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Abstract. This paper studies a common problem of hierarchical fixed point problems for nonexpansive
and quasi-nonexpansive mappings, variational inequality, and split null inclusion problems. A hybrid
projective method is modified to obtain strong convergence in Hilbert spaces. An example is infinitely
dimensional spaces shown for supporting the main result. As applications, the proposed method is applied
to solve signal recovery problems.

1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner products ⟨·, ·⟩ and induced norms ∥ · ∥, respectively.
Let C ⊆ H1 andQ ⊆ H2 be nonempty, closed and convex sets. A mappingT : C → C is called nonexpansive
if ∥T x − T y∥ ≤ ∥x − y∥, for all x, y ∈ C. Fix(T ) is denoted for the set of fixed points of T , i.e., Fix(T ):=
{x ∈ C : T x = x}. In this paper, we focus our attention on the following split null inclusion problem (in
short, SPNIP) which was introduced Byrne et al. [3]: Find x∗ ∈ H1 such that

0 ∈ B1(x∗), (1)

such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (2)

where B1 : H1 → 2H1 , B2 : H2 → 2H2 are multi-valued maximal monotone operators and A : H1 → H2 is
a bounded linear operator. The solution set of SPNIP(1)-(2) is denoted by Ω = {x∗ ∈ H1 : x∗ ∈ Sol(NIP(1))
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and Ax∗ ∈ Sol(NIP(2))}. Byrne et al. [3] studied the weak convergence theorems of iterative method for
SPNPP(1)-(2). For a given x0 ∈ H1, compute iterative sequence {xn} generated by the following scheme: for
n ≥ 1,

xn+1 = J
B1
λ (xn + γA

∗(JB2
λ − I)Axn), for λ > 0, (3)

where I is an identity mapping, A∗ is the adjoint operator of A and γ ∈ (0,
1
L

) such that L is the spectral
radius ofA∗A. For obtaining strong convergence, Kazmi and Rizvi [11] modified viscosity method to solve
the problem SPNIP(1)-(2) and fixed point problem for a nonexpansive mapping. For further related work,
see [15].

It’s well known that fixed point problems have been used to solve a powerful and effective method
for solving many issues that emerge from real-world applications, for example see in [9, 10, 12–14, 18]. The
famous one of fixed point problems is the following hierarchical fixed point problem (HFPP) which was
introduced by Moudafi and Mainge [13], the problem is to solve fixed point problem for a nonexpansive
mapping T with respect to another nonexpansive mapping S on C, that is finding x∗ ∈ Fix(T ) such that

⟨x∗ − Sx∗, x∗ − x⟩ ≤ 0, ∀x ∈ Fix(T ), (4)

where S : C → C is a nonexpansive mapping. The solution set of HFPP(4) is denoted by ⊗ := {x∗ ∈ C : x∗ =
(PFix(T ) ◦ S)x∗}.

On the other hand, we study the variational inequality(VI) which is to find x∗ ∈ C such that

⟨Dx∗, x − x∗⟩ ≥ 0, ∀x ∈ C, (5)

introduced in [6] where D : H1 → H1. The solution set of VI(5) is denoted by Sol(VI). The well-known
algorithm for solving VI(5) is the projected gradient algorithm as follows:

xn+1 = PC(I − µD)xn, ∀n ≥ 1, (6)

where µ > 0 and PC is the metric projection of H1 onto C. To obtain the convergence theorem, the algorithm
(6) requires the Lipschitz condition on the operatorD. Indeed, ifD is L-Lipschitz continuous with 0 < µ < 2

L ,
then there exists a unique point in Sol(VI) and the sequence {xn} generated by (6) converge strongly to this
point. There is no analytic expression for the metric projection operator in most cases. So the algorithm
(6) is not very convenient in the practical calculation. Further, it was found that if C is a fixed point set of
a nonexpansive mapping, then the metric projection is not be used. In 2001, Yamada [17] introduced the
following hybrid steepest descent method:

xn+1 = PC(I − µβnD)T xn, ∀n ≥ 1. (7)

Under certain conditions, the sequence {xn} generated by (7) converges strongly to the unique point in
Sol(VI) over the fixed point of T .

In this paper, we modify a projective algorithm to find a common solution of split null inclusion problem,
variational inequality and hierarchical fixed point problem for nonexpansive and quasi-nonexpansive
mappings in real Hilbert spaces. Further, we prove that sequences generated by the proposed hybrid
projective algorithm converge strongly to a common solution of these problems. As applications, signal
recovery is considered.

2. Preliminaries

Let the symbols→ and⇀ denote strong and weak convergence, respectively, and ωw(xn) denote the set
of all weak limits of the sequence {xn}.

