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Modified Szasz-Kantorovich operators with better approximation

Hiiseyin Aktuglu®’, Mustafa Kara?®, Erdem Baytunc¢?

?Department of Mathematics, Faculty of Art and Science, Eastern Mediterranean University, 10 Mersin, Turkey

Abstract. In this paper, we introduce a new family of Szdsz-Mirakjan Kantorovich type operators Kiy(f; %),
depend on a function ¢ which satisfies some conditions. In this way we obtain all moments and central
moments of the new operators in terms of two numbers M, , and M,,, which are integrals of 1) and y?,
respectively. This is a new approach to have better error estimation, because in the case of K, ,(1; x) = 1, the
order of approximation to a function f by an operator K, ,(f; x) is more controlled by the term K, (£ —x)?; x).
Since the different functions ¢ gives different values for M; y and M, ,, it is possible to search for a function
y with different values of M, 4 and M, , to make K, ,((f — x)%; x) smaller. By using above approach, we show
that there exist a function 1 such that the operator K, ,(f;x) has better approximation then the classical
Szész-Mirakjan Kantorovich operators. We obtain some direct and local approximation properties of new
operators K, ,(f;x) and we prove that our new operators have shape preserving properties. Moreover,
we also introduced two different King-Type generalizations of our operators, one preserving x and the
other preserving x* and we show that King-Type generalizations of K, (f;x) has better approximation
properties than K, ,(f;x) and than the classical Szasz-Mirakjan-Kantorovich operator. Furthermore, we
illustrate approximation results of these operators graphically and numerically.

1. Introduction

As it is well known, the Weierstrass approximation theorem which is an important corner stone of polyno-
mial approximation, states that any continuous function on a closed interval can be uniformly approximated
by polynomials (see [36]). Bernstein was the first Mathematician who provides a constructive proof to the
Weierstrass Approximation Theorem for continuous functions on [0, 1]. (see [12], [25]). Since the Bernstein
operators have an important role in polynomial approximation theory, many researchers considered many
generalizations of these operators such as [4], [5], [10], [15], [19], [30], [24] and [31].

Consider the following weighted space,

lf ()l

En = {f € C[O/ OO) : hmx—)oc 11 m

< oo}
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with the following norm,

If(x)

“f”m = Supxe[o,oo)ﬁ,for fixed m € IN.

For a function f € E,,, the Szdsz-Mirakjan operators are defined by

5,052 = Y susf (1), 0
=0
where,
k
) = <L @

for any x € [0, c0).
In [14], P. L. Butzer introduced the Kantorovich type Szdsz-Mirakjan operators for Lebesque-integrable
function space as follows:

k(i) =nY 50 [ f0 ®
k=0 n

or equivalently,

o 1
K(fin) = Y suato) [ f(’%t)dt, @
k=0 0

where s, k(x) is defined in (2).
Very recently, in [11] the following Kantotovich variant of the Szasz- Mirakjan operators are introduced and
studied

[os] 1 v
Kny(F52) = Y sui(x) fo f(kff)dt, (5)
k=0

where s, x(x) is defined in (2) and y > 0.

For the Kantorovich type Szasz-Mirakjan operators and some of their generalizations, we refer the following
papers (see [3], [13],[14],[21], [22], [26],[27], [28],129], [32], [33],[34] and [35]). For further developments in
this area, interested readers are encouraged to read the cited papers [1], [2], [7], [8],[9] and [20].

In this article, we introduce the following new family of Kantorovich type Szdsz-Mirakjan operators,

Kool = Yo | f(%(”)dt, ©
k=0
where s, x(x) is given in (2) and ¢ (see [5]) is any integrable function on [0, 1] such that
0<y@) <1,
P(0)=0, P(1)=1, and (7)

1
My = fo Pr(Ddt

where p is any positive integer. Obviously, 0 < M,,, < 1 for all p. Note that, K;, y, are positive and linear.
One can easily see that, the classical Szazs-Mirakjan Kantorovich operators (3) and operators given in (5)
can be produced from (6) by choosing () = t or () = t respectively. Our aim is to show that for certain
choices of the function 1, the modified operator K, gives better approximation results than the operators
defined in (4) and (5). Moreover, in this paper we introduce two King - Type generalization of our operators
one preserving x an other preserving x>. We also compare our operator with its King-Type generalizations
and we show that King-Type generalizations of our operators have better approximation results.
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2. Some Basic Results

This section is devoted to some basic results and properties of K;,;, which will be used in the next sections.
Lemma 1. For each 1 satisfying (7) and for all x € [0, o0) we have;

(i) Kuy(L;x) = 1,

(ii) Kyp(t;x) = x + 2

Ly
n 7
1+2M]'|Ty, M, Y

(iii) Kn,¢(t2; X) =x2+ — X + né ,

where My, i = 1,2 are constants defined in (7).

