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Hermite-Fejér interpolation with non-uniform nodes on the unit circle

Sameera Iqgram®*, Swarnima Bahadur®

?Department of Mathematics and Astronomy, University of Lucknow, India

Abstract. This research paper examines Hermite-Fejér interpolation on the unit circle with non-uniformly
distributed nodes. The authors make two main contributions: they provide an explicit formula for the
interpolatory polynomial and prove a mean convergence of it is studied for analytic function within the

unit disk. These findings advance our understanding of this interpolation method for irregularly spaced
data points in circular domain.

1. Introduction

Polynomial interpolation, particularly the behavior of continuous functions approximated by Hermite
polynomials, has been a fundamental area of study in numerical analysis and approximation theory for
over a century [12, 20]. This field’s importance stems from its wide-ranging applications in mathematics,
physics, engineering, and computational sciences. The cornerstone of this area is Weierstrass’s approxima-
tion theorem from 1885 [27], which proves that every continuous function on a closed interval [g, b] can
be uniformly approximated by polynomial functions to any degree of accuracy. Hermite interpolation, a
more sophisticated form of polynomial interpolation, involves fitting a polynomial to a set of data points
while also matching derivative values at these points [10, 17]. This method provides a powerful tool for ap-
proximating functions with higher degrees of smoothness and has found extensive use in computer-aided
geometric design, signal processing, and numerical solutions of differential equations [2]. The choice of
nodal systems plays a crucial role in the behavior and convergence properties of interpolation polynomials.
Jacobi polynomials, a class of classical orthogonal polynomials, have been particularly influential in this
regard [1, 24]. The zeros of Jacobi polynomials and their variants often serve as optimal interpolation points,
leading to improved stability and accuracy in many applications [15]. Notable contributions to the field
include the work of T.N. T. Goodman, K.G. Ivanov, and A. Sharma [16], who studied Hermite interpolant
behavior using roots of unity. This research provided insights into the convergence properties of interpo-
lation polynomials on the complex plane. S. Bahadur’s investigation of P4l type interpolation problems
using nodal systems derived from Legendre polynomials (a special case of Jacobi polynomials) further
expanded our understanding of interpolation schemes based on orthogonal polynomials [4]. Hermite-Fejér
interpolation, a special case of Hermite interpolation where all derivatives at the nodes are set to zero, has
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been extensively studied due to its simpler formulation and interesting convergence properties [13, 23].
The behavior of Hermite-Fejér interpolation polynomials on different nodal systems has been a subject of
ongoing research, with particular attention paid to their convergence rates and stability [19]. The study of
interpolation with equally spaced nodes on the unit circle has led to important results in complex analysis
and approximation theory [25, 26]. However, equally spaced nodes often lead to the Runge phenomenon,
where oscillations occur near the endpoints of the interval, highlighting the importance of careful node
selection in polynomial interpolation [11, 21]. The study of interpolation theory on the unit circle has seen
significant developments through Bahadur’s foundational work [5] and subsequent research. Recent ad-
vances include novel approaches to Hermite interpolation with non-uniform nodes [3, 6], investigations into
Hermite-Fejér interpolation [7, 8], and extensions to higher-order methods [9]. These contributions have
substantially enhanced our understanding of interpolation processes on circular domains. Mean square
convergence of interpolatory polynomials for analytic functions on the unit disk has been a significant area
of study [18, 22]. This approach provides a measure of the overall accuracy of the approximation and is
particularly relevant for applications in signal processing and spectral methods [14].

By projecting the zeros of Jacobi polynomial with origin and boundary points on the unit circle, nodal
points are being obtained in the present paper. The study examined three distinct nodal structures and
determined the rate of convergence for each. The authors then compared these three cases and drew
significant conclusions from their analysis. Their findings provided valuable insights into the behavior of
interpolation methods on the unit circle.

