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Abstract. Soft topology establishes its importance as a frame of reference through numerous formulas
derived for each classical topological concept, implying that classical topology is a special case obtained
when the set of parameters is a singleton. In this work, we successfully solve two open problems concerning
the relationships between two types of soft separation axioms in two categories. Then, we amend existing
example showing that soft TB

0 ↛ soft TS
0 . In this context, we clarify that soft TB

0 → soft TS
0 if the set of

parameters is finite. In contrast, we construct a soft topological structure with infinite set of parameters
to illustrate that soft TB

0 ↛ soft TS
0 . Finally, we define a new form of soft points inspired by fuzzy points.

Surprisingly, the new definition results in a spectrum of soft points that starts at εx and ends at (x,P) for
every x ∈ U, where P is the set of parameters andU is the universe. We make use of this sort of soft points
to create two classes of separation axioms via soft topologies: {soft T0, soft T1, soft T2, soft T3, soft T4

} and
{soft T00, soft T01, soft T02, soft T03, soft T04

}. The master features of these axioms are scrutinized and the
relationships between them as well as their relationships with the foregoing ones are revealed with the help
of interesting counterexamples. Especially, we clarify that the axioms of soft TS and soft TE structures are
special case of the current classes. Among the interesting results that we obtain are the identity between
soft T3 and classical T3 structures and the equivalence between soft T1 and soft TB

1 structures.

1. Introduction

In the real world, managing and modeling various sorts of vagueness is essential for addressing chal-
lenging issues across multiple areas, such as medicine, engineering, economics, environmental science, and
social sciences. While present frameworks such as rough sets and fuzzy sets offer valuable instruments for
treating ambiguity and uncertainty, each has limitations. A common shortcoming among these mathemat-
ical tools is the absence of adequate parameterization capabilities. To overcome this loophole, Molodtsov
[28] put forward the idea of soft sets with various applications in different areas such as probability theory,
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game theory and operations research in 1999. Then, in 2002, Maji et al. [26] invested soft sets to cope with
decision-making problems. In 2003, the notions of soft subset, complement, union and intersections were
defined and studied by Maji et al. [27]. Ali et al. [6] suggested a new definition of the complement of a soft
set and introduced the concepts of restricted union, and extended and restricted intersections between soft
sets. To keep the properties of classical set theory in the frame of soft set theory, new types of soft subsets
and soft unions were adopted by Abbas et al. [1] and Al-shami and El-Shafei [10].

In 2011, soft topology was declared by [32] and [19]. Soft separation axioms were first introduced in [23].
They followed different methodologies to set up topological structures via soft settings. Topology definition
displayed by [32] is more consistent in keeping symmetry and periodicity of topological concepts. So, the
discussion is conducted through this definition in this article. Following that, researchers, scholars, and
intellectuals navigated the notions of basis [2], separation axioms [20, 31], covering [15, 24], connectedness
[5], continuity [16, 38], cluster operator, homogeneity [4], expandable spaces [7, 30], embedding theorem
[29], and metric structures [34] through soft topologies. To emphasize the role of soft topology as an applied
framework, it has been employed some soft topological concepts to tackle practical problems in real life;
see, [11].

Soft separation axioms are still one of the most active subjects in soft topologies, it has been defined
several types such as those introduced in [13, 14, 31]. It is known that all separation axioms (except
normality) separate points or points and closed sets, so the concept of point is essential in separation
axioms definition. In soft set theory, the concept of soft points does not have a unified definition. The soft
points of the form εF were introduced by [37], soft points of the form εx were given by [34] and soft points
(x,P) were presented by [32]. The concepts of soft belonging and soft none belonging, also, do not have
a unified definition. The concepts ∈̃ and <̃ (known as total belonging and partial none belonging) were
initiated by [37], the concepts ∈̃ε and <̃ε were familiarised by [22], and the concepts ⋐ and > (known as
partial belonging and total none belonging) were explored by [21]. The diversity of definitions of soft points
and belonging and none belonging relations produces different classes of soft separation axioms. Some of
these classes are soft TS

i [32], soft TE
i [21], soft TG

i [22], soft TB
i [17], soft TH

i [23], and soft TT
i [35], where

i = 0, 1, 2, 3, 4. Some of these classes behave similarly as the separation axioms do in general topology; for
example, they have a soft version of the following set of implications in general topology:

T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0

Some authors ignored the uncertainty of soft topology and overlooked the factors that control separation
axioms; types of soft points and relations. This resulted in generalized some classical results and rela-
tionships of topological concepts in mistake. Therefore, the authors of [8, 9, 25, 33] demonstrated these
errors with some examples and counterexamples and derived the necessary conditions to preserve these
results and relationships via soft topology. However, some errors are still existed. On the other hand, some
counterexamples that show the failure of some implications have not been built. Moreover, some relation-
ships between classes of soft separation axioms have not been discovered and are still open problems. The
existence of the aforementioned obstacles encouraged us to write this manuscript, which we devoted to
solving open problems and mending some invalid results of [8] as well as displaying novel classes of soft
separation axioms with fuzzy flavor.

It is organized this work as following. After this introduction, it is recalled the different sorts of soft
separation axioms and the results that are required to make the content is self-contained in Section 2. Then,
we devoted Section 3 to answer the question “Is every soft TB

i -structure soft TE
i for i = 2, 4?”, which exhibited

as an open problem by monograph [8]. After that, in Section 4, we build a counterexample to show that the
relationship between soft TB

0 and soft TS
0 structures investigated in [8] is not always true. We also prove that

soft TB
0 structure is soft TS

0 providing that the set of parameters is finite. In Section 5, we offer a new version
of soft points and applied to initiate two families of soft separation axioms. We examine the connections
between them, as well as their connections to other classes of soft separation axioms. We discuss and
analyze the results presented herein and propose future road for the upcoming works in Section 6.



