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Abstract. In this paper, we consider the following quasilinear and non-coercive p(-)—parabolic problem :

(Z—Ltl —diva(x, t,u, Vu) = f(x,t) — div F(x, t, u) in Qr,
u=0 onXr,
u(x,0) = ug in Q,

with f € L'Y(Qr) and ug € L'(Q2). We study the existence of entropy solutions for this problem in the parabolic
Sobolev space with variable exponent V.
1. Introduction

Let Q be a bounded open subset of RN (N > 2). For T > 0, we denote by Qr the cylinder Q X (0, T) and
by X7 the lateral surface JQ x (0, T).

Boccardo et al. have considered in [11] the quasilinear parabolic problem of the form

(;—1: —diva(x, t,u,Vu) = f(x,t) in Qr
u=20 onXr, 1
u(x,0)=0 in Q

where Au =

—div a(x,t,u, Vu) is a Leray-Lions operator acting from L7(0, T; Wé’p (Q)) to its dual L7 (0,T;
W17 (Q)) and f(x,t) is a measurable function that belongs to L7 (0, T; W~1#'(Q)). They have proved the

existence of weak solution u for the problem (1) in the parabolic space L*(0, T; W(l)’p (Q)).
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In [15], Blanchard et al. have studied the quasilinear parabolic problem :

?9—? —div a(x, t,u, Vu) + div (p(u)) = f — divg in Qr
u= 0 on ZT/ (2)

u(x,0) = uy in Q

They have proved the existence of entropy solutions for the nonlinear parabolic problems (2). Moreover,
they have conclude some regularity results.

The domain of Sobolev space with variable exponent has received a much attention in recent years, this
impulse comes from their physical applications, such in electro-rheological fluids and image processing, we
refer the reader to [17] and [29]). Bendahmane et al. have studied in [12] the nonlinear parabolic problem :

‘;—Z‘ —div ((VuP®=2Vu) = f in Qr,
u=0 on Xr, (3)
u(x,0) = ug in Q.

They have proved the existence and uniqueness of entropy solutions for this nonlinear parabolic problem.
We refer the reader also to [4].
In this paper, we study the non-coercive quasilinear p(-)—parabolic problem

ou _ div a(x, t,u, Vu) + [uP®2u = f(x,t) — div F(x, t, u) in Qr

ot
u=20 on Xr, (4)
u(x,0) = ugy in Q

where Au = —div a(x, t,u, Vu) is a Leray-Lions operator with degenerate coercivity, and the Carathéodory

function F(x, t,s) satisfy only some growth condition. The data f(x, ) and uy(x) respectively belongs to
LY(Qr) and LY(Q).

This paper is organized as follows : In section 2, we recall some definitions and basic properties concerning
the Sobolev spaces with variable exponents. We introduce in section 3 the assumptions on the Carathéodory
functions a(x, ¢, s, £) and F(x, t, s) for which our problem has at least one solution. The section 4 will contains
some important lemmas that are useful to prove our main result. The last section is devoted to show the
existence of entropy solutions for our non-coercive quasilinear parabolic problem (1) in the Sobolev spaces
with variable exponent V.

2. Preliminaries
Let Q be an open bounded domain in RN (N > 2), we denote
C.(Q) = {measurable function p(): Q— R suchthat 1< p- < py < 0},

where N .
p- = ess inf{p(x)/x € Q} and p+ = ess sup{p(x)/x € Q}.

We define the variable exponent Lebesgue space for p(-) € C4(Q) by

’9(Q) :={u: Q+ R measurable /f lu(x)]P® dx < o).
Q

p(x)
dx < 1}

The space LP")(QQ) endowed with the norm :

||1/l||p(.) = inf {/\ >0, f
Q

u(x)
A
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is a uniformly convex Banach space, and therefore reflexive. We denote by L/')(Q) the conjugate space of

: 1
LP9)(Q) where ) + e

Proposition 2.1.

=1la.e in Q.

() For any u € LPO(Q) and v € LP'O(Q), we have

fuvdx
Q

(ii) Forallpi(-), pa() € C+(Q)such that pi(x) < pa(x) a.ein Q, then LF2O(Q) — LP(Q) is a continuous embedding.

<( LI )||u|| ol
=\ T (-) 4ON
p p p 14

Proposition 2.2.
We denote the modular

p(u) = f @ dx  forany uePY(Q),
Q
then, the following assertions holds
@ lullyy <1 (resp,=1>1) = p(u) <1 (resp,=1,>1),

p,

@) [lully) > 1= [lull)

<p <lulle)  and ullpy < 1= [l < p@u) <l ),
i) [[unllyy — 0 &= p(uy) — 0, and  |luyllyy — 00 & p(u,) — oo,

which implies that the norm convergence and the modular convergence are equivalent.
We define the variable exponent Sobolev space by

WOQ) = fu e LFOQ) and [Vul € LP(Q)},
endowed with the norm
lully pey = letllpy + IVullyy Y € WHOQ). 5)
We denote by Wé’p 9(Q) the closure of Cy(Q) in W#0(Q) for the norm , and we note the Sobolev exponent

by p*(x) = NN—p;);L) for p(x) < N a.ein Q.

Proposition 2.3.

() Assuming that 1 < p_ < p, < oo, the spaces WP0(Q) and W;’p(')(Q) are separable and reflexive Banach spaces.

(i) Ifq(-) € C+(Q) and g(x) < p*(x) for a.e x € Q, then the embedding Wé’p(')(Q) s LIO(Q) is continuous and
compact.

Now, we define the parabolic space with variable exponent L’")(Qr), by :

T
'9Qr) := {u :Q > R measurable / f f lu(x, HP® dx dt < oo}.
0 Ja

Lemma 2.4. Let Q be a bounded open subset of RN (N > 2), with T > 0 and p(-) € C.+(Q), then we have the
following continuous dense embedding

LF+(0, T; LPY(Q)) — LPY(Qr) < LF-(0, T; LPY(Q)). (6)
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Definition 2.5. Let p(-) € C,(Q) and T > 0, we define the space V by

V={uelr-(0,T;W,"(Q) suchthat ueL!(Qr) and |Vule L'Qr)}.

We denote the modular py () (u) for any u € V by

P1pe)(u) = f [l dx dt + | |VulP® dx dt.
Qr Qr

The space V endowed by the norm

lelly = l[ullopy + IVUllpon,

is a separable and reflexive Banach space.