Remark 2.

i) Moments of K,(f,x) can be obtained from Lemma 1 by taking y(t) = t or equivalently My = 3 and May = 3.

it) Moments of K, (f,x) can be obtained from Lemma 1 by taking (t) = ' or equivalently My = yﬁ and
Moy = 5.
Corollary 3. The central moments are given by
M
) Koy (b3, = =%,
n
g x Mo,
i) K (t=)%50) = 4 nZ‘”.
(8)

Remark 4.

i) Central moments of K,((t — x); x), can be obtained from Corollry 3 by taking My = 3 and My, = 1.

ii) Central moments of K, ((t — x)’; x), can be obtained from Corollry 3 by taking My = y% and My y, =

1
2y+1°

The following lemma, gives the connoection between the moments of the operators K,y and S,,. In other
words, higher-order moments of Kj,;, can be computed by utilizing the classical Szdzs-Mirakjan operators
Sn.

Lemma 5. Forany n € N and x € [0, o0), we have

1 v (m ; i
Kn,d,(tm,' X) = n—m Z ( ; )Mm—i,lpnlsn(tz/' x)'

i=0

where S, (f; x) is given in (1).
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From (6), we get
© 1 k m
s = oo [ (40
= nm Snk x)f (k + ()" dt
= im nk() f Z( )k’W D(t)dt
= nim an,k(x)Z(":)ki f PUI(t)dt
k=0 i=0 0
= Y s ("l?)kam_W
k=0 i=0
1 v (m ; ha K
—— Z ( ; )Mm—i,lpfl an k(x)n
i=0 k=0
1y (m ic (4
= o IZO‘ ( ; )Mm—i,wn S,(t;x).

3836

Theorem 6. Let 1 be a function which satisfy the conditions in (7 ), then we have;

i) For a function f, which is non-decreasing (or non-increasing) on [0, o),

it) For a function f, which is convex (or concave) on [0, ), K, 4 (f; x)

Proof.

non-increasing) on [0, co).

i) Consider the first derivative of K,y (f; x);

(Kug(f3))

) 1
0 Y s [ b2
k=0 0

Y5 fo s (@)dt

—Nnx

nk(nx)<1
k!

Il
et 20

”ie (HXI (k+¢(t))

k=0

n

- (nx)k (k +1+ ¢(t))
n e dt
; SN

0

(nx)kf (k+¢(t))dt
n
_nx(nx)k[ ! (k+1+¢(t)) o (
ST L

k!
(t)) it

=0

k=0

k+ 9@

K,y (f; x) is also non-decreasing (or

is also convex (or concave) on [0, o).

Ja

k+(t)
n

)
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withhi=1landn=1,23,..
If f is an non-decreasing function on the interval [0, c0), we have

A]11f(k+1p(1f)):f(k+1+1/z(t))_f(k+1;p(1‘))ZO, (10)

n n

wherek =0,1, ... and t € [0, 1]. Using, (10) in (9) gives,

(Kng(f:) <0, 0<x < oo,

which completes the proof. The case where f is a non-increasing function can be proved in a parallel
way.

ii) Consider the second derivative of K,y (f;x),

” s 1
(Kn,ll’(f; x)) =n’ ; Sn,k(x) L A]%f(l%yb(t)) dt (11)

with h = % forn=1,2,3,...
If f is convex on [0, 0), then for any k = 0, 1, ... we have

0Sk+1/1(t) Sk+1p(t)+1 <k+1/1(t)+2'

n n - n
Theorem 3.2.2 in [[17], p.59] implies that
k+y(t
Aﬁ(}%»za 12)

Thus, utilizing (11) and (12) we obtain the following inequality,

(Kug(£)) =0,

for all x € [0, c0), which completes the proof. As a conclusion, K, y(f;x) is convex on [0, o). The case
where f is concave can be proved in a parallel way.