M. Arar, T. M. Al-shami / Filomat 39:11 (2025), 3623–3638 3625

2. Preliminaries

Some core definitions and primary results in the realms of soft sets and soft topologies are presented in
this section aiming to comprehend the paper’s findings.

Definition 2.1. ([28]) Consider the parameters set P and the universe U, and let 2U be all subsets of U.
The soft set F onU is the function F : P → 2U or, equivalently, F = {(ε,F(ε)); ε ∈ P}. We will use the symbol
SS(U,P) to refer the class of all soft sets onU.

Definition 2.2. ([6, 18]) Consider the parameters set P and the universeU, and take F and G as soft sets on
U. Then:

1. F is a soft subset of G (in symbols F⊂̃G) if F(ε) ⊂ G(ε) for all ε ∈ P.
2. The soft complement of F is the soft setFc̃ s.t. Fc̃(ε) =U − Fe).
3. The soft difference of F and G is the soft set F − G s.t. (F − G)(ε) = F(ε) − G(ε) for every ε ∈ P.
4. F and G are said disjoint iff F(ε) ∩ G(ε) = ∅ for every ε ∈ P .
5. 1P stands for the universal soft set F where F(ε) =U for every ε ∈ P.
6. 0P stands for the empty soft set F where F(ε) = ∅ for every ε ∈ P.

Definition 2.3. ([6]) If Fα is a soft set for every α ∈ ∆, then

1. their soft union is the soft set G =
⋃̃
α∈∆Fα s.t. G(ε) =

⋃
α∈∆ Fα(ε) for every ε ∈ P.

2. their soft intersection is the soft set G =
⋂̃
α∈∆Fα s.t. G(ε) =

⋂
α∈∆ Fα(ε) for every ε ∈ P.

Definition 2.4. ([19]) A sub-collection O from SS(U,P) is named a soft topology if the next stipulations are
satisfied:

1. 0P, 1P ∈ O.
2. For every two (or finite) elements from O, their soft intersection is an element of O.
3. For arbitrary elements from O, their soft union is an element of O.

The 3-tuple (U,O,P) is said a soft topological structure. F is called open soft if F ∈ O, and it is called closed
soft if Fc̃

∈ O.

Theorem 2.5. ([32]) Let (U,O,P) be a soft topological structure. Then for every ε ∈ P the collection Oε =
{U(ε); U ∈ O and ε ∈ P} is a topology for X.

Soft points have different definitions, which lead to different approaches for soft separation axioms. We
will exhibit the existing definitions of soft points.

Definition 2.6. ([37]) F ∈ SS(U,P) is said to be a para-soft point in U if there exists ε ∈ P s.t. F(έ) = ∅ for
every έ , ε; para-soft points will be denoted by εF. εF is said to be in the soft set G (In symbols εF∈̃(G,B))
if and only if F(ε) ⊂ G(ε). Two para-soft points εF and ε′G are said distinct (we write εF , ε′G ) if and only if
F(p) ∩ G(p) = ∅ for every p ∈ P.

Proposition 2.7. ([37]) εF∈̃(G,B)⇐⇒ εF<̃(G,B)̃c.

Another definition for soft points was introduced by [34] in his study for soft metric structures. We will
call them strong-soft points.

Definition 2.8. ([34]) F ∈ SS(U,P) is said to be a strong-soft point in U if there exists ε ∈ P and x ∈ U s.t.
F(έ) = ∅ for every έ , ε and F(ε) = {x}. Strong-soft points will be denoted by εx. Two strong-soft point εx
and έx are said distinct if and only if x , y or ε , έ.
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Every strong-soft point εx is a para-soft point, since εx = εF where F(ε) = {x}. The following is another
definition for soft points.

Definition 2.9. ([32]) A soft set F ∈ SS(U,P) is said to be a whole-soft point in U if there exists x ∈ U s.t.
F(ε) = {x} for every ε ∈ P. Whole-soft points will be denoted by (x,P).

(x,P)̃∈F if and only if x ∈ F(ε) for every ε ∈ P. Two whole-soft points (x,P) and (y,P) are said distinct if
and only if x , y.

Definition 2.10. Consider a soft set F ∈ SS(U,P) and a whole-soft point (x,P). Then

1. [21] (x,P) ⋐ F if and only if x ∈ F(ε) for some ε ∈ P. And (x,P) > F if and only if x < F(ε) for every
ε ∈ P.

2. [22] For every ε ∈ P, (x,P) ∈ε F if and only if x ∈ F(ε). And (x,P) <ε F if and only if x < F(ε).

Soft separation axioms (briefly, SS-axioms) separate soft points, but we do not have a unified definition
for soft points, so that we have different classes of SS-axioms. We will review the most important classes of
SS-axioms.

SS-axioms first introduced in 2011.

Definition 2.11. ([32]) Let (U,O,P) be a soft topological structure and let (x,P) and (y,P) be any two
distinct whole-soft points inU. Then

1. (U,O,P) is called a soft TS
0 − structure providing that there is an open soft set F in O s.t. (x,P)̃∈F and

(y,P)̃<F, or (y,P)̃∈F and (x,P)̃<F.
2. (U,O,P) is called a soft TS

1 − structure providing that there is an open soft set F in O s.t. (x,P)̃∈F and
(y,P)̃<F.

3. (U,O,P) is called a soft TS
2 − structure providing that there are disjoint open soft sets F and G in O s.t.