Definition 2.1. A single-valued mappingD : H1 → H1 is said to be:
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(i) monotone, if
⟨Dx −Dy, x − y⟩ ≥ 0, ∀x, y ∈ H1;

(ii) k-strongly monotone, if there exists a constant k ∈ R with k > 0 such that

⟨Dx −Dy, x − y⟩ ≥ k∥x − y∥2, ∀x, y ∈ H1;

(ii) k-inverse strongly monotone, if there exists a constant k ∈ R with k > 0 such that

⟨Dx −Dy, x − y⟩ ≥ k∥Dx −Dy∥2, ∀x, y ∈ H1;

(iii) L-Lipschitz continuous, if there exists a constant L > 0 such that

∥Dx −Dy∥ ≤ L∥x − y∥, ∀x, y ∈ H1;

(iv) firmly nonexpansive, if it is k-inverse strongly monotone with k = 1.

It’s clearly that ifD is an k-inverse strongly monotone mapping, thenD is 1
L -Lipschitz continuous.

Definition 2.2. [2]. A multi-valued mappingD : H1 → 2H1 is said to be:
(i) monotone if

⟨u − v, x − y⟩ ≥ 0, whenever u ∈ D(x), v ∈ D(y);
(ii) maximal monotone ifD is monotone and the graph, graph(D) := {(x, y) ∈ H1×H1 : y ∈ D(x)}, is not properly

contained in the graph of any other monotone mapping.

It is well known that for each x ∈ H1 and λ > 0 there exists a unique z ∈ H1 such that x ∈ (I + λD)z. The
mapping JDλ := (I + λD)−1 is called the resolvent of D. It is a single-valued and firmly nonexpansive
mapping defined on H1.

Lemma 2.3. [5] IfT is a nonexpansive mapping on H1 thenT is demiclosed on H1 in the sense that, if xn ⇀ x ∈ H1
and {xn − T xn} → 0, then x ∈ Fix(T ).

Lemma 2.4. [1] Let C be a nonempty, closed and convex subset of H1, and T : C → H1 be a nonexpansive mapping.
Then Fix(T ) is closed and convex.

3. Strong convergence theorem

In this section, we construct the following algorithm to solve SPNIP(1)-(2), VI(5) and HFPP(4) for a
nonexpansive mapping T and a continuous quasi-nonexpansive mapping S : C → C.

Algorithm 3.1.

Initialization: Choose {αn}, {σn}, {δn} be real sequences in (0, 1) and {µβn} ⊂ (0, 2k). Select an arbitrary starting
point v0 ∈ C and C0 = C: Set n = 0 .

Iterative Steps: Given the current iterate vn, for λ > 0:
Step 1. Compute

wn = (1 − δn)vn + δnPC(vn − µβnDvn);
yn = (1 − σn)wn + σnSvn;
un = (1 − αn)vn + αnT yn;
zn = J

B1
λ (un + γA∗(JB2

λ − I)Aun);
Cn+1 = {z ∈ Cn : ∥zn − z∥ ≤ ∥vn − z∥};
vn+1 = PCn+1 v0, n ≥ 0,


(8)

where γ ∈
(
0,

1
∥A∥2

)
.

Step 2. Set n := n + 1 and go to Step 1.
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Remark 3.2. Algorithm comparisons in terms of structure and problem formulation between our Algorithm 3.1,
Algorithm 2 in [7], and Algorithm 1 in [8]:

(i) Our Algorithm 3.1 and Algorithm 1 in [8] are designed to address common solution problems. Specially,
our algorithm tackles problems involving fixed points of nonexpansive mappings, variational inequalities, and
split null inclusion problems, while Algorithm 1 in [8] focuses on solving problems involving fixed points of
k-demicontractive mappings and variational inequalities.

(ii) Algorithm 2 in [7] is restricted to solving inclusion problems. However, our algorithm can be reduced to solve
inclusion problems like Algorithm 2 in [7]. In contrast, Algorithm 1 in [8] cannot be reduced in this manner.

(iii) Our Algorithm 3.1 and Algorithm 1 in [8] follow a non-inertial structure, whereas Algorithm 1 in [8] incorpo-
rates inertial terms, which can impact convergence rates and computational complexity;

(iv) Algorithm 2 in [7] uses a simplified structure focused on inclusion problems, with fewer computational steps
compared to our algorithm and Algorithm 1 in [8].

