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Abstract. This article delves into the investigation of simplex codes of types a, , and y over the ring
Z3Zs. 1t examines the fundamental properties of these codes, including their covering radius, association
schemes, and practical applications in multi-secret sharing schemes. The covering radius analysis sheds
light on the error-correcting capabilities of Z3;Z¢-simplex codes, crucial for reliable communication sys-
tems. Additionally, association schemes for Z¢-simplex codes provide insights into efficient encoding and
decoding strategies, enhancing their performance in various applications. Furthermore, the development
of a multi-secret sharing scheme based on these codes highlights their versatility beyond traditional error
correction, offering promising avenues for secure multi-party communication and data storage. This explo-
ration of simplex codes over Z3Z, not only contributes to theoretical coding theory but also opens up new
opportunities in practical cryptography, advancing the realm of secure information exchange protocols.

1. Introduction

The covering radius, association schemes for linear codes over finite rings, and multi-secret sharing
schemes based on linear codes over finite rings are interconnected concepts within the realms of coding
theory and cryptography. The covering radius of a linear code over a finite ring defines the maximum radius
within which any codeword can be covered by a sphere centered at another codeword. This parameter is
crucial in assessing the error-correction capabilities of the code. Association schemes for linear codes over
finite rings provide a systematic approach to understanding the relationships between codewords within
the code. These schemes categorize the vertices or codewords based on specific properties or configurations,
aiding in the analysis of the code’s algebraic and geometric structures. The association schemes help in
designing efficient encoding and decoding algorithms. Multi-secret sharing schemes based on linear codes
over finite rings utilize the properties and configurations established by association schemes to securely
distribute multiple secrets among parties. By leveraging the structure of the code, these schemes enable the
distribution, combination, and reconstruction of secrets in a manner that ensures only authorized subsets of
parties can access the secret information. Overall, the covering radius, association schemes, and multi-secret
sharing schemes are integral components of coding theory and cryptography, working together to enable
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efficient error correction and secure communication in various practical applications. For more detailed
information, refer to the following references [1, 4-8, 14].

The aim of this article is to provide a comprehensive exploration of simplex codes of types «, 5, and y
over the ring Z37Z,, focusing particularly on their covering radius, association schemes, and applications in
multi-secret sharing schemes. The covering radius of Z3Zs-simplex codes of types «, , and y will be ana-
lyzed to understand the maximum radius within which any codeword can be covered by a sphere centered
at another codeword. Furthermore, the article will delve into association schemes tailored for Zs-simplex
codes of types a, B, and y, aiming to elucidate the structural properties and relationships between code-
words within the code. Finally, the article will explore the implementation of multi-secret sharing schemes
based on Z3Z-simplex codes of types «, 8, and y, demonstrating how these cryptographic protocols lever-
age the properties of simplex codes to securely distribute, combine, and reconstruct multiple secrets among
authorized parties. Through a thorough examination of these topics, the article aims to contribute to the
understanding and advancement of coding theory and cryptography, with practical implications for error
correction and secure communication systems.

The article is organized as follows: Section 2 provides background information and preliminaries
regarding the different weights in Z3Z4 and the covering radius, including discussions on upper and lower
bounds. In Section 3, the focus shifts to simplex codes of types «, , and y over Z3Z, exploring their
construction and properties. Following that, Section 4 delves into an in-depth analysis of the covering
radius of Z3Zs-simplex codes of types a, 8, and y, examining various factors influencing this critical
parameter. In Section 5, attention is directed towards association schemes tailored for Zs-simplex codes
of types a, 8, and y, shedding light on the structural relationships between codewords within the code.
Finally, Section 6 presents a discussion on multi-secret sharing schemes based on Z3Z-simplex codes of
types a, f, and y, detailing their implementation and cryptographic implications in securely distributing
and managing multiple secrets among authorized parties. Through this structured approach, the article
aims to provide a comprehensive understanding of simplex codes, covering radius analysis, association
schemes, and multi-secret sharing schemes, thereby contributing to advancements in coding theory and

cryptography.