(x,P)̃∈F and (y,P)̃∈G.
4. (U,O,P) is called a soft TS

3 − structure if and only if it is soft TS
1 and for any closed soft sets C with

(x,P)̃<C there are disjoint open soft sets F and G in O s.t. (y,P)̃∈F and C⊂̃G.
5. (U,O,P) is called a soft TS

4 − structure if and only if it is soft TS
1 and for any soft disjoint closed sets C

and K there are disjoint open soft sets F and G in O s.t. C⊂̃F and K⊂̃G.

El-Shafei et al. [21] introduced TE
i -structures for i = 0, 1, 2, 3, 4 be replacing ∈̃ in Definition 2.11 by >. In

[22], the authors displayed TG
i -structures for i = 0, 1, 2, 3, 4 be replacing ∈̃ and <̃ in Definition 2.11 by ∈ε and

<ε, respectively and disjoint open sets F and G by F(ε) ∩ G(ε) = ∅.
Another approach of SS-axioms is:

Definition 2.12. ([17]) Consider (U,O,P) and let εx and έy be two distinct strong-soft points in U. Then
we say (U,O,P) is:

1. A soft TB
0 -structure if and only if there is an open soft set U inO s.t. εx∈̃U and έy<̃U or έy∈̃U and εx<̃U.

2. A soft TB
1 -structure if and only if there is an open soft set U in Owith εx∈̃U and έy<̃F.

3. A soft TB
2 -structure if and only if there are disjoint open soft sets U and V in Owith εx∈̃U and έy<̃U.

4. A soft TB
3 − structure if and only if it is soft TB

1 and for any closed soft sets C with εx<̃C there are disjoint
open soft sets U and V in O s.t. εx∈̃U and C⊂̃V.

5. A soft TB
4 − structure if and only if it is soft TB

1 and for any soft disjoint closed sets C and K there are
disjoint open soft sets U and V in O s.t. C⊂̃U and K⊂̃V.
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In Definition 2.12, if the distinct strong-soft points εx and έy are replaced by εx and εy, then we will get
a new class of SS-axioms TT

i where i = 0, 1, 2, 3, 4; see [35], for their properties.
And if the distinct strong-soft points εx and έy are replaced by the whole-soft points εF and εG, then we

will get a new class of SS-axioms TH
i where i = 0, 1, 2, 3, 4; see [23], for their properties.

More classes of SS-axioms and about relations among them can be found in [8], where Al-Shami
introduced a detailed study of this subject.

Theorem 2.13. ([8])

1. soft T3 ⇒ soft T2 ⇒ soft T1 ⇒ soft T0 where T = TS,TE,TB,TH,
TG and TT.

2. soft T4-structure⇒ soft T3-structure only for T = TE and TB.
3. soft TE

2 ⇔ soft TS
2 .

4. soft TT
0 ⇔ soft TG

0 .
5. soft TH

1 ⇔ soft TT
1 ⇔ Soft TG

1 .
6. soft TB

1 ⇒ soft TH
1 , and soft TB

1 ⇒ soft TS
1 .

In topological structures: X is T1 if and only if every singleton {x} is a closed set in X. In soft topological
structures, we have.

Theorem 2.14. Let (U,O,P) be a soft topological structure. Then

1. ([17]) (U,O,P) is soft TB
1 if and only if εx is a closed soft set for every strong-soft point εx inU.

2. ([21]) (U,O,P) is soft TE
1 if and only if (x,P) is a closed soft set for every whole-soft point (x,P) inU.

3. ([35]) If εx is a closed soft set for every strong-soft point εx inU, then (U,O,P) is soft TT
1 . And the converse

is not true.
4. ([8]) If εF is a closed soft set for every par-soft point εF inU, then (U,O,P) is soft TH

1 . And the converse is not
true.

5. ([32]) If (x,P) is a closed soft set for every x ∈ U, then (U,O,P) is soft TS
1 . And the converse is not true.

3. Solve an open problem: “Is every soft TB
i

-structure soft TE
i

for i = 2, 4?”

The following problem appeared in [8].
Problem 1: Is every soft TB

i -structure soft TE
i for i = 2, 4?We will show that the answer of this problem is

No! for i = 2, 4. Before we construct our example, see the following chart which shows relations between
some SS-axioms (see Theorem2.13).

Soft TE
4 -structure Soft TE

2 -structure

Soft TS
2 -structure

Soft TB
4 -structure Soft TB

2 -structure

?!

From the above chart a none soft TS
2 -structure is not a soft TE

2 -structure, a fortiori, not a soft TE
4 -structure.

And any Soft TB
4 -structure is a soft TB

2 -structure. So to show that the answer of the above problem is No!
for i = 2, 4, it suffices to construct a soft topological structure which is a soft TB

4 -structures but not a soft
TS

2 -structure. See the following example.
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Example 3.1. Consider the universe U = {x, y} and the set of parameters P = {1, 2, 3, ...}. The strong-soft
points will be denoted by nx or ny and will be considered as soft sets. Define B1 = {nx,ny; n = 2, 3, ...},
Bx = {Un

x ; n = 2, 3, ...} and By = {Un
y; n = 2, 3, ...} s.t.:

Un
x (m) =


x if m = 1
∅ if m = 2, 3, ...,n
y if m = n + 1,n + 2, ...

and

Un
y(m) =


y if m = 1
∅ if m = 2, 3, ...,n
x if m = n + 1,n + 2, ...

Let B = B1 ∪Bx ∪By. It easy to show that for any U,V ∈ Bwe have U∩̃V ∈ B. Thus B is a soft base for
soft topology O onU (O is all possible soft unions of elements form B).

Claim 1: (U,O,P) is a soft TB
2 -structure.