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces, and let C and Q be two nonempty, closed and convex sets
such that C ⊆ H1 and Q ⊆ H2. Let A : H1 → H2 be a bounded linear operator with its adjoint operator A∗; let
B1 : H1 → 2H1 ,B2 : H2 → 2H2 be multi-valued maximal monotone operators. LetD : C → H1 be k-inverse strongly
monotone mappings, let T : C → C be a nonexpansive mapping and S : C → C be a continuous quasi-nonexpansive
mapping such that I −S is monotone and Γ = Ω∩ ⊗∩ Fix(S)∩ Sol(VI) , ∅. Assume that the following conditions
hold:
(C1) limn→∞ infαn > 0;
(C2) 0 < limn→∞ inf σn ≤ lim supn→∞ σn < 1;
(C3) 0 < limn→∞ inf δn ≤ lim supn→∞ δn < 1;
(C4) 0 < limn→∞ infµβn ≤ lim supn→∞ µβn < 2k.
Then the iterative sequences {zn} and {vn} be generated by Algorithm (8) converges strongly to z ∈ Γ, where z = PΓv0.

Proof. We divide the proof into several steps.

Step I. First, we show that Γ and Cn for all n ≥ 0 both are closed and convex. Since Γ , ∅, it follows from
Lemma 2.4 that Sol(NIP(1)) = Fix(JB1

λ ) and Sol(NIP(2)) = Fix(JB2
λ ) are closed and convex sets. Clearly ⊗

is closed and convex, since ⊗ = Fix(PFix(T ) ◦ S) , ∅. Further, it is easy to observe that Fix(S) and Sol(VI)are
closed and convex. Thus, Γ is nonempty, closed and convex and PΓv0 is then well defined.

Next, we show that Cn+1 is closed and convex. Since C is closed and convex, then C0 is also closed and
convex. Suppose that Ck is closed and convex for some k ≥ 1. For any z ∈ Ck, we have

∥zk − z∥2 ≤ ∥vk − z∥2

⇔ ∥zk − vk∥
2 + 2⟨zk − vk, vk − z⟩ ≤ 0. (9)

We easily observe from (9) that Ck+1 is closed and convex for all k ≥ 1. Therefore, Cn is closed and convex
for all n ≥ 0.

Step II. Γ ⊂ Cn for each n ≥ 0, {vn} is well defined and the sequences {vn}, {un}, {zn}, {wn} and {yn} are
bounded. Let p ∈ Γ then p ∈ C. Since PC is firmly nonexpansive, we estimate

∥wn − p∥2 ≤ (1 − δn)∥vn − p∥2 + δn∥PC(I − µβnD)vn − PC(I − µβnD)p∥2

≤ (1 − δn)∥vn − p∥2 + δn∥(I − µβnD)vn − (I − µβnD)p∥2

≤ ∥vn − p∥2 + δn

(
µ2β2

n∥Dvn −Dp∥2 − 2µβn⟨vn − p,Dvn −Dp⟩
)

≤ ∥vn − p∥2 + δn

(
µ2β2

n∥Dvn −Dp∥2 − 2µβnk∥Dvn −Dp∥2
)

≤ ∥vn − p∥2 − δnµβn(2k − µβn)∥Dvn −Dp∥2

≤ ∥vn − p∥2, (10)
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∥yn − p∥2 ≤ (1 − σn)∥wn − p∥2 + σn∥Svn − p∥2 − σn(1 − σn)∥Svn − wn∥
2

≤ ∥vn − p∥2 − σn(1 − σn)∥Svn − wn∥
2 (11)

≤ ∥vn − p∥2, (12)

and

∥un − p∥2 = ∥(1 − αn)vn + αnT yn − p∥2

≤ (1 − αn)∥vn − p∥2 + αn∥yn − p∥2

≤ ∥vn − p∥2 − σn(1 − σn)∥Svn − wn∥
2 (13)

≤ ∥vn − p∥2. (14)

Since p ∈ Γ then p ∈ Ω and hence JB1
λ p = p and JB2

λ Ap = Ap, we have

∥zn − p∥2 = ∥J
B1
λ (un + γA

∗(JB2
λ − I)Aun) − p∥2

= ∥J
B2
λ (un + γA

∗(JB2
λ − I)Aun) −JB1

λ (p)∥2

≤ ∥un + γA
∗(JB2

λ − I)Aun − p∥2

= ∥un − p∥2 + γ2
∥A
∗(JB2

λ − I)Aun∥
2 + 2γ⟨un − p,A∗(JB2

λ − I)Aun⟩

= ∥un − p∥2 + γ2
∥A∥

2
∥(JB2

λ − I)Aun∥
2 + 2γ⟨un − p,A∗(JB2

λ − I)Aun⟩. (15)