2. Some Background and Preliminaries

This section presents preliminary findings based on references [2, 3]. Here, Z3 and Z; represent the
rings of integers modulo 3 and 6 respectively, and Z; and Z{ denote the space of n-tuples over these rings.
We define a ring

737 =1{00,01,02,03,04,05,10,11,12,13, 14, 15,20, 21, 22, 23, 24, 25},

with integers modulo 3 and 6. An non-empty set C is termed a Z3;Zs-additive code if it forms a subgroup
of Z} x ZY. In such cases, C is isomorphic to an abelian structure Z} x Z{ for some A and y, with the type
of C being 3%6* as a group. Consequently, C comprises |C| = 3" X 6¢ codewords, and the number of order
for any two codewords in C is also |C| = 34 x 6. Furthermore, a linear code C of length n over Z is an
additive subgroup of Z, where an element of C is called a codeword of C.

2.1. The Different Weights in Z3Z

The Hamming weight wy(c) of a vector ¢ in (Z3Z)" counts the number of non-zero components within
the vector. In addition to the Hamming weight, three other weight measures are commonly used: the Lee
weight w; (c), the Euclidean weight wg(c), and the Chinese Euclidean weight wcg(c). These weights provide
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alternative perspectives on the structure of the vector ¢ within the space (Z3Z)".

8’60 st=n BUE(Q) ¢, 0<i<n wee(c;)
800 — EJUL(Q) 01,0510 || 1 8(1) 05,10 (1)
01,05,10 1 11,15 2 1115 3
0204201115 || 2 02,0420 || 4 02.20,04 3 (1)
04,2011, 14122125 | 5 20,
03,12,21,14,25 || 3 e > 12.01.14,0325 | 4
13,0204 1 2 : 13 5
73 5 - - 55,24 ?
73 13

2.2. Covering Radius: Upper and Lower Bounds

In this subsection, we will explore upper and lower bounds on the covering radius of a code. The
covering radius is a crucial parameter in coding theory, quantifying the maximum distance between a
codeword and its nearest neighbor outside the code. According to [9, 13], the covering radii of a code C
over Z3Zs, concerning the Lee, Euclidean, and Chinese Euclidean distances, are provided as follows:

rp(C) = max {min dr(x, c)}, 2)
xeZ]xz \ ceC
and
Zg X Zg = UCECSrD (C)/ (3)

where S, (x) = {y € ZI X Z%;d(x,y) < rD} )
Definition 2.1. For a ternary linear code C without a zero coordinate,rp(C) = 5]
Proposition 2.2. Let C be a code over Z x Z2 and p(C) be the Gray image of C, then rp (C) = r (p(C)).

The subsequent result proves to be valuable in determining the covering radius of codes over the ring Z3Z.

Proposition 2.3. If Cy and C; are codes over Z3Zy has length ng and ny, of minimum distance dy and dq, generated
by matrices Gy and G, respectively, and if C is the code generated by

[0 &
o~ &)
then r4(C) < ry(Co) + r4(Cq), and the covering radius of the concatenation of Cy and Cy, denoted C,, satisfies the
following
ra(Ce) = r4(Co) + ra(C1)

for all distances d over Z3Z.

3. Simplex Codes of Types o, §, and y over Z3Z;

In this section, according to [5, 6, 12, 14] we delve into the construction of Simplex Codes of Types «,
B, and y over the ring Z3Z¢. Simplex codes, a class of linear error-correcting codes, play a pivotal role in
various communication and data storage systems due to their simplicity and efficiency.
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Definition 3.1. The generator matrix of Sy, the simplex code of type a over Z3Zs is constructed by concatenating
6" copies of the generator matrix of 55 and 3k copies of the generator matrix of S¢,, given by

6,k
& :( 1g®Ty, | 13 ®GE, ),forkz 1, (4)
with
00---0 11---1 22---2
TY, = , fork>2, 5
3k ( Tg,k—l Tg,k—l Tg,k—l ) f ©)
and
00...0 11...1 22...2 33...3 44...4 555...5
GY = , fork>2. 6
6k ( Gg,k—l Gg,k—l Gg,k—l Gg,k—l Gg,k—l Gg,k—l f (©)

Remark 3.2. The simplex code of type a over Z3Z. has a length equal to 21 x 3%, and the total number of codewords
is given by 36", where ko and ky are certain exponents.

Example 3.3. Whenk =1and ko =0, ki = 1, all codewords of the simplex codes Si are

c; = 000000000000000000000000000000000000,
c; = 000102030405101112131415202122232425,
c3 = 000204000204202224202224101214101214,
c4 = 000300030003000300030003000300030003,
cs = 000402000402101412101412202422202422,
s = 000504030201202524232221101514131211.