Proof of Claim 1: Let nz and mw be two distinct strong-soft points. We have four cases:

1. n , 1 and m , 1: Then nz and mw are disjoint open soft sets containing nz and mw, respectively.
2. n = 1 and m , 1: Then Um+2

z and mw are disjoint open soft sets containing nz and mw, respectively.
3. n , 1 and m = 1: Then nz and Un+2

w are disjoint open soft sets containing nz and mw, respectively.
4. n = 1 and m = 1: Then U2

z and U2
w are disjoint open soft sets containing nz and mw, respectively.

which completes the proof of Claim 1.

Claim 2: (U,O,P) is a soft TB
4 -structure.

Proof of Claim 2: Let A and B be two disjoint closed soft sets in O. Again we have four cases:

1. 1x<̃A and 1y<̃A: Then nz (n , 1) is open soft set for each strong-soft point nz ∈ A, which means A is
an open soft set. But A is a closed soft set, thus 1U − A is an open soft set containing B. Hence A and
1U − A are disjoint open soft sets containing A and B respectively.

2. 1x<̃B and 1y<̃B: Argue as we did in case 1 to get B and 1U − B are disjoint open soft sets containing B
and A respectively.

3. 1x∈̃B and 1y∈̃A : Then 1x∈̃(1U − A) and 1y∈̃(1U − B). Since (1U − A) and (1U − B) are open soft sets
containing 1x and 1y respectively, there exist two open soft sets Un

x and Um
y s.t.

1x∈̃Un
x ⊂̃(1U − A) and 1y∈̃Um

y ⊂̃(1U − B).

It is clear that Un
x ∩̃A = 0U and Um

y ∩̃B = 0U . Define

UA = Um
y ∪̃A and UB = Un

x ∪̃B.

Then UA is an open soft set, since each strong-soft point εz∈̃UA is an open soft set except 1y, but
1y∈̃Um

y ⊂̃UA. Similarly we prove UB is open soft. Now, since Un
x and Um

y are soft disjoint, and A and B
are soft disjoint, we have UA and UB are disjoint open soft sets containing A and B, respectively.

4. 1y∈̃B and 1x∈̃A: Argue as we did in case(3) to get two disjoint open soft sets UA and UB containing A
and B, respectively.

And this proves the second claim.
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Claim 3: (U,O,P) is not a soft TS
2 -structure.

Proof of Claim 3: Consider the two distinct whole-soft points (x,P) and (y,P). Suppose, by contrapositive,
there are disjoint open soft sets U and V s.t. (x,P)̃∈U and (y,P)̃∈V. Then x ∈ U(n) and y ∈ V(n) for every
n = 1, 2, ..., and this implies (when n = 1) 1x∈̃U and 1y∈̃V. But U and V are open soft, so there exist two
open soft sets Un

x and Um
y s.t. 1x∈̃Un

x ⊂̃U and 1y∈̃Um
y ⊂̃V. Since Un

x (n + 1) = y ∈ U(n + 1) and y ∈ V(n + 1), we
have U(n + 1) ∩ V(n + 1) , ∅. A contradiction with the soft disjointness of U and V. Thus (U,O,P) is not a
soft TS

2 -structure.
Now, since ”Soft TS

2 -structure ⇔ Soft TE
2 -structure”, we have (U,O,P) is not a soft TE

2 -structure. But
TE

4 -structure ⇒ TE
2 -structure, so (U,O,P) is not a soft TE

4 -structure as well. And the answer of the above
problem is no for i = 2, 4.

4. A correction about the relationship between soft TB
0

and soft TS
0

-structures

The following example was introduced by [8] as an example of a soft TB
0 -structure which is not soft TS

0
(see Figure 2 in page 1116 in [8]).

Example 4.1. ([8]) Consider the soft sets U and V over U = {x, y} under a set of parameters P = {m1,m2}

defined as follows:
U = {(m1, {x}), (m2, {y})} and V = {(m1, {y}), (m2, {x})}. Then the collection τ = {0U , 1U ,U,V} forms a soft
topology onU.

According to Figure 2 in [8], (U,O,P) given the above example is a soft TB
0 -structure which is not soft TS

0 .
This is incorrect, since (U,O,P) is not a soft TB

0 -structure, to see this, consider the two distinct soft points
m1x and m2y. Any open soft set containing one of them contains the other.

We will show that in any soft topological structure (U,O,P), if P is finite then TB
0 =⇒ TS

0 . Firstly, we
prove this when P contains only two parameters.

Theorem 4.2. Let (U,O,P) be a soft topological structure with P = {a, b}. If (U,O,P) is a soft TB
0 -structure, then

it is a soft TS
0 -structure.

Proof. Suppose that (U,O,P) is a soft TB
0 -structure, and let (x,P) and (y,P) be distinct whole-soft points in

U. Consider the two strong-soft points ax and ay. Since (U,O,P) is a soft TB
0 -structure, there is an open soft

set U s.t. ax∈̃U and ay<̃U, or ay∈̃U and ax<̃U. We may assume that ax∈̃U and ay<̃U. This leads to two cases

• Either bx∈̃U, then (x,P)̃∈U and (y,P)̃<U and we complete the proof.

• Or bx<̃U. Then, we consider two distinct strong-soft points bx and ay. Since (U,O,P) is a soft
TB

0 -structure, there is an open soft set V s.t. bx∈̃V and ay<̃V, or ay∈̃V and bx<̃V. That is,

– If bx∈̃V and ay<̃V, then H = U∪̃V is an open soft set with (x,P)̃∈H and (y,P)̃<H (Since ay<̃U and
ay<̃V) which completes the proof.