Further, we have

2γ⟨un − p,A∗(JB2
λ − I)Aun⟩

= 2γ⟨Aun −Ap, (JB2
λ − I)Aun⟩

= 2γ⟨Aun −Ap + (JB2
λ − I)Aun − (JB2

λ − I)Aun, (JB2
λ − I)Aun⟩

= 2γ
{
⟨J
B2
λ Aun −Ap,JB2

λ Aun −Aun⟩ − ∥(JB2
λ − I)Aun∥

2
}

= γ{∥JB2
λ Aun −Ap∥2 + ∥JB2

λ Aun −Aun∥
2
− ∥Aun −Ap∥2 − 2∥(JB2

λ − I)Aun∥
2
}

= γ{∥JB2
λ Aun −J

B2
λ Ap∥2 + ∥(JB2

λ − I)Aun∥
2
− ∥Aun −Ap∥2 − 2∥(JB2

λ − I)Aun∥
2
}

≤ γ{∥Aun −Ap∥2 − ∥Aun −Ap∥2 − ∥(JB2
λ − I)Aun∥

2
}

= −γ∥(JB2
λ − I)Aun∥

2. (16)

Replacing (16) in (15), we get

∥zn − p∥2 ≤ ∥un − p∥2 − γ(1 − γ∥A∥2)∥(JB2
λ − I)Aun∥

2. (17)

Next, using (14) and (17), we estimate

∥zn − p∥2 ≤ ∥vn − p∥2 − γ(1 − γ∥A∥2)∥(JB2
λ − I)Aun∥

2. (18)

Since γ ∈
(
0,

1
∥A∥2

)
, (18) implies

∥zn − p∥ ≤ ∥vn − p∥. (19)

This implies that p ∈ Cn+1 and hence Γ ⊂ Cn+1 for all n ≥ 0. Consequently, Cn+1 is nonempty, closed and
convex and hence vn+1 = PCn+1 v0 is well defined for all n ≥ 0. Thus the sequence {vn} is well defined.

Let l = PΓv0. From vn+1 = PCn+1 v0 and l ∈ Γ ⊂ Cn+1, we have

∥vn+1 − v0∥ ≤ ∥l − v0∥, ∀n ≥ 0. (20)
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Therefore {vn} is bounded. From (10), (12), (14) and (19), we have that {wn}, {yn}, {un} and {zn} are also
bounded.

Step III. lim
n→∞
∥vn+1−vn∥ = 0; lim

n→∞
∥zn−vn∥ = 0; lim

n→∞
∥zn−un∥ = 0; lim

n→∞
∥PC(vn−µβnDvn)−vn∥ = 0; lim

n→∞
∥wn−

yn∥ = 0 and lim
n→∞
∥vn − un∥ = 0.

Since vn = PCn v0, Cn+1 ⊂ Cn and vn+1 ∈ Cn, we have

∥vn − v0∥ ≤ ∥vn+1 − v0∥, ∀n ≥ 0. (21)

Therefore lim
n→∞
∥vn − v0∥ exists by (20) and (21).

By the properties of the metric projection PCn that vn = PCn v0 and vn+1 ∈ Cn+1, we have

∥vn+1 − vn∥
2
≤ ∥vn+1 − v0∥

2
− ∥vn − v0∥

2, ∀n ≥ 0,

which implies that

lim
n→∞
∥vn+1 − vn∥ = 0. (22)

Since vn+1 = PCn+1 v0 ∈ Cn+1, it follows that

∥zn − vn+1∥ ≤ ∥vn − vn+1∥. (23)

Hence, it follows from (22) and (23) that

lim
n→∞
∥zn − vn+1∥ = 0. (24)

Since

∥vn − zn∥ ≤ ∥vn − vn+1∥ + ∥vn+1 − zn∥, (25)

it follows from (22), (24) and (25) that

lim
n→∞
∥vn − zn∥ = 0. (26)

Next, from the assumption lim infn→∞ σn > 0, (18) and (26), we have

lim
n→∞
∥(JB2

λ − I)Aun∥ = 0. (27)

Since JB1
λ is firmly nonexpansive, we have

∥zn − p∥2 = ∥J
B1
λ (un + γA

∗(JB2
λ − I)Aun) − p∥2

= ∥J
B1
λ (un + γA

∗(JB2
λ − I)Aun) −JB1

λ p∥2

≤ ⟨zn − p,un + γA
∗(JB2

λ − I)Aun − p⟩

=
1
2

[
∥zn − p∥2 + ∥un − p∥2 − ∥zn − un − γA

∗(JB2
λ − I)Aun∥

2
]

≤
1
2

[
∥zn − p∥2 + ∥un − p∥2 − ∥zn − un∥

2
− γ2
∥A
∗(JB2

λ − I)Aun∥

+2γ⟨zn − un,A
∗(JB2

λ − I)Aun⟩]

≤
1
2

[
∥zn − p∥2 + ∥un − p∥2 − ∥zn − un∥

2
− γ2
∥A
∗(JB2

λ − I)Aun∥

+2γ∥zn − un∥∥A
∗(JB2

λ − I)Aun∥
]
,
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which in turn yields