2. Problem

Z0=1

T2 1T Ty 1 ) Ty i Ty
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Figure 1: Nodal System for First, Second and Third cases respectively

Let’s consider the interpolatory polynomial and its convergence properties for three cases involving

P

nodes derived from Jacobi polynomials by the Szeg6’s transformation [24]. In the first case, as given,

21-2 (7, # 0) are obtained by vertically projecting the zeros of (1 — x)P*“?

k=0 1 (X) onto the unit

the nodes {z;}
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circle, producing 21 — 1 nodes on the unit circle. For the second case, we examine nodes resulting from

(@f )(x), again yielding 2n — 1 points on the unit circle. The third case

n-1
considers nodes from the zeros of xP;Df)(x), producing 2n points due to the additional zeros at x = 0 (see

Figure 1). In each scenario, the convergence of interpolatory polynomials depends on factors such as the
distribution of nodes (influenced by the Jacobi polynomial parameters a and f), the smoothness of the
interpolated function, and its behavior near +1 on the unit circle. The specific multiplying factor ((1 — x),
(1+x), or x) affects the node distribution and consequently the convergence properties. A rigorous analysis
of convergence would require techniques from approximation theory, considering the interplay between
the Jacobi polynomial properties and the characteristics of the interpolated function in each case.

Case I: Consider an interpolatory polynomial H, (z) of degree < 4n—3 satisfying the following conditions

the projection of zeros of (1 + x)P

{]H,,(zk) = ay; k=0(1)2n -2, )

H, (z) = 0; k=0(1)2n-2,
where a; are arbitrary complex constants. (For this case zp = 1).
Case II: Consider an interpolatory polynomial II,,(z) of degree < 4n -3 satisfying the following conditions

{Mzk) = Bi; k=1(1)2n-1, )

I (z) = 0; k=1(1)2n-1,

where f are arbitrary complex constants. (For this case zp,—1 = —1).
Case III: Consider an interpolatory polynomial J,(z) of degree < 4n—1 satisfying the following conditions

In(ze) = yi: k=0(1)2n-1, 3)
Iz = 0; k=0(1)2n-1,
where yy are arbitrary complex constants. (For this case zp = i and zp,—1 = —i).
3. Preliminaries
This section includes the following results, which we shall use.
The differential equation satisfied by P:la_’f) (x) is,
_2avp@p)’ o (@B _ @By _
A=x)P, " ) +[B-a—-(a+p+2)x]P, ) (x)+(n—-1)(n+a+p)P, " (x) =0, 4)
where x = 1;2 (Szegt's transformation).
(a,p) 1+22 -2
— af) 2T A ) -1 _ _
W (2) = Kya P ( > )z = gu 20), (5)
IlMa+p+n-1)
Kyoq =22"2(n - 1)! ,
! YA s
2n-2
#@)=c-1)[[e-2, (6)
k=1
2n-2

S@) =+ [[e-=), 7)
k=1
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2n-2
7@ =@+ [[e-=. (®)
k=0
For-1<x<landa>p
| PP () |= O(n®), 9)
Vi-22| Py @) = 0. (10)
Let xx = cos 6k, k = 1(1)n — 1 be the zeros of P:ﬁ)(x), then
-2
k
12yl |2 11
( xk) (n) 7 ( )
| P () |~ k020042, (12)
| P () |~ ko Enet, (13)

4. Explicit Representation of Interpolatory Polynomial

Case I. We shall write H, (z) satisfying (1)

2n-2

H,(z) = ) ah(2), (14)
k=0
where %(z) is unique polynomial of degree < 4n — 3.

Fork =0(1)2n -2

h(z)) = Okj; j=0(1)2n -2, (15)
A (zj) =0; j=0(1)2n-2.
Case II. We shall write I,,(z) satisfying (2)
2n-1
Li(z) = ) prAi(2), (16)
k=1
where %(z) is unique polynomial of degree < 4n — 3.
Fork=1(1)2n-1
Pr(zj) = Okj; j=11)2n-1, 17
B (zj) =0; j=1(1)2n-1.
Case III. We shall write JJ,,(z) satisfying (3)
2n-1
In(2) = ) yiti(a), (18)
k=0
where %;(z) is unique polynomial of degree < 4n — 1.
Fork=0(1)2n-1
(gk(Z]‘) = (5](]',' ] = 0(1)271 -1, (19)
. (z) =0; j=0(1)2n-1.
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Theorem 4.1. Fork =0

(z-D(# ()

h(e) = L) =24
fork =1(1)2n -2

(z =D (2)4(2)
@ =D (@)

A(2) = L(2) — 224, (z)

where £1(z) is fundamental polynomial of Lagrange interpolation of the zeros of %(z) and defined as

%(2)
(z = 2% (21)

Proof. For k=1(1)2n-2, let

“(z) = Lk=001)2n-2 (zo =1).