O

3. Direct and local approximation properties of K,

Let A > 0 be any constant then the lattice homomorphism, Ty 47 : C[0, o) — C[0, A] defined by

Ti0,4] (f )= f li0,4]

satisfies,

Ti0,41(Kinp(1)) =3 Tioa(1)
Ti0,41(Knp(H) 3 Tt (13)
Toa(Knyp(t) 3 Tio.a(t?)

where above convergences are all uniformly on [0, A].
Now we can state the following Theorem.

Theorem 7. For any A € R*, K, y(f; x) is uniformly convergent to f on [0, A] provided that f € E,,, m > 2.
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Proof. Let A > 0 be an arbitrary fixed real number. According to the Bohman-Korovkin Theorem (see [23]),
it is enough to show that

lim sup |Kn,¢(ti; X) — ti| =0,

"= vel0,A]
for i = 0,1,2. Recall that E is isomorphic to C[0,1] (see Proposition 4.2.5 (6) of [6]). Therefore the set
{t':i1=0,1,2}is a Korovkin set in E. Using Lemma 1, property (vi) of Theorem 4.1.4 [6] and (13) completes
the proof. [

It is important to remember that, operators satisfying the property K, ;,(1; x) = 1, also satisfies the following
inequality,

2|[£1l2
62

where 6 is determined by the uniform continuity of the approximated function f. In other words, inequality
(14) reveals that the order of approximation to a function f by K;, y(f;x) is controlled by the term K;, y((t —
x)%; x). Hence, we can assess the effectiveness of the operators K, ,(f;x) and K,(f;x) in approximating the
function f by examining their second central moments. Therefore, the comprision of the images of the
second central moments are enough to compare the order of the approximation of the operators K;, 4 (f; x)
and K, (f;x) to a function f.

New operators K, ;(f; x) have the advantage that, the term K, ,, ((t — x)?; x) depend on the parameters My
and My y. Therefore distinct K,y ((t — x)?;x) terms can be derived for certain functions i satisfying (7).
This enables us to explore different values of M;y and M, to achieve a more accurate approximation. In
essence, using our operators reduces the problem of improving approximation to two key questions: for
which values of My and M, does the inequality

Ko (f;2) = f(x)| < €+ Ko ((t = x)%; %), (14)

Koy ((t = x)%x) < K((t = x)?; %), (15)

hold, and is there any function i which provides these M;y and M, values? As demonstrated below,
we establish solutions to both problems. We can compare how well the operators K,y (f;x) and K, (f;x)
approximate the function f. From Corollary 3 and equation (15), better approximation is possible if,

Kny((t—=2%%) < Kp((t—2x)%x)

x Moy x 1
-+ < -4 —
n n2 n  3n?
M
w1
n2 3n?
1
= M2,¢ < 5 (16)

In (16), we obtained a solution to the first problem. Next, we will show that, the second problem also
has a solution, that is there exist at least one function ¢, and the corresponding M, satisfies inequality
(16).

Now, let us consider the following functions,

po = o 17)

where a € [0,1] and a > 0. Obviously, 1 is continuous for all 4 € [0,1], @ > 0, and satisfies (7), with

— a-1 a+1 1
M1,¢, = (m)ﬂ + P and Mz/w

_2a-D@t) oy, 1
(@+2)Qa+1) 20+ 1"



Now, for @ = 1.1 and a = 0.75, My = 0.3294. Therefore from inequality (16),
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Ko,y ((t = ¥ :x) < Ku((t—x)*:x)

3839

which means K, y(f : x) has better approximation than the normal Szasz Kantorovich operators for i given

in (17) on [0, A].

For a = 1.1 and a = 0.75, My, = 0.3294, some numerical values of K, y((t — x)%x) and K,((t — x)? x) are
shown below and their graphs are given in Figure 1.
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Figure 1: Graphical representations of K,y ((f — x)%; x) and K, ((t — x)%;x) for a = 1.1,a = 0.75 and n = 100.
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1 0.010033333 0.010032936
1.5 0.015033333 0.015032936
2 0.020033333 0.020032936
2.5 0.025033333 0.025032936
3 0.030033333 0.030032936
3.5 0.035033333 0.035032936
4 0.040033333 0.040032936
4.5 0.045033333 0.045032936
5 0.050033333 0.050032936
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In a similar way we can compare operators K, ((f — x)%; x) and Koy (¢ - x)%; x) that is,

Kuy((t=2)%20) < Kup((t=2)%2)

x My _x 1
n n? no 2y +1)n?
Moy - 1
n2 2y + 1)n?
1
M .
2 2y +1

In other words for a fixed y € (0, ), the operator K;, y(f; x) with My, <
K, (f; ).