∥zn − p∥2 ≤ ∥un − p∥2 − ∥zn − un∥
2 + 2γ∥zn − un∥∥A

∗(JB2
λ − I)Aun∥, (28)

and this together with (14) implies that

∥zn − un∥
2
≤ ∥un − p∥2 − ∥zn − p∥2 + 2γ∥zn − un∥∥A

∗(JB2
λ − I)Aun∥

≤ ∥vn − p∥2 − ∥zn − p∥2 + 2γ∥zn − un∥∥A
∗(JB2

λ − I)Aun∥

≤ ∥vn − zn∥(∥vn − p∥ + ∥zn − p∥) + 2γ∥zn − un∥∥A
∗(JB2

λ − I)Aun∥

≤ L1∥vn − zn∥ + 2γ∥zn − un∥∥A
∗
∥∥(JB2

λ − I)Aun∥. (29)

Hence, it follows from (26), (27) and (29) that

lim
n→∞
∥zn − un∥ = 0. (30)

Since

∥vn − un∥ ≤ ∥vn − zn∥ + ∥zn − un∥. (31)

It follows from (26), (30) and (31) that

lim
n→∞
∥vn − un∥ = 0. (32)

It follows from (8) that

αn∥T yn − vn∥ = ∥un − vn∥. (33)

It follows from (32), (33) and limn→∞ infαn > 0 that

lim
n→∞
∥T yn − vn∥ = 0. (34)

From the assumption limn→∞ inf σn > 0, (13) and (34), we have

lim
n→∞
∥Svn − wn∥ = 0. (35)

It follows from (8) that

∥yn − wn∥ = σn∥Svn − wn∥ (36)

It follows from (35), (36) that

lim
n→∞
∥yn − wn∥ = 0. (37)

Since {µβn} ⊂ (0, 2k), PC(I − µβnD) is nonexpansive. It follows from T and S are nonexpansive that

∥un − p∥2 ≤ (1 − αn)∥vn − p∥2 + αn∥T yn − p∥2

≤ (1 − αn)∥vn − p∥2 + αn

(
(1 − σn)∥wn − p∥2 + σn∥Svn − p∥2

)
≤ ∥vn − p∥2 − αn(1 − σn)(1 − δn)δn∥PC(I − µβnD)vn − vn∥

2. (38)

It follows the assumptions (C1)-(C3), (32) and (38) that

lim
n→∞
∥PC(I − µβnD)xn − xn∥ = 0. (39)
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It follows from the assumption (C3) and (39) that

∥wn − xn∥ ≤ δn∥PC(I − µβnD)xn − xn∥ → 0, (40)

as n→∞. Since

∥T yn − wn∥ ≤ ∥T yn − xn∥ + ∥xn − wn∥,

it follows from (34) and (40) that

lim
n→∞
∥T yn − wn∥ = 0. (41)

Since

∥T yn − yn∥ ≤ ∥T yn − wn∥ + ∥wn − yn∥,

it follows from (37) and (41) that

lim
n→∞
∥T yn − yn∥ = 0. (42)

Since

∥Sxn − xn∥ ≤ ∥Sxn − wn∥ + ∥wn − xn∥,

it follows from (35) and (40) that

lim
n→∞
∥Sxn − xn∥ = 0. (43)

Step IV: x∗ ∈ Γ. Since {xn} is bounded, there exists a subsequence {xni } of {xn} such that xni ⇀ x∗. Further,
from (26), (32), (37) and (39), there exist subsequences {yni } of {yn}, {zni } of {zn}, {uni } of {un} and {wni } of {wn}

such that {yni }, {zni }, {uni } and {wni } converge weakly to x∗. It follows from Lemma 2.3(ii), (42) and(43) that
x∗ ∈ Fix(T ) and x∗ ∈ Fix(S).

Now, we show that x∗ ∈ ⊗. It follows from (8)

1
σn

(
T yn − yn

)
= (I − S)xn +

1
σn

(T yn − wn) + (wn − xn), (44)

and hence for all q ∈ Fix(T ) and using monotonicity of I − S, we have

⟨
T yn − yn

σn
, xn − q⟩ = ⟨(I − S)xn − (I − S)q, xn − q⟩ + ⟨(I − S)q, xn − q⟩

+
1
σn
⟨T yn − wn, xn − q⟩ + ⟨wn − xn, xn − q⟩

≥ ⟨(I − S)q, xn − q⟩ +
1
σn
⟨T yn − wn, xn − q⟩

+⟨wn − xn, xn − q⟩ (45)

It follows from (39), (41), (42), (45) that

lim sup
n→∞

⟨q − Sq, xn − q⟩ ≤ 0, ∀q ∈ Fix(T ). (46)

Since xn ⇀ x∗,we get

⟨(I − S)q, x∗ − q⟩ ≤ 0, ∀q ∈ Fix(T ). (47)
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Since Fix(T ) is convex, tq + (1 − t)x∗ ∈ Fix(T ) for t ∈ (0, 1) and hence

⟨(I − S)(tq + (1 − t)x∗), x∗ − (tq + (1 − t)x∗)⟩ = t⟨(I − S)(tq + (1 − t)x∗), x∗ − q⟩
≤ 0, ∀q ∈ Fix(T ), (48)

this implies that
⟨(I − S)(tq + (1 − t)x∗), x∗ − q⟩ ≤ 0, ∀q ∈ Fix(T ).