Lemma 2.6. (See [31]]) Let By, B and By be some Banach spaces with By C B C By. Let us set
Y = {u measurable | u € L’°(0,T;By) and u; € LP*(0,T;B1)}

where pg > 1 and p; > 1 are reals numbers.
Assuming that the embedding By << B is compact, then

Y << [P0, T;B)

and this embedding is compact.

2N
R k27. L > —
emar et p_ > N1 and

By=WQ), B=I%Q) and B, =W,"90),

with po = p- and p1 = (p1)'. Thanks to the Lemma 2.6} we obtain
{w:ueV and wu, € V*)CY < LYQr).
Moreover, in view of [12l], we have

{w:ueV and u e V*}CC(0,T];LYQ)).

3. The time mollification of a functionu#in V

Let u > 0, we introduce the time mollification u u of a function u € V, by

uy(x, t) = u f u(x, s)exp(u(s —t))ds  where  u(x,s) = u(x,s)xo,n)(s)-

(o]

du
Proposition 3.1. (see [4]) If u € LPO(Qr), then uy is measurable in Qr, and

f |, P dx dt < f ™ dx dt.
Qr Qr

Proposition 3.2. (see [4]) If u € V, then u,, — u strongly in V as y — +oo.

Proposition 3.3. (see [4]) If u, — u strongly in V, then (u,), — u, strongly in V.

Remark 3.4. We have |(Ti(u)),| < k forallu € V.
Indeed,

(T (1))l =

¢
f wexp(u(s — 1) Tr(u(x, s))ds

<k [

with — Tr(u(x,s)) = Tr(u(x, 5))-X0,1)(S)-

t

pexp(u(s —t)ds =k

0

3572

w(u = u,). Moreover, we have
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4. Essential Assumptions

Let Q be a bounded open subset of RY (N > 2), taking 0 < T < o0 and p(-) € C, (Q) such that p_ >
We consider a Leray-Lions operator A acted from V into its dual V*, defined by the formula

Au = —div a(x, t,u, Vu) + [ulP® 2y )

N+2°

where a(x, t,s,&) : Qr xRxRY - RN isa Carathéodory function (measurable with respect to (x, t) in Qr for
every (s, &) in R X RY, and continuous with respect to (s, &) in R X RN for almost every (x, t) in Qr), which
satisfies the following conditions :

lax, t,5, &) < B(K(x, £) + 5P + 1P, (10)
for a.e. (x,t) € Qr and all (s, &) € R X RN, where K(x, ) is a positive function lying in LF'(Qr) and 8 > 0.
(a(x,t,s,&) —alx, t,s,HIE—-1m) >0 forany £#1 in RY. (11)
There exists a positive decreasing function b(:) : [0, co[F—]0, o[, and a constant by > 0 such that
bo

a(x,t,5, )& = bx, IsNIEFY  with  b(x, ls|) > (12)

L+ 1D

for a.e. (x,t) € Qr and all (s, &) € R X RY, where 0 < A(x) < min(1, po(x) — 1) a.e. in Q.
The lower order term F(x,t,s) : Qr X R = R is a Carathéodory function which satisfy only the growth
condition

b(x, Isl)ﬁ |5|a<x)(p(x)—1)

IF(x,1,9)] < " (13)
with 0 <a(x) <1and 0 < B(x) < W a.e. in Q.
We consider the quasilinear and non-coercive p(x)—parabolic problem

u; —diva(x, t,u, Vu) + [uP® 2y = f(x,t) =div F(x,t,u) in Qr,

u(x,t) =0 on X, (14)

u(x,0) = up(x) in Q,
with f(x,t) € LY(Qr) and up(x) € LY(Q).

5. Some technical Lemmas
Lemma 5.1. (see [1]) Let g € LPO(Qr) and g, € LP)(Qr) such that ||gullpoo,) < C for 1 < p(x) < oo. If
gn(x, t) — g(x, t) almost everywhere in Q, then g, — g weakly in LPO(Qr).
Lemma 5.2. Let u € V, then Ti(u) € V for any k > 0. Moreover, we have
Ti(u) = u stronglyin 'V as k — oo.
The proof of this Lemma is the same as in the case of constant exponent p.
Lemma 5.3. (see. [4]) Let m > 0. Assuming that - hold true, and let (u,)nen be a sequence in V such

that : the sequence (%) is bounded in V*, and u, — u weakly in V, with

f (aCx, t, Tou(un), Vitu) = a(x, t, T(tn), Vi) - (Vi = Var) dxc dt
Qr (15)

+f (Iunlp(x)‘zun - |u|7’(")_2u) (up —u)dxdt — 0 for n— oo,

Qr

then u, — u strongly in 'V for a subsequence.
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6. Main results

Let Ti(s) = max(—k, min(s, k)), we set

2

r T it <k

o= [ mas={ 2 (16)
0 klr| - 5 if || >k

Firstly, we introduce the definition of entropy solutions for our degenerated quasilinear p(x)- parabolic
problem.

Definition 6.1. A measurable function u is called entropy solution for the non-coercive quasilinear p(x)—parabolic
problem ([14), if Ti(u) € V for any k > 0, and

9P
fQ Or(u — P)(T) dx — fQ Or(u — )(0) dx + LT ETk(u — ) dx dt

+ f a(x, t,u, Vu) - VTi(u — @) dx dt + f P2 uTy(u — ) dx dt (17)
T Qr
< fT(u — ) dx dt + f F(x,t,u) - VTi(u — ¢) dx dt
Qr Qr

for any ¥ € V N L™(Qr) with (Z—lf e V' + LYQr).

Theorem 6.2. Assuming that the conditions - hold true, then the non-coercive quasilinear p(x)—parabolic
problem has at least one entropy solution.

Proof of the theorem

Step 1: Approximate problem.