Now, let’s give the local approximation properties of K, y. Recall that, the modulus of continuity (see [18])
is defined by,

2), — has better approximation then

w(f;0) = Supocp<sSUPxeo,0)l f(x +h) — f(x)].
where f € Cg[0, o).

Theorem 8. Forall f € Cg[0, o), x € [0, 00), n € N and  satisfying (7) we have,

M
x, ”J
n n2

|Ko g (f50) = f(x)|<2w[

Proof. Since K,,4(1;x) = 1 and s, x(x) > 0 on [0, o) we can write,

= Y (k+
Kot - fe] < Y st [ ' 7(5559) - s (18)
k=0 0
Equation (18) implies that, for any 6 > 0,
k()
k+ (t) X
‘f  IRLCE [1 . T|]w(f;6)- (19)

Using (19) in (18), we get

L 1
Kug(Fi0) - @] < @(f0) [1 ) L0 dt].
k=0

Applying Cauchy-Schwarz inequality, we get

1 v Lk+p®)  \
a)(f;é)[l+5¢kzosn,k(x)fo (T—x) dt]

w(f;é)[l+% S MZ’¢].

n n?

Taking 6 = /% + M —+, we get the desired result. [

IA

Koy (f;0) = f(2)|
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Recall that, for 6 > 0 the Peetre-K functional Ky(f;6) is defined by;
Ky(f;0) = infyearpoe (lIf = gll +0llg”ll}, (6 > 0)

where @?[0, 0) = {g € Cp[0, ) : g’,g"" € Cp[0, o0)}.
Furthermore, 3 C > 0 (see [16]) such that

Ka(f;0) < Canlf; VO)
where w(f; \/3) is called the second order modulus of continuity of f € Cp[0, o), defined as;

wa(f; Vo) = sup sup |f(x+2h)—2f(x+h)+f(x)|.

0<h<6 x€[0,00)

Now, we need to state the following lemma to prove the local approximation properties of the operators
Ky, depending on the second order modulus of continuity.

Lemma 9. For each f € Cgl0, o0) and , satisfying (7) we have
1Ky (f; I < TI£1- (20)

Theorem 10. For all f € C[0, 00), x € [0, 00) and 1) satisfying (7), there exist C > Q such that

M Mg\ M
LM w)Jw(ﬁ )
n n n n

Ku(Fi0) = f@ < Cas [f; : \/

Proof. Let
. My

Kolfix) = Kog(fin) + £ = flx+ —2). e1)
From Lemma 1,

wa(l;x) = 1,
and

K;/ll}(t—x;x) = 0.
If g € ®?[0, ), then by Taylor’s expansion,

t
o0 = g0+ =070+ [ €y 2)

Applying the operators K}, y to (22), we get

t
K, (g; %) g(x) + K, ( ﬁ (t — u)g” (u)du; x)

g(X)+I<n,¢( f (f—u)g”(u)du;x)— f 7«

Rewriting the above equation as,

—_
+
S
<=
|
=
~——
S
=
=

My

t x+7’¢ M
K:W(g; x)—gx) = Ky (fx (t- u)g"(u)du;x) —£ (x + ;'lp - u) g" (w)du.




Hence, we can write
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My

t X+ =k Ml,
K, (g:%) =gl < Ky ( f (t - u)g” (u)du; x) + f (x + Tw — u)g” (u)du
X X
Mgy
t . X+ —— Ml,l# .
< Ky (t —u)g” (u)du|; x| + x+—=—ullg (u)|du
) ' Mgy
t . X+ — Ml,t/) .
< Ky |(t — w)ldu|; x |llg” Il + X+ ——-u dullg”l

A

Therefore,

Also, from (20) and equation

K, ()| < 3Ifl

Yy

2 7 le ’ ”
Koy ((t = x)%0)llg” [l + Xt —— o llg”|l

n

. x My (MiygV] o,
Kn,w(gfx)—g(x)l < [—+ " +( p ) llg”lI

(21), we get

for all f € C[0, o) and x € [0, o).