Taking limits t→ 0+, we have

⟨(I − S)x∗, x∗ − q⟩ ≤ 0, ∀q ∈ Fix(T ). (49)

That is x∗ ∈ ⊗. Since {xni } converges weakly to x∗, it follows from Lemma 2.3 and (39) that x∗ ∈ Sol(VI). Next,

we shall show that x∗ ∈ Ω. Since xn ⇀ x∗, then un ⇀ x∗, zn ⇀ x∗ and yn ⇀ x∗. Since Algorithm 8 can be
rewritten as

(un − zn) +A∗(JB2
λ − I)Aun

λ
∈ B1(zn). (50)

By passing to the limit n → ∞ in (50) and taking account (27), (30) and the fact that graph of maximal
monotone mapping is weakly-strongly closed, we obtain 0 ∈ B1(x∗). ByA is continuous, the nonexpansivity
of JB2

λ , (27) and Lemma 2.3, we have that 0 ∈ B2(Ax∗). This shows that x∗ ∈ Ω and thus x∗ ∈ Γ.

Step V. We shall show that x∗ = PΓx0 where x∗ is strongly limit point of {xn}. Since xn = PCn x0 and x∗ ∈ Γ,
we have

∥x0 − x∗∥ ≥ ∥x0 − xn∥.

It follows from l = PΓx0 and the property of the norm that

∥l − x0∥ ≤ ∥x∗ − x0∥ ≤ lim inf
n→∞

∥xn − x0∥ ≤ lim sup
n→∞

∥xn − x0∥ ≤ ∥l − x0∥.

This yields that limn→∞ ∥xn − x0∥ = ∥l− x0∥ = ∥x∗ − x0∥. Since xn − x0 ⇀ x∗ − x0 and ∥xn − x0∥ → ∥x∗ − x0∥ then
from the Kadec-Klee property [5] of H1, we have limn→∞ xn = x∗ = l. Thus, we conclude that {xn} converges
strongly to x∗, where x∗ = PΓx0.

4. Numerical illustrations

4.1. Function space

For supporting our main theorem, we now give an example in infinitely dimensional spaces L2[0, 1]

such that ∥ · ∥ is L2-norm defined by ∥x∥ =
√∫ 1

0 |x(t)|2dt where x(t) ∈ L2[0, 1].

Example 4.1. Let H1 = H2 = L2[0, 1] and C = {x(t) ∈ L2[0, 1] :
∫ t

0 x(s)ds < ∞}. Define mappings as follow:
(i) bounded linear operatorA : L2[0, 1]→ L2[0, 1] byAx(t) = 2x(t), ∀x(t) ∈ L2[0, 1];
(ii) maximal monotone operators B1,B2 : L2[0, 1]→ L2[0, 1] by B1x(t) = 3x(t) and B2x(t) = x(t)

5 , ∀x(t) ∈ L2[0, 1];
(iii) nonexpansive mapping T : L2[0, 1]→ L2[0, 1] by T x(t) = x(t)

2 , ∀x(t) ∈ L2[0, 1];
(iv) continuous quasi-nonexpansive mapping S : L2[0, 1]→ L2[0, 1] by Sx(t) = x(t)

2 , ∀x(t) ∈ L2[0, 1];

(v) π2 -inverse strongly monotone mappingD : C → L2[0, 1] byDx(t) =
∫ t

0 x(s)ds.
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For each λ > 0, we see that JB1
λ (x) = x

1+3λ and JB2
λ (x) = x

1+ 1
5λ

. We use the Cauchy error ∥xn+1 − xn∥
2 < 10−10

for the stopping criterion. The performances of our algorithm are split into five cases.
Case I: Comparison of the proposed algorithm (3.1) with different parameters δn are shown when we choose
µβn =

n
n+1 , γ = 0.1, λ = 0.1, σn = αn =

n
2n+1 and initializations x0 =

sin(t)+t
2 . Then the results are presented as

follows:

δn 0.1 0.3 0.5 0.9 0.999
No. of Iter. 18 18 17 17 17
CPU time(s) 3.204624 3.219476 3.104514 3.132228 3.212694

Table1: Numerical results of different parameters δn.
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Figure 1: The error plotting of our proposed algorithm (3.1) for different parameters δn .