– If bx<̃V and ay∈̃V, then H = U∪̃V is an open soft set with bx<̃H.

* If by∈̃H, then H is an open soft set with (y,P)̃∈H and (x,P)̃<H (Since bx<̃U and bx<̃V), and
done.

* And if by<̃H, then we consider the two distinct strong-soft points bx and by. Again, since
(U,O,P) is a soft TB

0 -structure, then there is an open soft set W s.t. bx∈̃W and by<̃W, or by∈̃W
and bx<̃W. If bx∈̃W and by<̃W, then S = H∪̃W is an open soft set with (x,P)̃∈S and (y,P)̃<S.
And if by∈̃W and bx<̃W, then (y,P)̃∈S and (x,P)̃<S. Which completes the proof.
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Now, we will prove the above theorem when P is any finite set of parameters. But we need to defined
a new kind of soft point.

Definition 4.3. LetU and P be a universe and a set of a parameters, respectively. For any E ⊆ P let Ex to
be the soft set F s.t. F(ε) = {x} if ε ∈ E, and F(x) = ∅ otherwise.

It is clear that Ex = ∪̃{εx; ε ∈ E}, and since (x,P) = ∪̃{εx; ε ∈ P}, we have Ex
⊂̃(x,P).

Lemma 4.4. Let (U,O,P) be a soft topological structure. If (U,O,P) is a soft TB
0 -structure, then for any x , y and

any finite E ⊂ P there is an open soft set U s.t. Ex
∈̃U and Ey<̃U, or Ex<̃U and Ey

∈̃U.

Proof. We will proceed by induction on |E| (the number of elements of E). If E has only two elements, then
the proof is similar to the proof of Theorem 4.2. Now, suppose that the theorem is true for any E ⊂ P with
|E| < n. We shall show that the theorem is true when |E| = n. Let a ∈ E and set É = E − {a}. Then |É| < n, so
from the assumption, there is an open soft set U s.t. Éx

∈̃U and Éy<̃U, or Éx<̃U and Éy
∈̃U. We may assume

that Éx
∈̃U and Éy<̃U. If the strong soft point ax∈̃U, then Ex

∈̃U and Ey<̃U, and we done. Suppose that ax<̃U,
then for any ε ∈ E with εy<̃U we have εy , ax. Since (U,O,P) is soft TB

0 , there is an open soft set Uε s.t.
ax∈̃Uε and εy<̃Uε, or ax<̃Uε and εy∈̃Uε. That is, we have two cases:
Case I: ax∈̃Uε and εy<̃Uε for some ε ∈ E with εy<̃U. Then H = U∪̃Uε is an open soft set with Ex

∈̃U and
Ey<̃U.
Case II: ax<̃Uε and εy∈̃Uε for ever ε ∈ E with εy<̃U. Then

H = U∪̃(∪̃{Uε; ε ∈ E, εy<̃U})

is an open soft set with Ex<̃H (since ax < H) and Ey
∈̃H. And the proof is completed.

Corollary 4.5. Let (U,O,P) be a soft topological structure with P is finite. If (U,O,P) is a soft TB
0 -structure, then

it is a soft TS
0 -structure.

The following example shows that if P is infinite, then TB
0 ⇏ TS

0 .

Example 4.6. LetU = {x, y} and P = {1, 2, 3, ...}. Since each soft set is the union of its strong-soft points, the
following soft sets are well-defined where ix and iy denote strong-soft points inU.

Un = ∪̃{ix, jy; i is odd , j is even and i, j ≤ n}.

Vn = ∪̃{ix, jy; i is even , j is odd and i, j ≤ n}.

See Figure 1 to understand how the soft sets Un and Vn are defined where U3, U6, V2 and V7 are presented.

Let β = {0U , 1U ,Un,Vn; n = 1, 2, ...}. Then β is a soft base for some soft topologies on U, since the
following

1. Un∩̃Vm = 0U for every n,m.
2. Un∩̃Um = Ut where t = min{n,m}.
3. Vn∩̃Vm = Vt where t = min{n,m}.

Let O be the soft topology generated onU by the soft base β. For sake of later applications we define

U =
⋃̃∞

n=1
Un and V =

⋃̃∞

n=1
Vn.

Note that U and V are open soft sets, U∪̃V = 1P and U∩̃V = 0P.

Since (x,P) = ∪̃{ix; i = 1, 2, ...} and (y,P) = ∪̃{iy; i = 1, 2, ...},

the only open soft set containing (x,P) or (y,P) is 1P. Which implies (U,O,P) is not soft TS
0 .

It remains to show that (U,O,P) is soft TB
0 . Let ia and jb be two distinct strong-soft points. We have the

following cases.
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1. ia ∈ U and jb ∈ V, or ia ∈ V and jb ∈ U. Then we done, since U and V are disjoint open soft sets.
2. ia ∈ U and jb ∈ U. Let t = min{i, j}. Then Ut contains (from construction) only one of the strong soft

points ia and jb.
3. ia ∈ V and jb ∈ V. Let t = min{i, j}. Then Vt contains (from construction) only one of the strong soft

points ia and jb.

Hence (U,O,P) is a soft TB
0 -structure.

Figure 1: Basic open soft sets in Example 4.6

5. New approaches for soft points and soft separation axioms

Here, we will introduce a new version of soft points, which is inspired from Molodtsov first paper about
soft sets [28] and the concept of fuzzy points. Fuzzy points first introduced by Wong in 1974 as follows.

Definition 5.1. ([36]) Let x◦ ∈ U and γ ∈ (0, 1]. Then a fuzzy point Pγx◦ is a fuzzy set A with the membership
function µA : U → [0, 1] s.t. µA(x◦) = γ and µA(x) = 0 for every x , x◦. If γ = 1, then P1

x◦ is called a crisp
point.