The type f of the simplex codes Si over Z3Zy is a punctured version of §¢. The number of codewords is

3kgkt and its length is w

Definition 3.4. The generator matrix of Sf is the concatenation of % copies of the generator matrix of the

ternary simplex code Sgk and (3ka1) copies of the generator matrix of the simplex code S’Z,k over Zs, given by

fﬁﬁ=[ 1 pr_pgrop ®T§k ‘ 1@@@2,{ ],fOT’kZl/ ?)
2 4 2 ’
where
11---1 00---0 111 0
! —( 5 ),forkZS, with T :( ) ®)
3k Tg"k 1 T3,k—1 3.2 012 1
and
11---1 00---0 22---2 33...3
h=o @ o= ( oimis | T n ) ©
' 6k-1 6k-1 k=1 Hik-1
where Ay is a k x 352X — 1) matrix defined inductively by Ay = (135) and
00---0 11--+1 22---2 33---3 44.--4 55.-.5
= ( A1 Gg,k—l A1 Gg,k—l Ak Gg,k—l )/ (10
for k > 2, and py is a k x 2513 = 1) matrix defined inductively by pq = (12) and
00---0 11---1 22---2 33---3
= ( et Ggpy o Ggeq o ke a
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In the following we define the simplex code SZ of type y over Z3Zs. Asin[12], let Gg , be the kX 2k=1(3k — 2k
matrix defined inductively by

11---1 00---0 22...2 33---3 44---4
GV :( y y y )4 y (12)
6k Gg,kfl Gé,kfl G6,k71 Gé,k*l G6,k71
with
111111 0 2 3 4
Y
GGIZ_( 012345 1 1 1 1 ) (13)

Note that ng is obtained from Gg, by deleting 2k=1(2k + 3%) columns. By induction it is easy to verify that
no two columns of G76/ , are multiples of each other.

Proposition 3.5. Let S} be the code of type y over Z generated by G, . Note that the length of S, , is 27 (3" = 2").

Definition 3.6. The generator matrix of the simplex code S, over ZsZs is the concatenation of 251 (3% — 2%) copies

of the generator matrix of S§, and 2 X 3k copies of the generator matrix of Sg,k, given by

®Y = [ 12k—1(2k_3k) ® Tg,k ‘ ].3k ® Gg,k :I,fOT' k > 2, (14)
Note that the length of the simplex code SZ over Z3Zs of type y is 65(3¢ — 2F).

3.1. The Different Weight Distribution of Z3Z-Simplex Codes of Types a, p and y

From the structure of the generator matrices associated with the linear codes Z3Z¢-linear codes S?, Sf
and S;:, we can deduce the ensuing outcomes, shedding light on the different distribution weights.

‘ Hamming Weight
St | 0,31(3x2¢1+1),31 (4x 251 +1),31 (521 +1)

k k k k
8 2 X 6° 2X3 5x6" 2x3 2
Sp 0272 +1)(3-1), 5+ o -1, ===+ = 22 -1
S| 0,5x 61 -3x2%24+3F-1

Table 1: Hamming Weight of S}/, Si, and SZ.

\ Lee Weight
[ ‘ 0’ 2k+2 X 32k—2/ 2k—1 X 32k
sf [ 0,3x22(3 = 1), 2x 31 (26 - 1) (3¢ - 1),
(3¢ - 1)[3x22(3F - 1) + 2 x 31 (2t - 1)
SV ‘ 0’ 2k—2 (3k+1 —7x Zk—l) + 3k—1

Table 2: Lee Weight of Sg, Sf, and S;(
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\ Euclidean Weight

S]z: ‘ 0, 2k—1 X 32k+1’2k+3 X 32k—2’ 19 % 2k—1 X 32k—2

SP 10,9 x 262 (3 - 1)2 L4 x 31 (2’< - 1) (3’< - 1),
(3’< - 1) 3k-1 (19 x 2k=2 _ 4) -9x zk—Z]

SV | 0,22(19%x 31 —17x 2 1) + 31

Table 3: Euclidean Weight of S;:, Sf, and SZ.

\ Chinese Euclidean Weight

Al 0,28 x 3%

St 10, (2 +1)(3-1),6 - 1,2¢(3-1) -1
|

S 0,65 —5x 41 +31

Table 4: Chinese Euclidean Weight of S‘k*, Sf, and S

4. The Covering Radius of Z3;Z¢-Simplex Codes of Types «, f and y

3614

In this section, we explore the calculation of the covering radius for these specific codes. To achieve this,
it is crucial to have a thorough understanding of the covering radius of repetition codes, see [4, 10, 12]. This
knowledge forms the foundation for determining the covering radius of simplex codes of types a, f and y.