For any n € IN", let (u0,,), be a sequence in C;(Q2) such that ug, — 1 strongly in LY(Q) and |ug | < |uol, and

we set fu(x,t) = To(f(x, 1))
We consider the sequence of approximate problems :

()i + Anthy + [ P20, = fo(x, ) — div F,(x, t,u,)  in Qr,
uy(x,t) =0 onXr, (18)
un(x,0) = ug, in Q,

where A, v = —div a(x, t, T,(v), Vo) + [0P®~2v and F,(x, t,5) = T(F(x, t,5)).
We define the operators A, and G, : V = V* by

T
f (Ayu,vydt = f a,(x, t,u, Vu) - Vodx dt + [ulP~2u0 dx dt forany u,veV,
0 Qr QOr

and

T
f (Guu,vydt = —f F.(x,t,u)-Vodxdt forany wu,veV.
0 Qr

Lemma 6.3. The operator B, = A, + G, acting from V into its dual V* is bounded and pseudo-monotone. Moreovet,
By, is coercive in the following sense :

— o0 as |jvlly >0 for velV.
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For the proof of lemma [6.3](see appendix).
In view of the lemma [6.3|(see [22]), there exists at least one weak solution u, € V for the parabolic problem

(18) .i.e:

T
f (aaﬂ, vy dt + f ay(x,t, Tp(uy), Vuy,) - Vodx dt + |t P 200,0 dx dt
0 t Qr Qr (19)

falx, tyodx dt + f F.(x,t,u,) - Vodxdt forany velV.
Qr Qr

Step 2: A priori estimates.

Let n large enough, by taking Ty(u,) as a test function for the approximate problem (18), we have

T
f (O T )y dt + f a(,t, To(un), Vitn) - VTe(oty) dx dt + f P20, Ti(ay) e it
o ot Or Qr (20)
S, )T (uy) dx dt + f F.(x, t,uy,) - VTi(u,) dx dt.
Qr Qr

For the first term on the left-hand side of , we have O(r) = f Ti(s)ds then O(r) = 0 and |O(r)| < kl7|,
0
it follows that

f i T dt = f f Pt (1) dt dx
f f a@k(”" dt dx

21
:ka(un(T)) dx—f(;@k(uorn)dx @)

> | Ox(un(T)) dx — klluoll ()
Q
> —kluollpr (-
and since
| lPO 200, Te(uy) dx dt > | |Ti(un)P® dx dt. (22)
Qr Qr

Thus, by combining (20) and — ([22) we conclude that

[ b T dxats [ ) dea
Qr Qr (23)

S, ) T (uy) dx dt+f Fu(x, t,uy) - VTi(uy) dx dt + klluollr1 .-

T Qr

Concerning the second term on the right-hand side of (23), In view of Young’s inequality and (13) we obtain

1 Fo(x, Tyu(iy))P'®
[F(x, t, un)IVTi(uy)| dx dt <3 f b(x, )V Ti(1,)IP® dx dt + Co f dedt
Qr

{luen | <k} b(x, [u, |) pe)
e}
b, 1) 5 1,0

Qr

< E f b(x, )V Ti (1, )IP® dx dt + Co f dx dt
2 Jor d<k B, 1)) 7 )
1
< 1 f b(x, )V Ti () )IP® dx dt + = 1, P dx dt
2 Jor X 2 Juni<k
+C1 o dx dt.

{ll/l,1‘<k |x| 1-a(x)
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(24)

By combining and ([24), we conclude that

1 1 1
5 fQ b DIVT )P dxd+ 5 | TP et <Kl +Co f —— dxdt+ Kol (25)

Qr |x| = a(x)

Qr

since PP D\ then — 1 e L1(Qr), it follows that
1—-a(x) Ix| e
1 ® 1 ®)
5 b(x, [un))IVTi ()P dx dt + 5 | Ty ()P dx dt < kCs. (26)
Qr Qr
In view of (I2) we obtain
f VT (u,)PD dxdt + | |Ti(u,)P® dx dt < kCs. (27)
1+ k Or
Therefore, we get
Ty < | IVTi(u,)P® dx dt + f | Ti ()P dx dt +2 < Cylk + 1)Mk, (28)
Qr Qr
and we conclude that
ITe(un)lly < Csk=  forany k>1, (29)

with Cs is a positive constant that doesn’t depend on n and k. Then, the sequence (Ti(u,)), is uniformly
bounded in V, and there exists a subsequence still denoted (Ti(u,)), and a measurable function ¢, such
that :

{ Tr(uy) = Y weaklyin V, (30)

Tr(uy) = Y strongly in LYQr) anda.e.in Qr.

On the one hand, thanks to it is obvious that :
k-meas{lu,| >k} = f [Tk (u,)|P- dx dt

{|unl>k}

< f Ty (1) P™ dx dt + meas(Qr)
Q

< Cek,

which implies that

C6
kp-

meas{|u,| > k} < as k — oo. (31)

Now, we will show that (u,), is a Cauchy sequences in measure. For all 6 > 0, we have
meas{|u, — u,| > 0} < meas{|u,| > k} + meas{|u,,| > k} + meas{|Ti(u,) — Ti(uy)| > O}.

Let ¢ > 0, thanks to we can choose ky(¢) > 0 large enough such that

meas{|u,| > k} < 5 and meas{|u,,| > k} < g forany k> ko(e). (32)
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Moreover, in view of we can assume that (T, (1)), is a Cauchy sequence in measure in Qr, then for all
k> 0and 6, & > 0 : there exists ny = ny(k, €,0) = 0 such that

meas{|Tx(u,) — Te(tty)| > 0} < % for all m, n > ny(k, 5, €). (33)

Thanks to (32) and (33), we conclude that : for any 6, ¢ > 0, there exists 119 = 19(5, €) > 0 such that
meas{|u, — u,| >0} < ¢ forany n,m > ny(9,¢).

Thus, the sequence (u,), is a Cauchy sequence in measure, and there exists a subsequence still denoted
(t4n)n such that u, — u almost everywhere in Qr. Consequently, thanks to we conclude that

Ti(uy) — Tr(u) weaklyin V. (34)
Moreover, according to Lebesgue dominated convergence theorem we obtain

Tp(u,) — Ti(u)  stronglyin  [7(Qr). (35)

Step 3 : Some regularity results.