In [28], Molodtsov showed that every fuzzy set A with a membership function µA : U → [0, 1] is a soft
set as follows:
For every α ∈ [0, 1] let Fα = {x ∈ U;µA(x) ≥ α} be the α-level sets of A. We can redefine µA by means of the
following definition:

µA(x) = sup
α∈[0,1]

{α; x ∈ Fα}

So the fuzzy set A is the soft set GA : [0, 1]→ 2U s.t. GA(α) = Fα for every α ∈ [0, 1].
In the above discussion if we replace the fuzzy set A by the fuzzy point A = Pγx◦ , then the α-level sets of A
come

Fα = {x ∈ U;µA(x) ≥ α} =
{
∅ if α > γ
{x◦} if α ≤ γ

Thus Pγx◦ is the soft set G : [0, 1]→ 2U s.t. G(α) = ∅ if α > γ and G(α) = {x◦} if α ≤ γ.
If γ = 1, then P1

x◦ is a crisp point, so it become the soft set G : [0, 1]→ 2U s.t. G(α) = ∅ if α > 1 and G(α) = {x◦}
if α ≤ 1. Since there is no α > 1, we have G(α) = {x◦} for every α ∈ [0, 1]. The above discussion suggests the
following new definition for soft points.
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Definition 5.2. Let U be a universe and P be a set of parameters. A soft set G is said to be a soft point if
and only if there exists x ∈ U and a nonempty subset E of P s.t.:

G(ε) =
{

x if ε ∈ E
∅ if e < E

Such soft points will be denoted by Ex where E ⊂ P is nonempty. If E = P, then Ex is said a crisp soft point
and will be denoted by Px. If E = {ε} for some ε ∈ P, then Ex will be called a soft atom and will be denoted
by ex.

Remarks about Definition 5.2:

1. Strong soft points εx (see Definition 2.8) are the soft atoms, since εx = ex.
2. Whole soft points (x,P) (see Definition 2.10) are the crisp soft points, since Px = (x,P).
3. The new definition of soft points is formulated in Definition 4.3 and used in the proof of Lemma 4.4

which shows the significance of the new definition.

The following example is helpful to understand the new definition of soft points.

Example 5.3. Consider the set of parameters P = {a, b, c} and the universe U = {x, y, z}. Then

1. A = {(a, {x}), (b, ∅), (c, {x})} is a soft point which is neither a strong soft point nor a whole soft point. If
we let E = {a, c}, then A = Ex.

2. A = {(a, {x}), (b, ∅), (c, {y})} is not a soft point, since x , y.
3. A = {(a, {x}), (b, ∅), (c, ∅)} is a soft atom and we denote it by ax.
4. A = {(a, {z}), (b, {z}), (c, {z})} is a crisp soft point, and we denote it by Pz.

Definition 5.4. TakeU and P as a universe and a set of parameters, respectively.

1. We terminologies that a soft point Ex belongs to the soft set G (in symbols Ex
∈̃G) if and only if Ex

⊂̃G;
that is x ∈ G(ε) for every ε ∈ E.

2. Two soft points Ex and Éy are said to be distinct if and only if Ex and Éy are disjoint soft sets; that is
Ex(ε) ∩ Éy(ε) = ∅ for every ε ∈ P.

Proposition 5.5. The disjointness of soft points Ex and Éy holds providing that x , y or E ∩ É = ∅.

Proof. Suppose Ex and Éy are distinct. If, by contrapositive, x = y and E ∩ É , ∅, then thereare ε ∈ E ∩ É
with x ∈ Ex(ε) and y ∈ Éy(ε). But x = y, so x ∈ Ex(ε) ∩ Éy(ε). A contradiction with Ex(ε) ∩ Éy(ε) = ∅.
Conversely; suppose that x , y or E∩ É = ∅. Then, Ex(ε)∩ Éy(ε) = ∅, which means Ex and Éy are distinct.

Definition 5.6. TakeU and P as a universe and a set of parameters, respectively. Then

1. Ex<̃G if and only if for some ε ∈ E we have x < G(ε).
2. Ex > G if and only if for each ε ∈ E we have x < G(ε).

The following is obvious!

Theorem 5.7. LetU be a universe and P be a set of parameters. For any soft set F we have F =
⋃
{Ex; Ex

∈̃F}. i.e. F
consists of all soft points in it.

The new definition of soft points leads to two new classes for SS-axioms. The first class is:

Definition 5.8. Let Ex and Éy be any two distinct soft points in (U,O,P).

1. If there is an open soft set F in O s.t. Ex
∈̃F and Éy<̃F, or Ex<̃F and Éy

∈̃F, then (U,O,P) is named a soft
T0-structure.

2. If there is an open soft set F in O s.t. Ex
∈̃F and Éy<̃F, then (U,O,P) is named a soft T1-structure.
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3. If there are disjoint open soft sets F and H in O s.t. Ex
∈̃F and Éy

∈̃H, then (U,O,P) is named a soft
T2-structure.

And the other class is:

Definition 5.9. Let Ex and Éy be any two distinct soft points in (U,O,P).

1. If there is an open soft set F in O s.t. Ex
∈̃F and Éy > F, or Ex > F and Éy

∈̃F, then (U,O,P) is named a
soft T00-structure.

2. If there is an open soft set F in O s.t. Ex
∈̃F and Éy > F, then (U,O,P) is named a soft T01-structure.

3. If there are disjoint open soft sets F and H in O s.t. Ex
∈̃F and Éy

∈̃H, then (U,O,P) is named a soft
T02-structure.