Theorem 4.1. The covering radii of the Z3Z4-simplex codes of type o are given by

1. r(S§) <31 x 28 x
2. (13 x 2K+2 x 321

2%k-1 _ k42
3H — 3,

— 2% x 35 < rg(S%) < 85 x 2 x 3%~1 — 3643,

3. VCE(S][:) < 5 x 2k x 321 _ 9 3k,

Proof. According to [4, 10, 12], from Definition 2.1 and Proposition 2.3 the the covering radius rL(5%), re(SY)
and rcg(S}) are given by

1. Regarding the code S} and its association with the Lee weight, we have

rL.(S¢)

2. For the code S

IN A

IA

IA

IA

IA

a
k

rL(6°55,) + (3%,
6°rL(S5,) +37L(Se,)
6 (S5 ) + 37L(SE )

1
6"( 23 )+3k(5><9><6’<1+5><9><6“+...+5><9><6°)

ok+232k=1 | 3k+2 (6k _ 1)

< 31 x 2K x 3%-1 _ 3k+2,

with respect to the Euclidean weight, we have

re(SY) > 4x3x 6 +16x 3565 - 1)
> 13 x 22 % 321 2% x 3k,
On the other hand,
re(S8) < 4x3%x6h+33x 3565 - 1)
< 85 x 2k x 3% _3k+3,



3. In reference to the code S} and its correlation with the Chinese Euclidean weight, we have

rce(Sy)

O

The following theorem presents the covering radius of Z3Z¢-simplex codes of type f.

Theorem 4.2. The covering radius of the Z3Z¢-simplex codes of type f is given by
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IN A

IA

IA

IN

4 x 3
6k
&

VCE(6k5§,k) + rcE(3"SZ,k)
6 rce(S5,) + 3 rce(S)

6 ra(S5) + 3rce(Se,)
)+2><3k(6k—1)

5 x 2K+l 5 32k=1 _ 9 5 3K,

(1) rL(Si) < (3k _ 1) [(Zk_1)2;3k_1)2 + [2k—2(3k+2 _ 15) _ 6]],

2) T’E(Sf) < (3k ~1) [(zk_l)zgfsk_l)z + [2k_2(3k+2 —45) — 36]],

(3) rex(S)) < (3 = 1) | EE 4 [2k3 - 5) 5]

Proof. 1. Regarding the code Sf and its association with the Lee weight, we have

1)@k -1)
2oudobg ).

r(Sh)

A

IA

2. For the code Si

re(Sh)

IA

IA

IA

IA

IA

[
.

@ -1)@3 -1)

2

2 -1E -1

2

@O D150 gy 80 1y

d—ﬁ

2

rH(s‘;k) +

20

(2 -17@ - 17

3

k _
TL((3 > DSZk)

3k—1
rL(s/;k) M Cinl)) )rL(sgk)

2
(3*-1)

)

+ 2232 - 15) - 6]] .

with respect to the Euclidean weight, we have

e ((zk - 1)2(3k - 1)S§k) s ((3’<2— 1)5€,k)
R WS IR

@k - 1)2(3k -, )+ (3k2— D, &)
@-1PE-1p 1)23(3k il [3* (65" —1) - 45 (2" - 1))
) [w + [22(3+2 - 45) - 36]] .

3615
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3. For the code Sﬁ with respect to the Chinese Euclidean weight, we have

rCE(Si)

O

IN

IN

TCE(WSQ)H@(( —1)55)
(2k - 1)(3* - 1)r s° )+ (3¢ - 1)7 ")
T Ty, 5 L

k k k _
% w(sl )+ (3 - D, /)
@-12E-1° 1)23(3k -1 + [36 (61 —1)—20(2"" - 1)]
(3k -1) [w + [2k(3k+1 _ 5) _ 8:[:| )

Theorem 4.3. The covering radius of the simplex codes of types y is given by
(1) r.(S)) < 6 (323k — Zo¥) - 143k,

(2) re(S]) < 3¢[ L6k - 2k
(3) rce(S)) < 202 (103% — 5% 3F) - 3¢ (52

Proof. 1. Regarding the code SZ and its association with the Lee weight, we have

r.(S})

2. For the code SZ

rE(S))

3. For the code S;{'

rce(Sy)

IN A

IN

IN

IN

<

IA

IA

IA

<

IN A

IA

IN

IN

(42 +45)-72],
- -32).