Case II: Comparison of the proposed algorithm (3.1) with different parameters µβn are shown when
we choose δn = 0.5, γ = 0.1, λ = 0.1, σn = αn =

n
2n+1 and initializations x0 =

sin(t)+t
2 . Then the results are

presented as follows:

µβn
n

n+1
n

10n+1
n

100n+1
n

103n+1
n

104n+1
No. of Iter. 17 18 18 18 18
CPU time(s) 3.302351 3.310532 3.369519 3.301081 3.176498

Table2: Numerical results of different parameters µβn.

Case III: Comparison of the proposed algorithm (3.1) with different parameters γ are shown by choosing
µβn =

n
104n+1 , δn = 0.5, λ = 0.1, σn = αn =

n
2n+1 and initializations x0 =

sin(t)+t
2 . Then the results are presented

as follows:

γ 0.2 0.1 0.01 0.001 0.0001
No. of Iter. 18 18 19 19 19
CPU time(s) 3.062286 3.016581 3.620591 3.267629 3.195616

Table3: Numerical results of different parameters γ.
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Figure 2: The error plotting of our proposed algorithm (3.1) for different parameters µβn .
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Figure 3: The error plotting of our proposed algorithm (3.1) for different parameters γ .

Case IV: Comparison of the proposed algorithm (3.1) with different parametersλ are shown by choosing
γ = 0.1, µβn =

n
104n+1 , δn = 0.5, σn = αn =

n
2n+1 and initializations x0 =

sin(t)+t
2 . Then the results are presented

as follows:

λ 0.1 1 10 100 103

No. of Iter. 18 8 4 3 3
CPU time(s) 3.189750 1.538551 0.9133888 0.752417 0.758241

Table4: Numerical results of different parameters λ.

Case V: Comparison of the proposed algorithm (3.1) with different parameters σn are shown by choosing
λ = 100, γ = 0.1, δn = 0.5, µβn =

n
104n+1 , αn =

n
2n+1 and initializations x0 =

sin(t)+t
2 . Then the results are

presented as follows:

σn
n

2n+1
n

10n+1
n

100n+1
n

103n+1
n

104n+1
No. of Iter. 3 3 3 3 3
CPU time(s) 0.743157 0.723417 0.744866 0.760672 0.675156
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Figure 4: The error plotting of our proposed algorithm (3.1) for different parameters λ .

Table5: Numerical results of different parameters σn.
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Figure 5: The error plotting of our proposed algorithm (3.1) for different parameters σn .

Case VI: Comparison of the proposed algorithm (3.1) with different parameters αn are shown by choosing
λ = 100, γ = 0.1, δn = 0.5, µβn =

n
104n+1 , σn =

n
104n+1 and initializations x0 =

sin(t)+t
2 . Then the results are

presented as follows:

αn
n

2n+1
n

10n+1
n

100n+1
n

103n+1
n

104n+1
No. of Iter. 3 3 3 3 3
CPU time(s) 0.746312 0.748333 0.741478 0.735886 0.769183

Table6: Numerical results of different parameters αn.
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Figure 6: The error plotting of our proposed algorithm (3.1) for different parameters αn .

From Tables 1-6 and Figures 1-6, we noticed that in all the above 6 cases, selecting λ = 100, γ = 0.1,
δn = 0.5, µβn =

n
104n+1 , σn =

n
104n+1 and αn =

n
103n+1 for initialization x0 =

sin(t)+t
2 yield the best results.

4.2. Signal recovery

In this section, a signal recovery problem in compressed sensing is considered for giving an example
of our algorithm application in real world problem. A signal recovery problem can be modeled in the
following least absolute shrinkage and selection operator (LASSO):

min
x∈RN

1
2
∥b −Ax∥22 + λ∥x∥1, (51)

where λ > 0 is a given constant, x ∈ RN is an original signal, b ∈ RM is the observed signal andA ∈ RM×N.
In this case, we setD(x) = ∇ f (x), Sx = T x = J∂1λ (x−λ∇ f (x)) where f (x) = 1

2∥b−Ax∥22 and 1(x) = λ∥x∥1. We
know that if λ ∈ (0, 2/∥A∥2), then S,T are nonexpansive, then our algorithm (3.1) can be applied. And we
setB1(x) = ∂1(x) andB2(x) = x. We choose N = 1024 and M = 512 for the signal size, and the original signal
x is generated by the uniform distribution in [−2, 2] with m = 100 nonzero elements. Mean-squared error
MSEn =

1
N ∥xn − x∥22 < 5 × 10−5 is used to measure the restoration accuracy. Let A be the Gaussian matrix

generated by the MATLAB routine randn(M,N), the observation b be generated by white Gaussian noise
with signal-to-noise ratio SNR=40. The original signal and the measurement by using A with m = 100.
Given that the initial points x0 is generated by command randn(N, 1). We split five cases of our numerical
results.
Case I: Comparison of the proposed algorithm (3.1) with different parameters δn are shown when we choose
µβn =

1.5
∥A∥2

, γ = 0.5
∥A∥2

, λ = 1.5
∥A∥2

, σn =
n

100n+1 and αn =
1

n2+1 . Then the results are presented as follows:

δn 0.1 0.3 0.5 0.9 0.999
No. of Iter. 9092 9088 9083 9075 9074
CPU time(s) 13.9853 15.5584 16.4712 17.8711 17.9848

Table7: Numerical results of different parameters δn.