The following are obvious.

Proposition 5.10. 1. Every soft T2-structure (T02-structure) is a soft T1 (T01-structure), and every soft T1-
structure (T01-structure) is a soft T0-structure (T00-structure).

2. Every soft Ti-structure is a soft TB
i -structure for each i = 0, 2 and a soft TS

i -structure for each i = 0, 1, 2.

Examples of a soft T0-structure (T00-structure) which is not soft T1 (T01-structure), and a soft T1-structure
(T01-structure) which is not soft T2 (T02-structure), can be obtained by letting the set of parameters to be a
singleton, see the following example.

Example 5.11. Let τ1 and τ2 be two (classical) topological structures on X and Y, respectively, s.t. τ1 is a
T0-structure but not T1 and τ2 is a T1-structure but not T2. Let P = {ε} be the set of parameters. Define
O1 = {(ε,U); U ∈ τ1} and O2 = {(ε,U); U ∈ τ2}. Then The soft topological structure (X,O1,P) is a soft
T00-structure and a soft T0-structure but not a soft T01-structure nor a soft T1-structure, and (Y,O2,P) is a
soft T01-structure and a soft T1-structure but not a soft T02-structure nor a soft T2-structure.

The following theorem shows that T1 and TB
1 are equivalent.

Theorem 5.12. Let (U,O,P) be a soft topological structure. Then (U,O,P) is a soft T1-structure if and only if it
is a soft TB

1 -structure.

Proof. The necessary part is obvious.
To prove the sufficient part, suppose that (U,O,P) is a soft TB

1 -structure and let Ex
1 and Ey

2 be two distinct
soft points inU. Let ε ∈ E1. We want to separate the soft points εx and Ey

2 . For every a ∈ E2, εx and ay are
distinct strong-soft points. Since (U,O,P) is a soft TB

1 -structure, there exist two open soft sets Ua and Va s.t.
εx ∈ Ua, εx < Va, ay ∈ Va and ay < Ua. Define

V =
⋃
a∈E2

Va

Pick any a ∈ E2. Then Ua and V are open soft sets with εx∈̃Ua, εx<̃V, Ey
2 ∈̃V and Ey

2 <̃Ua (since ay<̃Ua).
Similarly, let ε′ ∈ E2. Then there are open soft sets Vb and U s.t. ε′y∈̃Vb, ε′y<̃U, Ex

1∈̃U and Ex
1<̃Vb for some

b ∈ E1. It is clear that U and V are open soft sets with Ex
1∈̃U, Ex

1<̃V (since εx<̃V), Ey
2 ∈̃V and Ey

2 <̃U (since
ε′y<̃U). Thus (U,O,P) is a soft T1-structure.

Theorem 2.14 part (1) and Theorem 5.12 implies the following.

Corollary 5.13. Let P be a finite set, (U,O,P) be a soft topological structure. Then (U,O,P) is a soft T1-structure
if and only if every strong soft point εx is a closed soft set.
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Since T0
→ TB

0 and TS
0 ↛ TB

0 , we have TS
0 ↛ T0. And Since T2

→ TB
2 and TS

2 ↛ TB
2 , we have TS

2 ↛ T2.
Again, since T0

→ TS
0 and TB

0 ↛ TS
0 , we have TB

0 ↛ T0. And Since T2
→ TS

2 and TB
2 ↛ TS

2 , we have
TB

2 ↛ T2.
The following example shows that TE

2 ↛ T0, which implies TE
2 ↛ T2, TE

2 ↛ T02, TE
1 ↛ T1, TE

1 ↛ T01,
TE

0 ↛ T0 and TE
0 ↛ T00.

Example 5.14. Let U = {x, y} and P = {a, b}. Then O = {0P, 1P, (x,P), (y,P)} is a soft topology on U. It is
clear that O is soft TE

2 -structure, since the only two distinct soft-whole points are (x,P) and (y,P) which are
open subsets ofU. But O is not soft T0, since the distinct strong-soft points ax and bx belongs to the same
open soft sets in O (which, also, shows that O is not even a TB

0 ).

Easily, one obtain the proof of the following.

Proposition 5.15. 1. Every T00-structure is a T0-structure, and every T01-structure is a T1-structure.
2. T02

⇐⇒ T2.

The converse sides of the above proposition is false in general. The following example support this fact.

Example 5.16. Let U = {x, y} and P = {a, b}. Then O = {0P, 1P,U,V,H,K} s.t. U = {(a, {x, y}), (b, {y})},
V = {(a, {x, y}), (b, {x})}, H = U∩̃V = {(a, {x, y}), (b, ∅)} and , K = {(a, {y}), (b, ∅)}. It clear that O is a soft topology
onU. O is a soft T0-structure (one can prove this by considering all possible cases of distinct soft points Ex

and Éy). To show that O is not a soft T00-structure we consider the soft points Ex and Ey with E = P (that is
Ex = (x,P) and Ey = (y,P)). The only open soft set containing Ex not Ey is V, but it is not true that Ey > V.
And the only open soft set containing Ey not Ex is U, but it is not true that Ex > U. Thus O is T0 not T00.