(@ (3 =25 8] ) + r2x 3¢S) )

21 (35 = 2 ri(S) ) + 2% 3k (S) )

281 (35— 2 ry(S) D +2x3 (s

8x 671 (3 —2F) + 2 x 3F [25—7 (61-1)-14 (22’<-2)]

32 21 194
K k 193 ok
6 (153 3 ) 5 3

with respect to the Euclidean weight, we have

re2 (35 - 25) 8] )+ re@ x 3¢S) )
21 (35— 2 re(S) ) + 2 x 3¥re(S) )
27 (35 = 25) ru(S),) + 2 X 3¥re(S],,)

8x 61 (3" - 2’<) + 75 x 3F [36 (6“5—_1) - 4(2’<—1 - 1)]

3k [8356" 2k (gzk + 45) - 72] )

with respect to the Chinese Euclidean weight, we have

ree (@1 (36 = 28)81,) + ree(2x 3¢S) )
251 (3 = 29) rce(S) ) + 2 x 3rce(S),)
27 (35 = 2 ry(S) ) + 2 x 3¥rce(S),)

8 x 651 (3’f - 2") +2x5x3F [36(6k_15_ 1) - 4(2k—1 - 1)]

2k+2
ok+2 (1032k 5 x 3’<) _ 3 (2— - 32).

3

3616
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5. Association Schemes for Z¢-Simplex Codes of Types &, f and y

As indicated by references [11, 15, 16], linear codes find application in the construction of association
schemes. An association scheme characterized by d classes, defined on a set B, entails partitioning the
Cartesian product B X B into (d + 1) distinct classes denoted as X = {X, Xy, ..., Ly}. These classes are subject
to the following properties: The pair (B, X) is called a d-class association scheme if

1. o ={(x,x), x € B}
2. B x B is a disjoint union of Xy, X1, ..., Ly

3. For each integer 0 < i < d, there exists an integer 0 < j < d such that I; = X!, where L} =
{(xl y)/ (yr X) € Zl}
4. For any 0 < i, j,k < d and each pair (x, y) € i, assuming that pf.‘]. is an integer, then

{eeBi(x2) e LGy e} = pf .

Remark 5.1. [11] For B = Zj, define ¥; as the set {(x, y) € Zyx Zy|d(x,y) = i}. The pair (Z}}, T) forms an i-class
association scheme known as the Hamming association scheme.

We have the following lemma that clarifies the relationship between linear codes and association
schemes, highlighting their connection.

Lemma 5.2. [15] Consider a linear code C over Z,, with nonzero weights wy and wy. Let ¢y and c; be two linearly
independent codewords of C such that w(c1) = w(c2) = wy. For any a,b € Z, if w(acy + bcy) = wo, then the
restriction of the Hamming association scheme to C forms a i-class association scheme if and only if wy # wy +1i— 1.

While Z3 is a subset of Z, every code defined over Z3Z, extends naturally to being defined over Zs.
Consequently, the following results hold true.

Theorem 5.3. Let S and Sﬁ are a linear code over the ring Z. Then the restriction to S;' and Sf of the Hamming
association scheme is a 3-class association scheme.

Proof. By Lemma 5.2, if ¢;, c; be two codewords of S such that ¢, ¢j, forl <i#j< 3k x 6kt are linear
independent. According to [6, 12], we have w(c;) = w(cj) = wy, for1 <i# j < pk and for any a,b € ]F; we
have w(ac; + bcy) = wy, for 1 <i# j < 3k x 64, where

3x6"Vif ccieSY, forl1<i#j<30x6M,
wy Awy ={4x 6 if cci€S, for1<i#j<3%x6h,
5x6"Vif cicieSY, forl<i#j<30x6h

It is clear that w, # wy + 2.
The proof for the code ]f is obtained using a similar approach. [J

Theorem 5.4. Let SZ is a linear code over the ring Z¢. Then the restriction to Sz of the Hamming association scheme
is a 2-class association scheme.