(z =D (2)%(2)

h(e) =L+ e

h(z)) =0k.
Differentiating (23) equation and putting z = z;, we get

A, (zk) =2.L(z) L (zx) + a,
aj = — 2.,%](/(21().

Similarly, one can obtain (20).
Hence, the theorem follows. [

Theorem 4.2. Fork =2n-1

, WA (2))?
A = 00 2.4,
fork =1(1)2n -2
(z + V)W (2).M1(z)

Bule) = M) = 24D =S

where M(z) is fundamental polynomial of Lagrange interpolation of the zeros of #(z) and defined as
S(z)

Mi(z) = Rt k=1(1)2n-1 (zon-1 = —1)
Proof. For k=1(1)2n-2, let
(z+ D)W (2)#(2)

_
Bi(z) =M (2) + b (zk + D ()

ﬂk(Zj) =6k]'.
Differentiating (27) equation and putting z = z;, we get

By (zk) =2M(zi) M (zk) + by,
bk =- 2:/4(2/&.

Similarly, one can obtain (24).
Hence, the theorem follows. [

3855

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Theorem 4.3. Fork=0(1)2n-1

@)
7(z0)

Gi(2) = M (2) -2 M(2) T(2), (28)

where M(z) is fundamental polynomial of Lagrange interpolation of the zeros of 7 (z) and defined as

B T (2) _ B . _
M(z) = —(z =207 @) ,k=0(1)2n-1. (zo =i, zZpp—1 = —i) (29)
Proof. For k=0(1)2n-1, let
Gi(2) = N (2) + T (2)M(2). (30)

Differentiating above equation and putting z = z;, we get

G (@) =2M(@) M (@) + Ty, (20),
A
T (zk)

Cr =

Hence, the theorem follows. [

5. Estimates of Fundament Polynomials

We need to calculate estimates in order to obtain the order of convergence of interpolatory polynomials.

Lemma 5.1. Let %(z) be given by (22) , then

C
| %) | < (s ) (31)

where Cy is arbitrary constant independent of n and z.

Lemma 5.2. Let %/(z) be given by theorem 4.1, then

2
| (D) | < (k%—"ﬂ) for k=1(12n-2, (32)
| A(z) | < Cs;  for k=0, (33)

where C, and Cs are arbitrary constants independent of n and z.
Proof of the lemmas

Proof. [Lemma 5.1] Consider (22)

Z(2)

401 = |-l o
Y (z)(z-1)
(z = zi)(zk = D)W (2) ’ (35)
Using (5), we have
_ (a,B) n-1
| 4(2) |= 20z = I[P, ()] Izl

Iz = zil lzi = 11122 = 1 [P ()] [zl
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We can write z = x + iy, where x, y € (-=1,1). If |z] = 1, then
VI = x VT =Py ()
10— 2 V=3 AJ1 = 2P ()|

V1 - 221+ x V1 - xxklpg,a’ﬁ)(x)l
16— 2 VI + 211 = )PP ()]

Let us consider | x —x; | > /1 — xi and using (10), (11) and (12), we have

14015 (=5 ) (36)

where C; is arbitrary constant independent of # and z.

2

Similarly we have estimates for condition | x —x | < /1 —x; .

Hence, the lemma follows. []
Proof. [Lemma (5.2)] For k = 1(1)2n -2

(z = )W (2) % (2)
- )W
| Z(z) |=11 + Iy, (37)

H(2) =L (2) — 2.4, (z0)

where

(z = DY (2) % (2)
(zk = D)W (zk)

W= @) and L=

Using (22) we get,
=& 1% (z) (¥ (2))?
(z = z1)(zx = 137" (z0))3|
L =|@- D@ = D) (@) + 20 @)} (¥ (2))?
(z = ze)(z = 1377 (z1))°
Using (5), we have
PR PP PP (1) 24221 (EAR 4 oy )
@D D@ 1)+D)]
b= Kt p'@P) .\ (2 3
(z = z)(z — D=2 P, ) () (z — Dz P
8(z — 1)X (PP (x))2z2n-2z2n45 {(oz +B+2)(1+22) +z(a—p)+1
2 —
(z =20, () (26 = Dz ~ 1)

N n-1 . Zk }
(- D22 -1 (z— 12 - 12

If |z| = 1, then
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| Slez-1p) (PP ()2 { (@ + B +2)12 + (@ = Bl + 1}I(1 + z)2|

S 2P P Iz - 1)°]
=110+ 51+ zk>3|}
@-D1 @1

We can write z = x + iy, where x, y € (-1, 1).