Let h > k > 1, we denote by ¢;(n), j = 1,2,... some real valued functions which converge to 0 as n
goes to infinity. Similarly we define ¢;(n, h) and ¢;(n, h, u).
In this step, we will show that

lim lim sup 1 a(x, T,(uy,), Vuy) - Vu, dx = 0. (36)

h—0 p—00 {lital<h}

Leth > 1, by taking h( )

as a test function for the approximate problem , we obtain :

f <8un Th(un)) dt + . f a(x, t, Ty(un), VIn(un)) - V(1) dx dt + 1 PO T (1)) i it
h T h Qr (37)

h fuTn(uy) dx dt + % Fo(x, t, Tr(uy)) - VTy(uy,) dx dt.
Qr

Qr

s
For the first term on the left-hand side of , we have O(r) = f Tk(s)ds then
0

aun _ 1 Bun
f( s Ti(up)) dt _EL . 3 =L Th(uy,) dx dt

f f Gl ””) dx dt (38)
1
i vt in- ] | entunnax
“h h Ja
Concerning the second term on the right-hand side of (37). In view of Young's inequality we get

. f IFux, £, 1) Vity] dx d

Qr
Cof |Fu(x, T (1)) '™ 1 f

< — e — dxdt + — b(x, | ])| Vi, ['®) dx dt
LN T e 4 Jyu, 1<)

b(x, [uy,|) 7™ = 39
T, (11,,) [P 1 (39)
<& LI N b(x, lin) Vit PD dox dt
h Jyen xPOP'@ 4h Jyju<n
<L PO dedt+ S [ L e+ — b(x, ) Vit, P dix dt
~ 2h B () 4h Sy 1<n 7 n ’

{lunl<h} Qr x| 1a(v>
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Having in mind % f On(un(T)) dx = 0, and by combining , and , we deduce that
Q

1 a(x, t, Tu(un), Vity) - Vi, dx dt + 1 b(x, |y])| Ve, P™ dx dt
2h st Al i, 1<ny
+— 1, P©) dx dt + f [, PO dx dt 40
) 21t i, <) it . 40
<5 f |fCx, )] | Tty dx dt + 71 f —g dxdt+ 5 f O(itg,) dx.
Qr Qr |x| @ Q
Wi 1 . B)p'(x) 1 1 .
e have f(x,t) belongs to L' (Qr), and since 1—a(x) < N then —>w € L'(Qr). Having in mind that
- |x‘ T—a(x)
T
|h(h—u")| — 0 weak—+in L*(Qr), we deduce that
1 1 1
e1(n,h) = —f Sfu(x, )Ty (uy) dx dt + —f —— dxdt -0 as n,h— oo. (41)
h Qr h Qr |x|ﬂ$f)z(x(')¥)
and since 1y belongs to L'(Qr), then
1 |uO,n|2 h
e(m,h)=— | Oulug,)dx = dx + gl — =dx >0 as nh— co. (42)
h Ja I (o, 1>h) 2
By combining (40) and (#1) — (42), we obtain :
l a(x, t, T,(uy,), Vi) - Vu, dx dt + l b(x, 1)) Vi, P® dx dt
2h st Al i, <)
. P dx dt + f PO dx dt (43)
21t i, <y (it 1)
< &3(n, h).
Thus, by letting / and n goes to infinity, we conclude that
1
I}im limsup — f a(x, t, Ty(uy,), Vuy,) - Vu, dx dt = 0. (44)
X n—oo {lunl<h}
Moreover, we have
1
lim lim sup — f b(x, | ))| Vi, '™ dx dt = 0, (45)
TSN N e
and
&im lim sup f [t PO dx dt = 0, (46)
7% n—ooo {lenl>h}
and
im i 1 ®
lim lim sup — [, [P dx dt = 0. (47)
S AN [T

Moreover, in view of (39), (@5) and {7) we obtain

h—eo n—oo

1
lim lim sup f \F,(x, t, )| Vit| dx dt = 0. (48)
{lun|<h}
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Step 4 : Equi-integrability of the sequence (|u,["™2u,,),,.

In this part, we will show that :
|11, P9 210, — ulP®2y strongly in LY(Qr). (49)

Firstly, we show that ([P 21,,),, is uniformly equi-integrable in Q7.
For any measurable subset E C Qr and /& > 0, we have:

f |, PO dx dt < f T (un) PO~ dx dt + f |14, PO dx dt. (50)
E E {lunl>h}
In view of , it’s clear that : for any ¢ > 0, there exists o(¢, i) > 0 such that :
‘[ITh(u,,)V"(")1 dxdt < % forany E c Qr with meas(E) <o(e, h). (51)
E
Moreover, thanks to , we obtain : for all € > 0, there exists hy(¢) > 0 such that :
f 1, PO~ dx dt < ¢ forany h = hy(e). (52)
(>} 2
By combining (50) and - (52), we conclude that : for any ¢ > 0, there exists ¢ > 0 such that :

flunlf”(")‘1 dxdt <e forany Qr c Q with meas(E) < o(e). (53)
E

Thus, the sequence (Ju,[P®)~2u,), is uniformly equi-integrable in Qr, and since |u,[P®~2u,, — [ulP®~2u a.e in

Qr. In view of Vitali’s theorem, the convergence is concluded.
Step 5: The strong convergence of the gradient.
Ton(s) = T,
Leth>k>1,wesetSy(s)=1-— |2h(5)h—h(5)| and wy,, = Ty(un) — (Tr(u))y-
By using v = w,,S(1,) as a test function for the approximate problem (T8), we have

T
f (%/ wn,ysh(un» dt + f a(x, t, Tu(un), Viin) - vunwn,pS;,(un) dx dt
0 Qr

+ f a3, b, To(1t), Vit) - (VT(t) — V(Te(0)),)S0(10r) dx
+ f 2,20, S 1) e (54)

Qr
:f fnwn,ySh(uW)dxdt+f Fu(x, t, un) - Vuywy,, S, (u,) dx dt
QT T
+ f Fy 1) - (VT (1) = V(T(1)),)S00,) e .
Qr

It is clear that Sj,(u,,) = 0 on the set {|u,| > 2k} and S,(u,) = 1 on the set {|u,| < h}. Thus, we obtain
%wn uSn(uy) dx dt + f a(x, t, un, Vity) - (VT () = V(T (1)) ) Sn(1tn) dx dt
Qr ot ' Qr
< f F6 OITe(n) = (Te())l dxdt + | (PO Tie(utn) = (Tic(w)) | dx dt
Qr Qr (55)
2k
- |Fn(x, t, u)l|Vu,| dx dt + — a(x, t, T,(uy,), Vu,)Vu, dx dt
b Jinciuai<on b Jinpu,i<2n
+ f |Pn(x/ £, TZh(”n))HVTk(un) - V(Tk(u))y| dxdt.
Qr
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In view of lemma7.1| (see Appendix), we have

duy,
T 0, Su(1ty) dx dt > £4(n) (56)
o, Ot
For the first and second terms on the right-hand side of (55), We have w, , — 0 weak-+ in L*(Qr), as n and

p tend to infinity, and since f(x, t) belongs to L'(Qr) we conclude that

e1(n, u) = f If e, ONTw(utn) = (Tx(w))pl dx dt — 0 as  n,u — oo. (57)
Qr
Similarly, thanks to we get
ext,) = [ PTG - (Tl — 0 as o s, (58)
Qr
Moreover, in view of and (48), we obtain
es(n,h) = g{f [Fp(x, t, un)l|Vuy|dxdt — 0 as h,n — oo, (59)
B Jiniugl<on
and
2k
eg(n,h) = — a(x, t, T,(u,),Vu,) - Vu,dxdt — 0 as h,n — oo. (60)
b Jin<tu,1<on