Case II: Comparison of the proposed algorithm (3.1) with different parameters µβn are shown when we
choose δn = 0.999, γ = 0.5

∥A∥2
, λ = 1.5

∥A∥2
, σn =

n
100n+1 and αn =

1
n2+1 . Then the results are presented as follows:
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µβn
1.5
∥A∥2

1.7
∥A∥2

1.9
∥A∥2

1.99
∥A∥2

1.999
∥A∥2

No. of Iter. 9074 9073 9072 9072 9072
CPU time(s) 16.8849 17.0220 18.0354 17.9963 18.9953

Table8: Numerical results of different parameters µβn.

Case III: Comparison of the proposed algorithm (3.1) with different parameters γ are shown by choosing
µβn =

1.99
∥A∥2 , δn = 0.999, λ = 1.5

∥A∥2
, σn =

n
100n+1 and αn =

1
n2+1 . Then the results are presented as follows:

γ 0.5
∥A∥2

0.7
∥A∥2

0.9
∥A∥2

0.99
∥A∥2

0.999
∥A∥2

No. of Iter. 9072 8995 8965 8959 8959
CPU time(s) 17.1674 15.7297 15.9147 15.4883 15.5108

Table9: Numerical results of different parameters γ.

Case IV: Comparison of the proposed algorithm (3.1) with different parameters λn are shown by choosing
γ = 0.99

∥A∥2 , δn = 0.999, µβn =
1.99
∥A∥2

, σn =
n

100n+1 and αn =
1

n2+1 . Then the results are presented as follows:

λn
1.5
∥A∥2

1.7
∥A∥2

1.9
∥A∥2

1.99
∥A∥2

1.999
∥A∥2

No. of Iter. 9050 7996 7167 6848 6818
CPU time(s) 14.5482 12.5826 11.1581 11.1900 11.1400

Table10: Numerical results of different parameters λn.

Case V: Comparison of the proposed algorithm (3.1) with different parameters σn are shown by choosing
λn =

1.999
∥A∥2

, δn = 0.999, γ = 0.99
∥A∥2

, µβn =
1.99
∥A∥2

, and αn =
1

n2+1 . Then the results are presented as follows:

σn 0.1 0.9 n
n+1

n
100n+1

n
104n+1

No. of Iter. 6611 6608 6587 6583 6611
CPU time(s) 10.4733 10.7185 8.2354 7.7671 11.1091

Table11: Numerical results of different parameters σn.

Case VI: Comparison of the proposed algorithm (3.1) with different parameters αn are shown by choosing
σn =

n
100n+1 , δn = 0.999, λn =

1.999
∥A∥2

, γ = 0.99
∥A∥2

, and µβn =
1.99
∥A∥2

. Then the results are presented as follows:

αn
1

n2+1
1

100n2+1
1

104n2+1
1

n3+1
1

100n3+1
No. of Iter. 6732 6764 6732 6758 6765
CPU time(s) 10.5964 10.4635 10.4464 10.8398 5.5015

Table12: Numerical results of different parameters αn.

From Table7- Table12, we see that in all the above 6 cases, selecting αn =
1

104n2+1 , δn = 0.999, σn =
n

100n+1 ,
λn =

1.999
∥A∥2

, γ = 0.99
∥A∥2

, and µβn =
1.99
∥A∥2

yield the best results, we denote that choosing the best parameters is
depended on number of iterations. We next show the original signal, the measurement by using A with
m = 100, and the reconstructed signals in Figure 7.
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Figure 7: From top to bottom: the original signal, the measurement by usingA with m = 100, and the reconstructed signals by using
the best of all parameters in Table 12.
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Figure 8: The mean-squared error versus number of iterations.

From Figure 8, we see that our proposed algorithm (3.1) converges to the original signal.

5. Conclusions

In this paper, we modify a hybrid projective method to approximate a common solution of hierarchical
fixed point problems for nonexpansive and quasi-nonexpansive mappings, variational inequality, and split
null inclusion problems. We also prove strong convergent theorems under some mind conditions in Hilbert
spaces. An example is infinitely dimensional spaces with their numerical results to support our main result.
Finally, we show the efficiency of the proposed algorithm by applying it to solve the signal recovery problem.
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