On the other hand, for any f

Koy (f; %) = f(x)]

IA

A

X
< A4f-gll+ [E +

Ky (F53) = K (050)] +

M,, MgV M;,
ZLP +(_¢) ]Hg ||+a)(f,7¢)

n

€ Cp[0, 0) and g € @*[0, ), using (23) and (24), we get

M
= [Ky(fi) - f() + f(x + —“”) - f(x)’

M
= [k = K0 4 K50 = 0+ 900 - 0+ 7 x5 ) )|

f (x - Ml“’) - fx)

n

Ky (0%) = 90| + g(0) = F0)] +

n

Finally, if we take infimum on the right-hand side over all g € ®*[0, ), we obtain:

ﬁ"'z\%"'(]\%)z My,
|Kn,¢(f;x)—f(x)| < 4K | f; 1 +w(f; n,)

1 [x My (Myy 2 My
= Ca)Z[f,EJE'F nz +(T + w f, " ’

and this completes the proof.

O

3842

(23)

(24)
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Now, for any 0 < a < 1 and M > 0, the usual Lipschitz class is defined by,

Lipu(a) = {f € Cs[0,0) : |£(p) = f(o)] < M]p - o[’}

Vp, o € [0, o).

Theorem 11. For every f € Lipp(a) and 1 satisfying (7), we have

M, 12
o0 - sl <0 S22

roof. For any f € Lipy(a) using linearity and positivity properties of the operator we can write that,
P F y f € Lip ing li ity and positivity properties of the operat ite that

- H (k+v
K, 7 X)— = n — |~ d
st = £ s Y st | f( - ) fo| dt
= Lk+y [
< M » — —x| dt.
< kZ;S'k(x)fo . x| dt

Apply Holder’s inequality with p = 2 and g = 5%, we obtain
) 1 k+ l)b 2 % ) 1
M Sﬂ,k(x)f (— - x) dt Sﬂ,k(x)f dt
LZ:O‘ 0 n Z‘ 0
M, 12
M [z N ﬂ] ,
n

2
Therefore, the proof is completed. [

2-a
2

IA

Koy (f;) = f(2)|

4. Graphical Analysis and Error Estimation

In this section, we give some graphics to illustrate approximation of K y(f;x) to a certain function f.
For the following figures, ¢ is the function given in (17). In Figure 2, we illustrate the approximation of
the operators Kiog,y(f; %), K200,4(f; x), Ksoo,y(f;x) to f(x) = X3 — 3x% + 2x. Secondly, absolute error function
en(f(x)) is illustrated in Figure 3 for n = 100,200, 500. Finally, we compute the absolute error of K,y (f;x)
with f(x) = x® = 3x% + 2x for n = 100,200, 500 in Table 1.

Table 1: €,(f(x)) with f(x) = x3 — 3x% + 2x for some x values and # = 100, 200, 500.

X | | Kioop(f;%) = f) | | | Kaoo,p(f;%) = f(X) | | | Ksoop(f;x) — f(¥) |
0 0.0099 0.0050 0.0020
0.5 0.0087 0.0044 0.0017
1 0.0048 0.0024 0.0009
1.5 0.0217 0.0127 0.0043
2 0.0706 0.0352 0.0140
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— x)=x°3x42x]
— Ko )
Koo M%)
Koo, %)

Figure 2: Approximation of Ky, y(f;x) to f(x) = x> —3x? + 2x for a = 1.1 and a = 0.75.

1K 00,200

1K s (001
K s (10001

Figure 3: Error of approximation ¢, (f(x)) = |Kn,¢( fix)—f (x)| when n = 100, 200, 500.