Concerning the last term on the right-hand side of , we have F,(x, t, Top(un)) = F(x, t, Ty (1)) strongly in
(L"(Qr)N, and since VTi(u,) — V(Ti(1)), — 0 weakly in (LPO(Qr))V, it follows that

es(n, 1) = fQ IFu(x, t, Tan(ta DIV T(1t) = V(Te(u))l drdt — 0 as 1, — oo, (61)

By combining and - (57), we conclude that

f (%, Toitn), Vitn) - (VT(t) — V(Te(0)))Sit) i dlt < e, o, 1), ©2)

T

Having in mind a(x, t,s,0) = 0, we obtain

f (a(x, t, Te(un), VTi(un)) — a(x, t, Te(un), VTk(u))) (VTe(y) — V() doc dt
J: fQ T a(x, t, Te(uty), V(W) - (VTi(uy) — VTi(u)) dx dt
i fQ a0, Ty(ua), VTic00n)) - (VTi0) = V(Ti0)y) e
 Jictuion a(x, t, Top(un), VTon(tn)) - V(T (1)) Sp(1ty) dx dt

< &6(n, h).

(63)

Thanks to Lebesgue’s dominated convergence theorem, we have |a(x, t, T(u,), VT ()| — la(x, t, Te(u), VTi(u))|
strongly in L¥'(Qr), and since VT (u,) — VTi(u)) weakly in (LPO(Qr))Y, then

e7(n) =

a0, T, Vi) (V) = VT ) e

r (64)
< f |ax, t, Te(un), VT@))||[VTi(un) = VTi(u)| dx dt — 0 as n — oo.

Qr
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Concerning the third term on the left-hand side of , the sequence (a(x, t, Tx(uy), VIr(11n)))n is bounded in
(LP(Qr))YN, then there exists a measurable function & € (L’ O(Qr))N such that a(x, t, (i), V(1)) — Ex
weakly in (L7 (Qr))V, and since V(Ti(1)),, — VTi(u) strongly in (LP?(Qr))N, we deduce that

eg(n, ) = f a(x, t, Ty(un), VTx(un)) - (VTx(u) — V(T(w)),) dxdt — 0 as n,u — oo. (65)

Qr

For the last term on the left-hand side of (63), we have a(x, Ta(14,), VTa1(14n)) — Ean weakly in (LPO(Qr)N,
and since V(Ti(1)), — VTi(u) strongly in (LPY(Qr))N, we obtain

eo(n, 1) = L | l2h}a(er2h(un)rVT2h(un))'V(Tk(u))ysh(un)dxdt

< la(x, t, Ton(un), VTon(un)IV(Tk(u)) | dx dt (66)
{k<un|<2h)

— |Eanl VT (u)l dx dt = 0 as n,u — oo,
k<lul<2h)

By combining (63) and (64) — (66), we conclude that

f (e, t, Talutn), VTitn)) = ax, £, Tettn), VTR )(VTi(tt) = VTi(w)) dx dt < e10(,m, ). 67)

T

Having in mind that Ty(u,) — Ti(1) strongly in L’)(Qr), we obtain

fQ (a(x, t, T(un), VTi(un)) — a(x, t, Te(un), V() (VTi(un) — VTi(1)) dx dt

(68)
+ f ()P Te) = TP To(0) (Te(utn) — Te() dx dt — 0 as 1 — oo,
Qr
In view of the lemma5.3] we deduce that
Tr(uy) = Tr(u) stronglyin V, (69)
Vu, —» Vu a.e. in Qr.

Step 6 : The convergence of (u,), in C([0, T], L}(Q)).

Let h > 1 and 0 < s < T. By taking T1(u, — (Ty(u)),) as a test function for the approximate problem

(18), we obtain

f f " 0y = (Ta(0),) de it + f f a6, ToGtn), Vite) - VT3 (1t — (Ta(0),) e
aJo ot . aJo

. f P20, T 1 — (Tp(u)),) e dt (70)
QJo

= f fnTl(un - (Th(u))y) dx dt + f Fn(x/ t, ”n) : VTl(”n - (Th(u))p) dx dt.

Qr Qr

We have

u, Iy — (Ty(u))y) . NTn()y I un — (Tn(u))y)
ot ot o ot

+ p(Th(w)) = (Tn(1)))- (71)
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It follows that
. S (T
L 0 8{;1: Ty (uy, — (Th(u))u) dedt = j(; fo W]‘l(un _ (Th(u))y) dx dt

+ fQ fo (Tn(u) = (T () ) T1(un — (Ty(u)),,) dx dt -

:f®1(u”(u(5))_(Th(u(s)))“)dx_f@l(uo,n—Th(uo))dx
Q . R
o [ 00 = T - ) a

Note that, for every s € [0, T], by letting n tends to infinity, we obtain

f f (T(u) — (T 0)) Tt — (Tp(u)),) e it
QJo

— L fos(Th(u) — (T(u)) ) T1(u = (T (u))y) dx dt > 0 as n — oo. 7
For the second term on the left-hand side of (70), we have
L [)S a(x, t, Ty(uy), Vi) - VT1 (1 — (T(u)),) dx dt
- [ [ 06, Ty 00), YTy 060) - V(T ) = (Tu0)) - K011 e
s (74)