L S16(1 — ) (PP ()2 VT = xxk{{|(a +p+22+ @ —pl+1)
e = el 1P} (002 8(1 — )"
|n—1| N 1 }
(1-x2? 41 -x2p2)

Using (9), (11) and (12) and consider condition |x — x| > /1 — xi, we have

n?
12 < CW, (38)

where c is constant independent of n and z.

From (31) and (38), (37) becomes

2
7’12

1
lADN < s * O

1’12

| 4@ | < Cogs.

(39)

Similarly, for the condition |x — x| < /1 — x2 we have the same result as (39) and one can obtain estimates

k
for k=0.
Hence, the lemma follows. []

Lemma 5.3. Let .#(z) be given by (26) , then

C
)| = (=) (40)

where Cs is arbitrary constant independent of n and z.

Lemma 5.4. Let %y (z) be given by Theorem 4.2, then

| Buz) | < (&) for k=1(12n-2, 1)

f—2a+2
| #(z) | < Cs5; for k=0, (42)
where Cy and Cs are arbitrary constants independent of n and z.

Proof of the lemmas
Follow the same procedure as in the proof of Lemma (5.1) and Lemma (5.2).
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Lemma 5.5. Let A(z) be given by (29), then

C
K@) < (ts)

where Cgq is a constant independent of n and z.

Lemma 5.6. Let 6(z) be given by (28), then

160 1< (o ) for k=0020-1,

f—2a+1

where Cy is a constant independent of n and z.

Proof of the lemmas

Proof. [Lemma 5.5] Follow the same procedure as in the proof of Lemma (5.1).

Proof. [Lemma 5.6]

M (2x)
T (zk)

Ci(2) = A (2) -2 M(2)Ti(2),

Gi(2) =A@ = (2 =z (@),
=A@ - (z- Zk)w}
£ 2.7 (z)
(zp + D)W () + 42 (z1))

{
=4 - WD s
k

Taking modulus on both sides,

() Zk

1
’ |W'(Zk)l * |(z,f +1)

[G(2)] < | AN I}

Using (5) and |z¢| = 1, we have,

PrPalizz -1 1

+ +
/(B 2 _
PP ()| Iz =1

6@ < 142N +| nj.

Using (11), (12), (13) and lemma (5.3), we have

n
f—2a+1’

[€k(2) < C7

where C7 is constant independent of n and z. [J

6. Convergence

Remark 1:

3859

(43)

(44)

(45)

(46)

Let f(z) be continuous function and analytic function for | z [< 1 and | z |< 1, respectively and f” €
Lipv, v > 0, then the sequence of interpolatory polynomial {IH,(z)} converges uniformly to f(z) on|z < 1as

ws(f,n) < ws(f7,n7h) = O,

(47)
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where w;(f,n7?) is third modulus of continuity of f(z).
Remark 2: Let f(z) be continuous function for | z [< 1 and analytic function for | z |< 1. Then, there
exists a polynomial F,(z) of degree < 4n — 3 satisfying Jackson’s inequality

| f@)-F@)| < Aws(fn™), (48)
where A is a constant independent of z and #.

Theorem 6.1. Let f(z) be continuous and analytic function on |z| < 1 and |z| < 1, respectively and let {H,(z)} be
sequence of interpolatory polynomial of degree at most 4n — 3 defined in (14),then

lim Ifz) - H,(2)Pldzl = 0  for—1<ac< Z. (49)

n—o0 |Z|=1

Proof. Since F,(z) be the uniquely determined polynomial of degree < 4n — 3 and the polynomial F,(z) can
be expressed as