5. Szasz-Mirakjan Kantorovich operators which preserves x

Now, in this sections, we introduce two different King-type modification of the operators K ; so that one
preserves x and the other preserves x%. Let r,(x) be sequence of real-valued functions with 0 < 7,(x) < co.
Then we have

_ — bk
Ruglfin(a) = Y s [ f(%(t))dt. 25)

k=0

Now, If we replace r,(x) by r;,(x) defined by,

r(x) = x——n , ne€NN,
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then we get the following King-type modified Szdsz-Mirakjan Kantorovich operators which preserve the
test fuctionse; = x', i =0, 1:

&) = fkm@”wﬂdx—@ﬂfjﬂdk+wnyt
np\J s T Kl o n

k=0

- ank(r (x))f (k+l’b(t))dt

k=0

Lemma12. Lete; = x',i = 0,1,2, on the interval M,y < x < oo such that 0 < r;(x) < oo and n € IN, then the
operators K " satisfies the following equations,

1. K;,IP(EQ,) = 1,

2. K;,w(el,) =x,
(M}, +Mi,y=May)

3. K;’w(ez) =x+%- —
From Lemma 12, we obtain the followings results.
Lemma 13. For any My < x < oo, we have

K:w(t -xx) = 0,

X

(M% + M; v M, 4,)
. BT , .
K, (¢ = x)%; x) .

Theorem 14. Kn lp( f;x) is uniformly convergent to f, on the interval Myy < x < A such that 0 < r,(x) < A,
provided that f € E,,, m > 2.

n n2

Theorem 15. Let f € Cp[0, 00). For My < x < oo such that 0 < r,(x) < oo, we have,

MY, +Miy — May)

_ c
Kn,lp(f}x)—f(X)’ <2w|f; \/E _

2

Proof. For f € Cp[0, o), we have,
K- < Ysution [ r(F50)- s 26)

k=0

Applying the property of the modulus of continuity, which is

F0- ] < (1+ 55 (70

to (26), we obtain,

K;,¢(t)(f;x)—f(x)| < w(f;0) 1+%;‘sn,k(r;(x))f(;

Applying Cauchy-Schwarz inequality,
J Y st [ (S

\/x (M%,IP + Ml,yl' - Mz,lp)

1 —k 40 - xl dt
" )

O"AIH

Ko i —f@)| < w(fo)|1+

T

= w(f;0)|1+ <1 =
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. (1\/12 ’+M1,¢,—M2,¢)
Choosing 6 = \/ Lo -

a = , we have the desired result. [

Now recall that, the order of approximation of K:l o f:x) to f, will be at least as good as that of the K,y (f; x)
if
K:w((t —x)%5x) < Kyy((t—x)%x)

x (Miyb + Ml,l[) - MZ,QD) x Mz#,

- = < -+

n n? n n2
Milp + Ml,tp > 0

which is always true.

Similarly, K (G x)%;x) < Ky((t — x)%; x), implies that,
x (Mip + My —May)
n n2

Moy = M;, = My,

1

+
712

(27)

w

IN

(28)

Wik 3 |R

which is always true. )

Now, for & = 0.01 and a = 0.75, M3, = 0.2571. From inequality (27), K, w((t -x)%x) < Koy ((t = x)?; x) which
means that IZ; " (f; x) provides better approximation properties than K;, y(f; x) for ¢ given in (17) (see Figure
4).

, x10°

Figure 4: Graphical representations of K* (= x)%;x) and K,y ((t — x)%; x) for @ = 0.01, 2 = 0.75 and n = 150.

Similarly, Now, if a = 0.01 and a = 0.75 then My, = 0.2571 and M, = 0.2530. From inequality (28),
IZ; lp((t - x)%;x) < Ku((t — x)%;x) which means IZ; Lp( f;x) provides better approximation properties than
Ky (f;x) for i given in (17), on [0, o) (see Figure 5).
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Figure 5: Graphical representations of K; y,}((t —x)%;x) and Ky, ((t — x)%; x) for & = 0.01, 2 = 0.75 and n = 150.

6. Szasz-Mirakjan Kantorovich operators which preserves x2

Now, If we replace r,(x) by 75 (x) in (25) where

_ ) 2_
r;*(x) — (1+2M1'w) + (1+2M1,17r,) 4M2'l/,

> o +x2), n=1,23,..

then we get the King-type modified Szész-Mirakjan Kantorovich operators:

" e (T ) (k)
Kw(fx) = Ze "()T]O‘f(T)dt

k_

= Y i) f (50

k=0
which preserves e; = x',i = 0,2.