= [ [ @t i), VT 1) = 3,1, T ), VT,
aJo
X(V (Tt () = (T(4)e)) * X, ~mip, <1y 4% it
# [t T, F(Tu00),) - VT3, = (T )
aJo
In view of (T1), the first term on the right-hand side of is positive. Concerning the second term, we have

a(x, t, Tpya (1n), V(Ti())) = a(x, t, Tye1 (), VT(u)) strongly in (LPO(Qr))Y, and since VT (u, — (Ty(1)),) —
VT1(u — Tp(u)) weakly in (LP9(Qr))N, we obtain

) = [ [t Thea) VT ) - VT, = (T, ) e
aJo (75)
— a(x,t, Tpi1(u),0) - Vudx dt =0 as n,u — oo.
{h<|u|<h+1)

On the other hand, we have T1(u;, — (Tj,(1)),) — T1(u — Ty(u)) weak—= in L*(Qr) as n, h tends to infinity, and
thanks to (49) we obtain

f f 14 P21, T (s — (Ti()) ) dx dt — f f [ulP=2uTy (4 — Tp(w)) dx dt > 0. (76)
Q Jo Q Jo
Similarly, we have f,(x, t) tends to f(x, t) strongly in L'(Qr) then
f f oo, DIt — (T ()] it —> f f £ OIT e = Tyl dxdt as mp—oo.  (77)
QJo QJo

Moreover, we have Fy,(x, t, T11(14s)) = F(x, t, Ty (1)) strongly in (L7 O(Qr))N, and since VT (1 — (T (1)) —
VT (u — Ty(u)) weakly in (LF(Qr))N, we obtain

L f Fu(x, t, Tpyr(un)) - VT (uy — (Th(u))y) dx dt
0 s

— f f F(x, t, Thy1(m))VT1(u — Tj(u)) dx dt as 1, — oo,
aJo

(78)
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By combining and - (78), we conclude that

fQ 1 (1a(s) — (Ty()),) dx

< Lf(; [FIIT1(u — Ty ()l dx dt + f(; fo‘ F(x,t, Tp1(w)) - VTi(u — Ty(u)) dx dt (79)
O1(uo — Ty(uo)) dx + e10(n, 1)
Q
we have :
f fs F(x,t, Th1(w)) - VT1(u — Ty(u)) dx dt — 0 as h — oo. (80)
aJo

Moreover, similarly as in we show that

f f |FIT1(u — Ty(u))l dx dt + f O1(ug — Tp(ug)) dx - 0 as h — oo. (81)
aJo Q

By combining and - we conclude that

L O1(un(s) — (Tn(u(s))y)) dx < en1(n, y, h). (82)

It follows that

L@)l(un(S)zum(S)) X %( @1(14”(5)—(Th(u(s))y))dx+L@l(um(s)—(Th(u(s))y))dx (83)

— 0 as n,m — oo.
Thus, we obtain

2
f dx + f
([ (s)—um(s)|<2} ([ (5)=1um(s)|>2}

SZf@l(M)dx%O as n,m — oo.
Q

Un(S) = tn(s)
2

Un(s) = tn(s)

> dx

(84)

We conclude that
f 164 (5) — 1)
Q

_ f 100(5) = ()] dx + f 100(5) = 4 ()] dx
{11 (5)—1m (s)I<2} / {11, (5)—1um (s5)|>2}

< ( f |t (S) = 1 (5) dx) (meas(Q))? + f 14 (3) — tm(s)| dx — 0 as n,m — oo.
|”n(5) um(s ‘MV,(S) I/lm(S)‘>2
(85)

Hence (u,), is a Cauchy sequence in C([0, T], L}(Q)), thus u € C([0, T], L}(Q)) and we have u,(x,s) — u(x, s)
strongly in L!(Q) forany 0 <s < T.

Step 7 : Weak convergence of (S(uy)); in V* + LY(Qr) .

Let 5(-) € C°(R) such that supp(S’(+)) € [-M, M] with M > 0 and v € V N L*(Qr). By taking S'(u,)v as a test



B. Ferrahi et al. / Filomat 39:11 (2025), 3569-3591 3584

function in (I8), we have

T
f <a;",5’(un)v> dt + f a(x, t, Tu(itn), Vitn)(S (1)VO + Vir, S (u,)0) dx dt + | (P 1,8 (u)v dox dt
0 Qr or

= f fu(x, S ()0 dx dt + f F.(x,t, Ty(uy))(S (u,)Vo + Vu,S” (u,)v) dx dt.
Qr Qr

Hence, one finds

T 19S(u,) >
——=,0) dt
[
< f 83, £, T 10, Vit 1S )V + S (110N Ta(t)] i d

Qr

+ | (P78 (0| dx dt + f |fulx, D[IS (Yol dx dit
Qr Qr

+f |F,.(x,t, T(un))| IS () Vo + Vu,S” (u,)o| dx dt

< ||Ll(x?1Tf, Tam(un), VTM(un))”m-)’ (©r)
X (||5'(')||L°°(R)||VU||LP(~>(QT) + ”SH(')”L“‘(R)”U”L“’(QT)||VTM(un)||LP(~>(QT))
HlletalPO M1 @ IS Ol @Il @py + Ifa 6 Ol anllS’ Ollee@lloll=r)
HIEn (e, £, Trmaa)llper (or) (||5'(')||L°°(R)||VU||L;:<->(QT) + ||S"(')||L°°(R)||U||L°°(QT)||VTM(un)||Ln<->(QT))
< C(Ilolly + [19llen)),

dS(uy,
with Cis a constant that does not depend on 1. We deduce that ( ;? ) )n is uniformly bounded in V*+LY(Qr),
this implies that
% - % weaklyin V" + LYQr). (86)

Step 8 : Passage to the limit.

d
Let ¢ € V N L¥(Qr) with a—lf e V' +LYQr) and let M = k + [[Y]leo, by using Ti(u, — 1) as a test func-
tion for the approximated problem (18), we get

T
f <%, Ti(un — ) dt + f a(x, t, Ti(un), Vity) - VTi(uy — ) dx dt + f P2 14y T (1t — ) dxe it
0 3t Or Qr (87)
= f fn(X, f)Tk(un - I,D) dx dt + f Fn(x/ £ u") : VTk(u" - I,D) dx dt.
Qr Qr

On the one hand, if {|u,| > M} then |u, — | > |uu| = [[Yll > k, therefore {|u, — 1P| < k} C {lu,| < M}, which
implies that :

f a(x, t, Tp(un), VIia(uy)) - VTi(uy, — ) dx dt
Qr

= a(x, t, Tv(un), VTn(ttn)) - (VIm(un) = V) dx dt

{lun—pI<k} -
= f“ - (a(x, t, Tv(un), VTm(y)) — a(x, t, Tar(uy), V) - (VTar(un) — Vo) dx dt
Uy —|<
i a(x, t, Tna(utn), V) - (VTua (i) = V) dx dt.