2n-2

Fu@) = ) Falz) o4 (2). (50)
k=0

Then
| Hu(z) = f(2) | <1 Hu(2) = Fu(2) | + | Fu(z) — f(2) |,

f 1£(2) - Hy()Pldz| <2 f IH,(2) - F,(2)Pldz] + 2 f IFs(2) — F@)PIdz],
|z|=1 |z|=1

lz1=1
2n-2
<2~[I Z |f(z¢) = Fu(zi) Pl(2) Pldz|+ -
z|=1 =0

- 2114
2 f| VR~ fePli,

2n-2
< 2ws(f,n)y f Yl Pzl + fl e,

FI=1 k=0
2n-2
< 2ws(f,n 7)) f Y loh(z)Pldz] + 27,
k=1 %=o
2n-2 4
< 2ws(f,n 1)) {f 1 k 4%4 |dz| +27'(}.
Z=1 k=0

Hence, we get the result for—-1 <a <2. [0

Theorem 6.2. Let g(z) be continuous and analytic function on |z| < 1 and |z| < 1, respectively and let {I,(z)} be
sequence of interpolatory polynomial of degree atmost 4n — 3 defined in Theorem 4.2, then

lim l9(z) = L(2)Pldz] = 0 for—-1<a< % (52)
n—oo |Z|:1

Proof of Theorem 6.2 can be obtained by using the same steps as those for Theorem 6.1.
Remark 3: Let h(z) be continuous function and analytic function for | z [< 1 and | z |< 1, respectively.
Then, there exists a polynomial P,(z) of degree less than 4n — 1 satisfying Jackson’s inequality

|h(z) = Puz)| < Bao(h,n™), (53)

where w(h, n7!) is modulus of continuity of /(z) and B is a constant independent of z and 7.
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Theorem 6.3. Let h(z) be continuous and analytic function on |z| < 1 and |z| < 1, respectively and let {I,(z)} be
sequence of interpolatory polynomial of degree atmost 4n — 1 defined in Theorem 4.3, then

lim h(z) = Ju(2)Pldz] = 0 for—1<ac<

n—oo |Z|:1

(54)

)-l>|>—‘

Proof. Since P,(z) be the uniquely determined polynomial of degree < 4n — 1 and the polynomial P,(z) can
be expressed as

2n—-1

Pu(z) = ), Pulz) (2). (55)
k=0

Then

| Tu(2) = h(2) | <[ 1a(2) = Pu(2) [ + | Pu(z) = h(2) |,

f h(z) — L(z)Pldz| < Zf [L.(z) — Pn(2)I*ldz| +2f |P,(2) — h(2))*|dzl,
|z|=1 |z|=1 |z|=1
2n-1
h Cg d n _h 2 d 7
<2f L e = PP +2 J._ 1o - e
2n-1
< 20, [ Y @R 2ol [ (56)
[z1=1 k=0 |z|=1
2n-1
< 2w(hn 1»2{ Y 162 +zn},
|zI=1 k=0
2n-1 2
<

2aw(h, n™ 1)) {fn Y +2|dz|+2n}
2 k=0

Hence, we get the result for -1 < a < 1.

7. Numerical Example

To understand this research article we have given some numerical examples in this section. Hermite-
Fejér interpolatory polynomial that interpolates test function is plotted by dotted curve in orange colour.
Here we have taken Jacobi’s polynomial parameter as « = 0 and = 0.

Example 1. Consider a function f;(z) defined as:

(Z)—_Z+Z_2_g+z_4_@+3_26_g+£_z_9+zﬂ
@) = 2 21 7 175 3 49 14 9 10
is continuous function on the closed unit disk centered at the origin, analytic function within the open unit

disk, and satisfies the conditions of Theorem 6.1.
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Figure 2: |f (9| and [Hy(z)]; Ha(z) — fi(z) for 6 € [0,2m) and n = 4

The Figure 2 is plotted for the function fi(z). The observation are made from Figure 2 for n = 4. The
interpolatory polynomial Hy(z) provides an approximate representation of test function fi(z). The left
side in Figure 2 shows the absolute value of test function along with the absolute value of interpolatory
polynomial Hy(z). Test function and interpolatory polynomial both are virtually indistinguishable. Right
side of Figure 2 illustrates the absolute value of error. For n = 4, corresponding to 9 nodes, the maximum
error observed is of order 2 x 10712

Example 2. Consider a function f,(z) defined as:

2 278 4 5 6
-+ 5- 3555

is continuous function on the closed unit disk centered at the origin, analytic function within the open unit
disk, and satisfies the conditions of Theorem 6.1.
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Figure 3: Ifz(eie)l and [H(z)|; IH2(z) — f2(z)| for 6 € [0,2r) and n = 2

Figure 3 illustrates the behavior of the function f,(z) and its interpolatory polynomial Hy(z) for n = 2
using 9 nodes. The left panel shows that |f>(z)| and [IHz(z)| are nearly identical, while the right panel depicts
the error, with a maximum value of approximately 0.007.