Lemma 16. Let ¢; = x',i = 0,1,2, on the interval Mz < x < oo such that 0 < 7;/(x) < coand n € IN, then
operators K" verify the following:

1. K;;P(eo) =1;

" _ (1+2M1 ) 4M2
LR = gy ey o,

K**l,b (62) = x

Lemma 17. For /My < x < oo, we have

(1 + 2M1,¢)2 - 4M2’¢,
+

2 _ oy
a2 X X,

Ky (t = %)
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K -1 1+ 2M; ) — 4M.
K::l/,((f - x)Q;x) = 242 - ZX(— + \/( 1,4;) 2,0 g

4n? g

2n

Theorem 18. K;* t £ x) is uniformly convergent to f on the interval \[Mzy < x < A such that 0 < r;/(x) < A,
provided that f € E,,, m > 2.

Theorem 19. Let f € Cg[0, 00). Then for all /MZ#/ < x < oo, we have,
Ky () = 0| < 20(f5 Ry (6= 02).

Proof. Proof can be obtained in a similar way of Theorem 15 [J

Now, for f € Cg[0, o), the order of approximation of Kn* ol f;x) to f, will be at least as good as that of the
Ky (f; x) if

K::,’[,((t - x)z; x) < Kn,lp((t - x)z; X). (29)

Let gu(x) = \/ L2V Moy | o, Using (29) and (8), we get

4n?

M
> (30)

Zx(x - qn(x)) <

Since x < gu(x) for all x € [0,00),n € N, the inequality (30) is true for all x € [0, o0). Thus the order of
approximation by K** ol f;x) to f is at least as good as the order of approximation to f by K, y(f; x) whenever

Mz, < x < oo. Finally, for a = 0.01 and a = 0.75, we give graphical illustration of the inequality (29) as
follows (see Figure 6).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: Graphical representations of K;*w((t —x)%x) and Ko,y (£ = x)%;x) for @ = 0.01, a = 0.75 and n = 150.
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7. Conclusion

In this paper, we introduce a new family of Szasz-Mirakjan Kantorovich type operators K; y(f;x), which
depend on a function ¢ satisfying conditions given in (7). In this way we obtain all moments and central
moments of the new operators in terms of two numbers M y, and M, y, integrals of ¢(t) and ¢*(t) on [0,1]
respectively. This is a new approach to have better error estimation because in the case of K;, ;(1;x) = 1, the
order of approximation to a function f by an operator K,y (f; x) is more controlled by the term K,,,lp((if—x)2 ;X).
Since different functions ¢ gives different values for M y and M, y, it is possible to search for different values
of My and M to make K,y ((t — x)?; x) smaller than K, ((f — x)% x). In other words in this approach two
problems have arisen. Are there My and My, values so that K, ,((f — x)% x) < K,((f — x)% x) and is there
a function ¢ (t) which have these M,y and M,y values? In this study, we prove that both problems have
affirmative solutions. Moreover, in this paper we also introduced two new King-Type generalization of
our new operators, K;, (f;x) preserving x and K} (f;x) preserving x*. We also show that K;, (f;x) and

IZ;" IP( f;x) has better approximation results than K, y(f;x) and K,(f; x) (see Figure 7). Some results on the

uniform convergence and rate of convergence of new operators are also obtained in terms of the first and
second order modulus of continuity and it is also shown that, our operators has shape preserving properties.
Finally, obtained results are supported by numerical examples.

T 00602’— .

0.0601
g 0.06
0.05 " 0.0599

o 0.0598

P o o Sy A S Y S S
3.00002 3.00006 3.0001 3’000\4 3.00018

2 25 3 35 4 45 5

Figure 7: Graphical representations of K, ((t — x)%; x), Koy (£ x)%; x), K; l#((t‘ —x)?;x) and K;*w((t —x)%;x) fora =1.1,a = 0.75and n = 50.

X Ksp ((t - %)% ;2) K50,y ((t=2252) kgw ((t=x?52) K;B[w((t —x)2;%)
2 | 0.0401333 | 0.0401317 | 0.0398300 | 0.0397300
2.5 | 0.0501333 | 0.0501317 | 0.0498300 | 0.0497300
3 | 0.0601333 | 0.0601317 | 0.0598300 | 0.0597300
3.5 | 0.0701333 | 0.0701317 | 0.0698300 | 0.0697300
4 | 0.0801333 | 0.0801317 | 0.0798300 | 0.0797300
4.5 | 0.0901333 | 0.0901317 | 0.0898300 | 0.0897300
5 | 0.1001333 | 0.1001317 | 0.0998300 | 0.0997300
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