{lun—1pI<k}
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According to Fatou’s lemma, we obtain :

lim inff a(x, t, Tm(uy), Vuy) - VT(u, — ) dx dt

n—o0

> f (a(x, t, Tm(u), VTrm(u)) — a(x, t, Ta(u), Vi) - (VTm(u) — Vip) dx dt
[u—1|<k}

+ ) a(x, t, Tm(u), Vi) - (VTm(u) — V) dx dt (89)
{lu—ypI<k}

= a(x, t, Tm(u), VImw)) - (VIm(u) — V) dx dt
{lu—pl<k}

= f a(x, t,u, Vu) - VI (u — ) dx dt.
Qr

Concerning the first term on the left-hand side of (87), we have :
% A(u, — I,D) (91/)

ot ot at !

f a&”tn T, — 1)) dt =Lf0T8(un&t l’b)Tk(un— dxdt+ff 3 = Ti(un — ) dx dt

= L [@k(un - ]0 dx + fQT ETk(u" — ) dxdt

then

(90)
- [ @t - prn - [ extun, - yionas
Q Q
+ ;b T(u, — ) dx dt.
Qr
We have u,, — u strongly in C([0, T], L'(Q2)), then
| @t - oy ax — [ @~ ponx, 1)
Q Q
and
f Ox(un(T) = P(T)) dx — f O (u(T) — (1)) dx. (92)
Q Q

0
Moreover, we have a—lf e V* + LY(Qr), and since Tj(u, — ) — Ti(u — ) weakly in V and weak—+in L= (Qr),
it follows that

9

Y
o, Ot _tTk(u — ) dx dt. (93)

—Ti(u, — ) dx dt —
Qr J

On the other hand, in view of and the fact that f,(x,t) tends to f(x, t) strongly in L}(Qr), we conclude
that

| P20, Ti(uy — ) dx dt — | [uP 2uTy(u — v) dx dt, (94)
Qr Qr

and

f faTe(uy — ) dx dt — f fT(u — ) dx dt. (95)
Qr Qr
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Concernmg the last term on the right-hand side of (87] . we have F,(x, t, Tp(uy)) — F(x, t, Tp(u)) strongly in
(L (Qr)N, and since VT (u, — ) — VTi(u — 1) weakly in (LF(Qr))N, we obtain

f Fo(x, t,uy) - VI(uy, — ) dx dt — f F(x,t,u) - VTi(u — ¢) dx dt. (96)
T Qr

By combining and - (96), we deduce that :

9P
fQ Or(u — P)(T) dx — fQ O(u — )(0) dx + LT ETk(u — ) dxdt

+ f a(x, t,u, Vu) - VTi(u — ¢) + f [ulPD2uTy(u — ) dx dt (97)
Qr Qr
fTi(u — ) dx dt + f F(x,t,u) - VTi(u — ¢) dx dt,
Qr Qr

which complete the proof of the theorem|[6.2}

7. Appendix

Lemma 7.1. Let h > 1, we set wy, ;, = Ti(un) — (Ti(w)), and Pu(s) =1 - w

h
We will show that 3
=210 d d > ea(n).
Qr
Proof. Leth > 1, we define :
s if Is| <k,
2 2
i % if —2h<s<-h,
q) = d = _2 _ 1,2 98
@ = [ ouar=d 2 T, ©8)
h
3? - sign(s) if ls| > 2h.

we have :

Q a(;in Pn(Un) W, dx dt - = fQ 3((1311(”")8; L (Tk(un) — (Tic(w))y) dx dt

o
o [ T 1y - i)

@) = Tele) Tyt = (Tut0),)], d ©9)
- | @t Ty g - L

ot
+ f T 31 — (Tt .
Qr

Concerning the first term on the right-hand side of , we have @y, (u,) = Tr(uy) = u, on {|u,| < k}, having
in mind that ®,(u,) — Tk(11,) have the same sign as u, on the set {|u,| > k}, then

@4t = Tt (Tt = i,
== f (‘Dh(”o,n) - Tk(uO,n))(Tk(MO,n) - (Tk(uO))p) dx (100)
{[0,n1>K}

== (Pn(0,n) = Te(uto,))(Tk(uto,0) — Ti(uo)) dx = £1(n).

[|l¢0,n ‘>k]
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For the second term on the right-hand side of . we have (O (u,) — Ti(uy)) k(un) = 0, it follows that
(T
(q)h(un) - Tk(un)) (aTk(un) - ( k(”))y) dx dt
Q% ot 5 ot
(Ti(u))
= f f (D (it) — Tk(un))# dx dt
0 T{Iun|>k}
=u (P (1) = Ti(uan))(Tic(ur) — (T (1)) dx dt
0 JHluul>k} (101)

= f f ‘ " (q)h(un) - Tk(un))(Tk(u) Tk(un)) dx dt
f jl‘ - (Pn(ttn) = Tie(un))(Ti(ttn) — (Ti(w)),,) dx dt
> P‘f fu”>k (Dp(un) = Tie(un))(Tr(1r) — Ti(1ty)) dx dt = e2(n).

Concerning the last term on the right-hand side of (99), we obtain

T
T (7,4 (Tt et

_QTf AT (w,) — (Ti(w),)
~Jo, ot

(T,
(Te(ua) = (Tu(w),) dx dt + fQ P 1) ~ (Tt

2

Te(uy) — (Te() )2 T
_ L [( k() = (Ti() ) ] dx + fQ (Tie() = (Te(u)) ) (Ti(tt) — (Ti(w)),,) dx dt (102)
f (Tk<u0n> — Ty(u))? i

dx + 4 fQ (Ti(t) = (T(u)), ) (TeCitn) — (T(u)),) e e

> e3(n) + uf (Tiu) = (Tie(@) ) (T (1) = (Ti(w))) dx it

Qr
> 83(1’1).