Example 3. Consider a function g,(z) is defined as:

(Z)—Z+i+4i3+z_4+&25+3_26+4i7+28 29+£
N =2 T T T 155 "3 T T1a T 9 T 10

is continuous and analytic on |z| < 1 and |z| < 1, respectively and satisfies the conditions of Theorem 6.2. The
Figure 4 is plotted for function g,(z). Figure 4 (n = 4) demonstrates that the interpolatory polynomial I4(z)
closely approximates the test function g:(z). Figure 4’s left panel shows their indistinguishable absolute
values, while the right panel reveals the error distribution. With 9 nodes (n = 4), the maximum error is
approximately 1.2 X 10712, indicating high accuracy.

Example 4. Consider a function g,(z) is defined as:

_sinloa 22 272 b 2 g8
gz(z)—sm{ . (z+ Sttt Y 6)}
is continuous and analytic on |z| < 1 and |z| < 1, respectively and satisfies the conditions of Theorem 6.2.
Figure 5 illustrates the function g»(z) and its interpolatory polynomial I>(z). The left panel shows their
nearly identical absolute values, while the right panel depicts the error distribution. With n = 2 and 5
nodes, the maximum error is about 1.5 X 1073, highlighting excellent accuracy.
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Figure 4: Igl(eig)l and [I4(2)|; [I4(z) — g1(2)| for 6 € [0,2m) and n = 4
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Figure 5: |gz(ei9)| and | (2)|; l2(z) — g2(2)| for 6 € [0,2m) and n = 2

Example 5. Consider a function /(z) defined as:

55z3 38z° 38z 55z° 35z'!
hl(z)—1/35(352+ 3 + 5 + 7 + ) + 1 )

Clearly hy(z) is continuous function on the closed unit disk centered at the origin, analytic function within
the open unit disk, and satisfies the conditions stated in Theorem 6.3.

The analysis of Figure 6, corresponding to n = 4, reveals that the interpolatory polynomial J4(z) serves
as an effective approximation of the test function /:(z). The left panel of Figure 6 presents a comparative
visualization of the absolute values of both the test function and the interpolatory polynomial JJ4(z). Notably,
the two functions exhibit such a high degree of similarity that they are visually indistinguishable. The right
panel of Figure 6 displays the absolute error distribution. For the case of n = 4, which corresponds to 10
nodal points, the maximum observed error is on the order of 3.5 X 10713, demonstrating a high level of
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accuracy in the approximation.
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Figure 6: |h1(e!)| and [J4(2)|; [J4(z) — 1 (z)| for 6 € [0,27) and n = 4
Example 6. Consider a function f;(z) defined as:

5 11 15
173,25 205 9,211 1713, 215
B+ T o T T 1t +15)

O.l(z+
ho(z) =e
hy(z) is continuous function on the closed unit disk centered at the origin, analytic function within the open
unit disk, and satisfies the conditions stated in Theorem 6.3.

Figure 7 illustrates the performance of the interpolatory polynomial J5(z) for n = 5. In the left panel, J5(2)

closely matches the test function /1;(z), appearing visually identical. The right panel shows the absolute
error, with a maximum of approximately 3 X 10~ using 12 nodal points.
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Figure 7: Iha(e!?)| and [J5(2)|; [J5(z) — ha(z)| for 6 € [0,2n) and n = 5
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8. Conclusion

The numerical findings from computational experiments corroborate the theoretical framework es-
tablished throughout the study. These examples illustrate that Hermite-Fejér interpolatory polynomials,
constructed using nodes derived from zeros of Jacobi polynomial, can accurately approximate complex
functions that are analytic within the open unit disk (|z| < 1) and continuous on the closed unit disk (|z| < 1).
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