Proof. According to [6, 12] and Lemma 5.2, if ¢; and ¢; are two codewords of S;{' such that ¢; and c;, for
1 <i# j<pt arelinearly independent, then w(c;) = w(c;) = wy =3 x 22[5x 32 - 2F2] for 1 <i # j < pF,
and for any a,b € F;, we have w(ac; + bcj) = wy = 3 X 2k=2[5 x 3k-2 - 2k=2] for 1 < i # j < p*. It is evident that
w,#w+1. O
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Example 5.5. Let Sg be a linear code over Z¢ with parameters [16,2,11], generated by

o =

1110111111022233 )/ (15)

0121012345113512

all codewords of Sg are given by

0000000000000000, 0121012345113512, (0242024024220424, 0303030303333330,
0424042042440242, 0545054321553154, 1110111111022233, 1231123450135145,
1352135135242051, 1413141414355503, 1534153153402415, 1055105432515321,
2220222222044400, 2341234501151312, 2402240240204224, 2523252525311130,
2044204204424042, 2105210543531554, 3330333333000033, 3451345012113545,
3512351351220451, 3033303030333303, 3154315315440215, 3215321054553121,
4440444444022200, 4501450123135112, 4022402402242024, 4143414141355530,
4204420420402442, 4325432105515354, 5550555555044433, 5011501234151345,
5132513513204251, 5253525252311103, 5314531531424015, 5435543210531521.

If, c1 = 0545054321553154 and ¢, = 1110111111022233 are linear independent and w(c1) = w(cz) = w1 = 14,

w(cy + ¢2) = wy = 14, we have w(cy) # w(c1) + 2, . Then, the restriction to Sg of the Hamming scheme is a 3-class
association scheme.

Example 5.6. Let S} be a linear code over Ze with parameters [76,3,46], generated by

111111117111117111111111111111111111110000000000222222222233333333334444444444
0000001111112222223333334444445555551111110234111111023411111102341111110234 |,
0123450123450123450123450123450123450123451111012345111101234511110123451111

4 .
some codewords of S; are given by

0000000000000000000000000000000000000000000000000000000000000000000000000000,
1111111117111117111111711111111111111110000000000222222222233333333334444444444,
0000001111112222223333334444445555551111110234111111023411111102341111110234,
0123450123450123450123450123450123450123451111012345111101234511110123451111,
1234501234501234501234501234501234500123451111234501333334501244444501235555,
2402405135132402405135132402405135133513512252135135003035135122525135134414,
3513510240243513510240243513510240243513512252351351225202402455253513512252,

5315314204203153152042041531530420425315314210315315205420420415431531530432
5432104321053210542105431054320543215432105321321054310521054320541054321543.

If
o1 = 240240513513240240513513240240513513351351225213513500303513512252513
5134414

and
¢ = 351351024024351351024024351351024024351351225235135122520240245525351

3512252

are linear independent and w(c) = w(cz) = w1 = 68, w(c1 + c2) = wy = 68, we have w(cy) # w(c1) + 1. Then, the
restriction to Sg of the Hamming scheme is a 2-class association scheme.
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6. MSSS Based on Z3Z,-Simplex Codes of Types «, 3, and y

In this section, we introduce a multi-secret sharing scheme that relies on linear codes and employs
Blakley’s method, as outlined in the work by Alahmadi et al. [1]. The steps for this multi-secret sharing

scheme are as follows: Consider subcodes of codes St Sf and SZ denoted as éi‘, Sf, and SZ over ZzZs with

a generator matrix ¢, ®f, and ® respectively. This approach builds upon the principles presented in [1],
offering a robust framework for secret sharing through linear codes. By leveraging the properties of linear
codes and Blakley’s method, this scheme provides an effective means of securely distributing multiple
secrets among authorized parties while ensuring confidentiality and integrity.

The secret distribution process occurs within the secret space denoted as (Z3Z)", where each codeword
represents a secret s = (s1,5,...,5,). Executed by the dealer, who possesses knowledge of the secret s, the
share @ for a user with the associated codeword c is computed using the scalar product: @ = h(s) = c- s,
where t indicates transposition. For secret recovery, a system is constructed involving the private secret

s and the coalition corresponding to the rows of ®°, where 9 € {a,,)}. This system of equations is

represented as ©° - s' = @', where @ = (@1, @2, ..., @), and @; represents the share linked to the i" row of

—1 3t

%%, with 9 € {a, B, 7). The solution set forms an affine space with the associated vector spaces S¢ , Si ,and

—~1 . —
SZ . Assuming S, Sf, and S;; are Linearly Complementary Dual, meaning
— —\ /—\1 —\1L /—
mnk((ﬁs) = rank [((‘59)((6‘9) ] = rank [((‘39) ((5‘9)] #0, (16)

for 9 € {a,B,y]}, the system admits a unique solution within C. The secret retrieval involves solving the
linear system:
(/5\9. t_
s =, Sefapyl a7
H(®%)-s'=0, 9€la,py},

where H (6\9) signifies the parity-check matrix of ®°.