By combining (99) and (100) — (102), we conclude that :

duy

T — )y o dx dt > e4(n). (103)
Qr

Proof of the Lemmal6.3]

In view of Holder’s inequality and the growth condition , we can show that the operator A, is bounded.
For the operator G,, we have for any u,v € V

Sf |F(x, t, u)||Vo| dx dt
Qr

|Vo| dx dt
Qr
< Crulolly.
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We conclude that B, = A, + G, is bounded. For the coercivity, we have forany u € V :

T T T
f (Bu,u)y dt f (A, u,u)dt + f (Gyu,u)dt
0 0

f ac, t, Ty(u), Vu) - Vudxdt+ | [uf® dxdt — | |Fu(x, T,(w)||Vul dx dt
QTb Qr Qr

—— f [Vup® dx dt + f ulP® dx dt — Cynllully

(1 + 1’1) * Jor Qr

0 p- B p- B B
bo

p,
Callully, = Canllully — v 1.

\%

Thus, we conclude that

T
f (Bnu,u) dt
O— ﬂ

as [lu|ly — oo.
llually

Now, we will show that the operator B, is pseudo-monotone. Let (1), be a sequence in V such that :

Uy —u weaklyin V,
Buuy — x» weaklyin V¥, (104)
lim sup(Byux, ux) < {Xn, U).

k—o0

We will prove that
Xn=Byuu and (Byuk, ) — (X, u) as k — +oo.

In view of @, we have u; — u strongly in L}(Qr) for a subsequence still denoted (u)r. We have (i) is a
bounded sequence in V, then the sequence (a(x, t, T, (ux), Vug))x is uniformly bounded in (LF'(Qr))N, and
there exists a measurable function 9 € (L”(Qr))N such that

a(x, t, To(uy), Vug) = 9, weaklyin (I7OQr)NV as k— oo, (105)
and

P92 — [uP®2y weaklyin  LFO(Qr) as k — co. (106)

Moreover, we have (F,(x, t, u)) is uniformly bounded in (L¥(Qr))N. In view of Lebesgue’s dominated
convergence theorem, we obtain

Fu(x,t,u) = Fu(x,t,u) stronglyin (L7 O(Qr)N as k — co. (107)

On the one hand, for any v € V we have

Xn, 0) I}ggo (Bntix, v)
= I}im f a(x, t, T,(ug), Vuy) - Vo dx dt + I}im f [P 20 dx dt
- Jo - Jo
) ' (108)
- ]}1m Fo(x,t, T,(ug)) - Vo dx dt
—00 QT

f S, Vodxdt + f lulP 20 dx dt — f F.(x,t, Ty(u)) - Vodx dt.
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In view of (104) and (108) we obtain

lim sup(Byu, ) = limsup ( f a(x, t, Ty (ug), Vi) - Vi dx dt + [ P®) dx dt

k—o0 k—o0 Qr

- f Fu(x, t, To(ui)) - Vg dx dt) (109)

Qr

< f 8, Vudxdt+ | |uf® dxdt - f F.(x, t, T, (1)) - Vu dx dt.
Qr Qr Qr
We have uy — u weakly in V, and thanks to (107) we conclude that

lim Fo(x,t, Ty(ug)) - Vug dx dt = f Fo(x, t, Ty()) - Vu dx dt. (110)

k=eo Jo; Qr

It follows that

limsup (f a(x,t, T (ug), Vug) - Vuy dx dt +
Qr

k—o0

[ug[P® dx dt)
Qr (111)
sf 9, - Vu dx dt+f [ulP® dx dt.

Qr Qr

On the other hand, in view of we have

(ax, t, To(ux), Vug) — a(x, t, To(ux), Vi) - (Vug — Vu) dx dt
Qr (112)
+ | (P92 — [P O20) (e — 1) dx dt > 0.
Qr

Hence

f a(x, t, T, (ug), Vug) - Vuy dx dt + f [uP®) dx dt
> f a(x, t, Ty (ug), Vug) - Vu dx dt + f [ PO dox dt (113)
Qr Qr
+ f [P =20y — u) dx dt + f a(x, t, Ty(ug), Vi) - (Vug — Vu) dx dt.
Qr Qr

In view of Lebesgue dominated convergence theorem, we have T, (ux) — T,(u) strongly in LV(Qr), then
a(x, t, Ty(ux), Vi) — a(x, t, T,(u), Vi) strongly in (LF'O(Qr))N, and using (105) — (106) we get

liminf( f a(x, t, To(ug), Vi) - Vug dx dt + | JugP® dxdt)z f Sy - Vudxdt+ | |uf® dxdt. (114)
Qr T

k—oo . Or

Having in mind @, we conclude that :

I}im (f a(x, t, Ty (ug), Vi) - Vi dx dt + g P™) dx dt) = f S, - Vudx dt + [ulP® dx dt. (115)
- QT T QT

By combining (108), (110) and (115) we deduce that (B, u, ux) — {xn, u) as k — oo.

Now, by (105) and (115) we obtain :

T

(a(x, t, Tp(ux), Vug) — a(x, t, Ty(ur), V) - (Vuyg — Vu) dx dt
Qr (116)
+ | (P2 = [P 2u) e — u) dxdt — 0 as  k — oo.
Qr



B. Ferrahi et al. / Filomat 39:11 (2025), 3569-3591 3590

In view of Lemma [5.3| we conclude that uy — u strongly in V and Vu; — Vu almost everywhere in Qr.
Therefore, we conclude that a(x, t, T,,(ux), Vug) — a(x, t, T, (1), Vi) weakly in (L7 O(Qr))Y, and having in mind
and (107) we deduce that x, = B,u.

Example 7.2. By taking f(x,t) € LY(Qr) and uy € LY(Q), with

Vulp®-2vy, LPEEE-D)
w and F(x, t, M) = | |
u

a(x,t,u,Vu) = T (1 Jul) @)’

then the assumptions (10) — (I3) hold true. In view of the Theorem[6.2] the non-coercive quasilinear parabolic problem

ou . (|VuP®-2vy ~ , |7~ .

- _ /7 - p()-2,, — — B e

ot ( (1 + [u)'® )+ P = flx, 1) — div ((1 + |u|)A<x>|x|ﬁ<x>) in Qr,
u=0 on X,
u(x,0) = uy inQ,

has at least one entropy solution.

Conclusion 7.3. In this paper, we have studying the existence of entropy solutions for our quasilinear and non-
coercive parabolic problem with L1-data. However, the existence of entropy solutions for the unilateral problem
associated to our parabolic equation without the term [ulP®~2u remain an open problem.
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