, x)| < (@1 — 2)(HA + (Y1 — P2)(A)x, )| + Kp2(H)A + Pa(HAT)x, x)l.
Hence, for [|All = 1 we get

w(p1,P1;A) < sup {lpr — @al(t), 1 = P2lOHIAI + w(ep2, 2; A).

Consequently, it can be obtained that

n(p1, Y1; H) < sup {lor — @2l(t), [P1 = al(H)} + n(p2, P2; H).

Similarly, it can also be shown that

(@2, 2; H) < sup {l1 — @2l(t), Y1 — ¢ol(D)} + n(p1, 1; H).

So, we have
[n(p1, 1, H) = n(p2, P2, H)| < |1 — @al(f) + 11 — 2l(t), t € [0,1].

(2) From the first claim of this theorem we have

[1(@n, s H) — 1@, Y; H)| < lpn — @I(t) + [P — PI(E), £ € [0,1], n > 1.

Since ¢, — ¢ and i, = ¢ as n — oo, then from the last relation the validity of second claim can be easily
seen. [

Using the (2) of Theorem 4.8 we have the following corollary.

Corollary 4.9. Let ¢, ¢, € C[0,1],n > 1and ¢, — 1,1, = 0asn — oo. Then
. 1
&g{}o nt((Pnr Ebn;H) = E

References

[1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for n X n operator matrices, Linear Algebra Appl. 468 (2015), 18-26.

[2] H.Baklouti, K. Feki, A. Sid, O. A. Mahmoud, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Multilinear Algebra
555 (2018), 266-284.

[3] P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series,
Springer, Cham, 2022.

[4] P.Bhunia, K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl.
630 (2021), 306-315.

[5] P.Bhunia, K. Paul, A-numerical radius: new inequalities and characterization of equalities, Hacet. . Math. Stat. 52 (5) (2023), 1254-1262.

[6] F.FE Bonsall,]. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture
Note Ser., 2 Cambridge University Press, London-New York, 1971.

[7] E F. Bonsall, J. Duncan, Numerical ranges. II, London Math. Soc. Lecture Note Ser., 10 Cambridge University Press, New York-
London, 1973.

[8] M. L. Buzano, Generalizzatione della disuguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politec. Torino 31 (1971/73) (1974),
405-409.

[9] E. O. Cevik, Some Numerical Characteristics of Direct Sum of Operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69 (2)
(2020) 1221-1227.

[10] J. Duncan, C. M. McGregor, J. D. Pryce, A. ]. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481-488.



Z. Ismailov, P. Ipek Al / Filomat 39:11 (2025), 3817-3832 3832

[11] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. (Basel) 115 (5) (2020), 535-544.

[12] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, ]. Korean Math. Soc. 58 (6) (2021), 1385-1405.

[13] T. Furuta, A simplified proof of Heinz inequality and scrutiny of its equality, Proc. Amer. Math. Soc. 97(4), (1986) 751-753.

[14] C. Geunsu, J. Mingu, T. Hyung-Joon, On the Lipschitz Numerical Index of Banach Spaces, Collect. Math. 76(1), (2025) 81-103.

[15] P.R. Halmos, A Hilbert space problem book, Springer-Verlag, New York-Berlin, 1982.

[16] F. Hirsch, G. Lacombe, Elements of functional analysis, Springer-Verlag, New York, 1999.

[17] V. Kadets, M. Martin, R. Payd, Recent progress and open questions on the numerical index of Banach spaces, RACSAM. Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. 100 (1-2)(2006), 155-182.

[18] M.T.Karaev, N. Sh. Iskenderov, Numerical range and numerical radius for some operators, Linear Algebra Appl. 432 (2010), 3149-3158.

[19] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.

[20] L.Khadkhuu, D. Tsedenbayar, Spectral properties of ReV and ImV., Mong. Math. J. 19 (2015), 73-78.

[21] L.Khadkhuu, D. Tsedenbayar, On the numerical range and numerical radius of the Volterra operator, Izv. Irkutsk. Gos. Univ. Ser. Mat.
24 (2018), 102-108.

[22] FE Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1) (2005), 73-80.

[23] M. Martin, J. Meri, M. Popov, On the numerical radius of operators in Lebesgue spaces. J. Funct. Anal. 261 (1) (2011), 149-168.

[24] M. Martin, J. Meri, A. Quero, Numerical index and Daugavet property of operator ideals and tensor products, Mediterr. ]. Math. 18 (2)
(2021), 15 pp.

[25] J. Meri, A. Quero, On the numerical index of absolute symmetric norms on the plane Linear Multilinear Algebra 69 (5) (2021), 971-979.

[26] R.K.Nayak, Weighted numerical radius inequalities for operator and operator matrices, Acta Sci. Math. (Szeged) 90 (1-2) (2024), 193-206.

[27] D. Sain, K. Paul, P. Bhunia, S. Bag, On the numerical index of polyhedral Banach spaces, Linear Algebra Appl. 557 (2019), 121-133.

[28] A. Sheikhhosseini, M. Khosravi, M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13 (1) (2022), 15 pp.

[29] A.Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159-183.