6.1. Properties of the System and Information Pertaining to Coalitions

The proposed scheme’s characteristics underscore its resilience and efficiency in multi-secret sharing.
By harnessing the power of linear codes and Blakley’s method, the scheme establishes a sturdy framework
for secure information distribution. Particularly, parameters like C = [n, M, d] shed light on the scheme’s
capacity for error detection and correction. Furthermore, information pertaining to potential coalitions
is crucial for assessing the scheme’s security implications. Understanding these aspects contributes to a
comprehensive evaluation of the scheme’s effectiveness and reliability in real-world applications.

Theorem 6.1. The multi-secret sharing scheme yields the following insights:

1. The access structure comprises a M-tuple of codewords that exhibit linear independence.
2. A minimum of M elements are required to recover the secret.

Theorem 6.2. Consider C as an C = [n, M, d]-code over Z3Z¢ with a generator matrix Eﬁ\s, where 9 € {a, B,v}. In
a multi-secret-sharing scheme built upon C, the count of minimal coalitions is determined by:

k-1 )

&QW—M
]:

k! (18)
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6.2. Applications Examples
Example 6.3. When k = 2, the generator matrix of 52‘ is provided as follows:

G = 10111111333333555555 19)
~101012345012345012345 | (
Following Equation 16, we have
rank(@) = rank [(@) (@)L] = rank [(@\0‘)l (@)] =2#0. (20)

If s = (45432105054321210543) belongs to S%, we authenticate a multi-secret-sharing framework using Equation 17.
This entails computing the shares according to S as described below:

@ = (12), (21)

let s = (515283545556575859510511512513514515516517518519520) € S5. After closely examining the system of equations
presented in Equation 17, we deduce:

10111111333333555555) ( 51
01012345012345012345 || s2
10000000000000000052 || s3
(01000000000000000015 || s4
00100000000000000052 || s5
00010000000000000001 || se
00001000000000000010 |] s7
00000100000000000025 || ss
00000010000000000034 || s9
00000001000000000043 |] 510
00000000100000000030 || s11
00000000010000000045 || s12
00000000001000000054 || 513
00000000000100000003 || 514
00000000000010000012 |] 515
00000000000001000021 || s16
00000000000000100014 || s17
00000000000000010023 || 518
00000000000000001032 |] 519
00000000000000000141 ) \ 529

(22)

SO OO DO OO OO DODODODTOCDOOONKF

A unique solution exists for the system of equations, yielding s = (45432105054321210543). Additionally, the count
of minimal coalitions is 18900.

Example 6.4. For k = 4, the generator matrix of S} is presented as follows:

33333333333333333333333333333333333333333333333333
6 = 11111111110000000000222222222233333333334444444444 (23)
T 111111102341111110234111111023411111102341111110234|°

01234511110123451111012345111101234511110123451111

Following Equation 16, we have

mnk(@) = rank [((5/\“) (@)L] = rank [(@)l ((;)] =4+0. (24)
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Should the vector s = (21054344140543212252432105003005432122522105434414) be a member of the code S}, we
proceed to authenticate a multi-secret-sharing framework using Equation 17. This process involves computing shares

in accordance with SZ as delineated below:

@ = (0204),
Consider
s = (515253545556575859510511512513514515516517518519520521522523524525526527528529530531532

%%
$33534535536537538530540541542543544545546547548549550) € 54-

Upon thorough analysis of the equations outlined in Equation 17, we infer:

33333333333333333333333333333333333333333333333333) ( 51
11111111110000000000; 33333333334444444444 || sp
11111102341111110234111111023411111102341111110234 || s3
01234511110123451111012345111101234511110123451111 || s4
10000000000000000000000000000000000000010000100043 || s5
01000000000000000000000000000000000000010000020015 || s¢
00100000000000000000000000000000000000010000110015 || s7
00010000000000000000000000000000000000010000000011 || sg
00001000000000000000000000000000000000010000120041 || sg
00000100000000000000000000000000000000010000010043 || 510
00000010000000000000000000000000000000010000020000 || 11
00000001000000000000000000000000000000010000020024 || 512
00000000100000000000000000000000000000010000020033 || 513
00000000010000000000000000000000000000010000020042 || 514
00000000001000000000000000000000000000000000100044 || 515
00000000000100000000000000000000000000000000020010 || 516
00000000000010000000000000000000000000000000110010 || s17
00000000000001000000000000000000000000000000000012 || s1g
00000000000000100000000000000000000000000000120042 || 519
00000000000000010000000000000000000000000000010044 || 57
00000000000000001000000000000000000000000000020001 || 591
00000000000000000100000000000000000000000000020025 || 9o
00000000000000000010000000000000000000000000020034 | 593
00000000000000000001000000000000000000000000020043 | 594
00000000000000000000100000000000000000000000120022 | | 595
00000000000000000000010000000000000000000000010024 | | 59
00000000000000000000001000000000000000000000100024 || 577
00000000000000000000000100000000000000000000020050 | | spg
00000000000000000000000010000000000000000000110050 || 529
00000000000000000000000001000000000000000000000052 || s3(
00000000000000000000000000100000000000000000010015 |} 531
00000000000000000000000000010000000000000000010033 || s3>
00000000000000000000000000001000000000000000010042 | s33
00000000000000000000000000000100000000000000010051 || 534
00000000000000000000000000000010000000010000120021 | | s35
00000000000000000000000000000001000000010000010023 | | 53¢
00000000000000000000000000000000100000010000100023 | | 537
00000000000000000000000000000000010000010000020055 | | s3g
00000000000000000000000000000000001000010000110055 || s39
00000000000000000000000000000000000100010000000051 | | 540
00000000000000000000000000000000000010010000010014 |} 5,47
00000000000000000000000000000000000001010000010032 || 54>
00000000000000000000000000000000000000110000010041 || 543
00000000000000000000000000000000000000020000010050 || 44
00000000000000000000000000000000000000001000110030 || 545
00000000000000000000000000000000000000000100000032 || 44
00000000000000000000000000000000000000000010120002 || 547
00000000000000000000000000000000000000000001010004 || 548
00000000000000000000000000000000000000000000001023 || 549
\00000000000000000000000000000000000000000000000141/ 5

(25)

O 000 0000000000000 00000C00000000000000000CO0COOROND

The system of equations admits a solitary solution, resulting in
s = (21054344140543212252432105003005432122522105434414).
Furthermore, the tally of minimal coalitions amounts to 171400800.

The importance of applying the covering radius of Z3Z¢-Simplex Codes of types a, 8, and y, association
schemes for Z¢-Simplex Codes of the same types, and the multi-secret sharing scheme based on these codes
lies in their collective ability to ensure reliability, efficiency, and security in various communication and
information sharing scenarios. The covering radius serves as a fundamental measure of the error-correction
capabilities of these codes, providing crucial insights into their robustness against noise and interference in
communication channels. By accurately assessing the maximum distance between codewords, it enables
the design and evaluation of codes optimized for specific error-correction requirements, thus enhancing
the overall performance of communication systems. Association schemes complement this by offering a
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structured framework for analyzing the relationships and symmetries within the codes, facilitating the
development of efficient encoding and decoding algorithms tailored to exploit these properties. Moreover,
association schemes aid in identifying subsets of codewords with desirable properties, which can further op-
timize error-correction performance and decoding efficiency. Additionally, the multi-secret sharing scheme
based on Z3Z-Simplex Codes of types «, §, and y leverages their inherent error-correction capabilities and
algebraic structure to securely distribute multiple secrets among participants while ensuring confidentiality
and resilience against eavesdropping and malicious attacks. By integrating these concepts and techniques,
communication systems can achieve enhanced reliability, efficiency, and security, thereby addressing the
diverse needs of modern information exchange and storage applications.

7. Conclusion

In conclusion, this article has explored the properties and applications of simplex codes of types «, B,
and y over the ring Z3Z. It has investigated various aspects including the covering radius of these codes,
association schemes for Zs-simplex codes, and a multi-secret sharing scheme based on them. The analysis
of the covering radius provides insights into the error-correcting capabilities of these codes, crucial for their
practical implementation in communication systems. Understanding association schemes for Zg-simplex
codes aids in constructing efficient encoding and decoding algorithms, enhancing their performance in
various applications. Moreover, the development of a multi-secret sharing scheme demonstrates the
versatility and security potential of these codes beyond traditional error correction. By leveraging the
algebraic structure of Z3Z¢-simplex codes, novel cryptographic primitives can be designed for secure
multi-party communication and data storage. Overall, the study of simplex codes over Z3Z, offers valuable
contributions to both theoretical coding theory and practical cryptography, paving the way for advanced
communication systems and secure information exchange protocols.
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