Example 5.17. LetU = {x, y} and P = {1, 2, ...}. Define O s.t. U ∈ O if and only if U = 0P or 1P −U contains
a finite number of strong-soft points. One can easily show that O is a soft topology. To show that O is a
soft T1-structure. Let Es and Ét be two distinct soft points s.t. s, t ∈ {x, y} and E, É ⊂ {1, 2, ...}. Let is∈̃Es and
jt∈̃Ét. Define U = 1P − { jt} and V = 1P − {is}. Then U and V are open soft sets. Since Es and Ét are distinct,
we have Es

∈̃U, Ét
∈̃V, Es<̃V and Ét<̃U. Thus O is a soft T1-structure. Now, we will show that O is not a

soft T00-structure. Consider the two distinct soft points Ex and Ey s.t. E = P (note that Ex = (x,P) and
Ey = (y,P)). If U is an open soft set soft containing Ex, then 1U −U contains a finite number of strong-soft
points. But Ey contains infinitely many strong-soft points, it follows: Ey > U is false. Which implies that O
is not a soft T00-structure. Moreover, since Ex = (x,P) and Ey = (y,P), we have O is not a soft TE

0 structure.
Thus we, also, conclude that T1 ↛ TE

0 .

Figure 2 summarize our previous results about different classes of SS-axioms. Some implications are
well known and belongs to other authors.

Being soft T1 does not imply that every soft point Ex is closed soft. The soft structure in Example 5.17 is soft
T1. But the soft point Px = (x,P) is not a closed soft set.

Theorem 5.18. (U,O,P) is a soft T01-structure iff any soft point Ex is closed soft.

Proof. Sufficiency: Take Ex and Éy as distinct soft points. Then U = 1P − Éy and V = 1P − Ex are open soft
sets with Ex

∈̃U, Éy
∈̃V, Éy > U and Ex > V. Thus O is a soft T01-structure.

Necessity: Let Ex be any soft point. To show that Ex is a closed soft subset ofU. For any εy∈̃1U − Ex we
have εy and Ex are distinct soft points. So there are open soft sets U and V s.t. εy∈̃U, Ex

∈̃V, εy > V, Ex > U.
Since Ex > U, we have U∩̃Ex = 0U . It follows that 1U − Ex is an open soft set, thus Ex is a closed soft set,
and the proof is completed.

Definition 5.19. We name (U,O,P):
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1. A soft regular structure providing that for any soft point Ex and any closed soft set F s.t. Ex<̃F there
are disjoint open soft sets U and V s.t. Ex

∈̃U and F⊆̃V.
2. A soft T3-structure providing that it is soft regular and soft T1.
3. A soft re1ular0 structure providing that for any soft point Ex and any closed soft set F s.t. Ex > F there

are disjoint open soft sets U and V s.t. Ex
∈̃U and F⊆̃F.

4. A soft T03-structure providing that it is soft re1ular0 and soft T01.
5. A soft normal structure providing that for any two disjoint closed soft sets F and G there are disjoint

open soft sets U and V s.t. F⊆̃U and G⊆̃F.
6. A soft T4-structure providing that it is soft normal and soft T1.
7. A soft T04-structure providing that it is soft normal and soft T01.

Figure 2: New classes of soft separation axioms and their relations with other existing classes

Theorem 5.20. 1. Every soft regular structure is a regular 0 structure.
2. Every soft T03-structure is a soft T02-structure.
3. Every soft T04-structure is a soft T03-structure.
4. Every soft T04-structure is a soft T4-structure.
5. A structure is soft T4 if and only if it is TB

4 .

Proof. 1. Suppose that (U,O,P) is a soft regular structure. Take an arbitrary soft point Ex and a closed soft
set F with Ex > F. Then Ex<̃F. Since (U,O,P) is soft regular, there are disjoint open soft sets U and V s.t.
Ex
∈̃U and F∈̃V. So (U,O,P) is soft regular 0.
2. Suppose that (U,O,P) is a soft T03-structure. Take arbitrary distinct soft points Ex and Éy. Since

(U,O,P) is soft T01, Éy is a closed soft set (by Theorem 5.18) with Ex > Éy. And since (U,O,P) is a soft
T03-structure, there are disjoint open soft sets U and V s.t. Ex

∈̃U and Éy
⊂̃V (equivalently, Éy

∈̃V). Thus
(U,O,P) is soft T02.

3. Suppose that (U,O,P) is a soft T04-structure. Then (U,O,P) is a soft T01-structure. To show that
(U,O,P) is a soft regular 0 structure. Let Ex be a soft point and F be a closed soft set with Ex > F. Since
(U,O,P) is soft T01, Ex is a closed soft set. But Ex > F, so Ex and F are disjoint closed soft sets. As (U,O,P)
is a soft T04-structure, there are disjoint open soft sets U and V s.t. Ex

⊂̃U and F⊂̃V, which completes the
proof.

4. Since every soft T01-structure is a soft T1-structure.
5. By Theorem 5.12.
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The following example shows that regular 0
̸=⇒ regular.

Example 5.21. Let U = {x, y} and P = {1, 2}. Set O = {0U , 1U ,A,B} s.t. A = {(1, {x}), (2, {y})} and B =
{(1, {y}), (2, {x})}. Then O is a soft topology. Since A∩̃B = 0U and A∪̃B = 1U , we have A and B are the only
none trivial open soft and closed soft sets. To show that O is a soft regular 0 structure. Let Es be a soft point
and F be a closed soft set with Es > F. Since A and B are the only none trivial closed soft and open sets, it
follows F = A or F = B. If we set U = 1U − F and V = F, then U and V are disjoint open soft sets with Es

∈̃U
(since Es > F and U = 1U − F) and F⊆̃V, hence O is soft regular 0. O is not soft regular, since A is a closed
soft set, Px = (x,P)̃<A and there are no disjoint open soft sets U and V satisfying that Px

∈̃U and A⊆̃V.

Example 5.22. Let (X, τ1) be a topological structure which is T2 not T3, and let (Y, τ2) be a topological
structure which is T3 not T4. Set P = {1} and define:

O1 = {(1,A); A ∈ τ1}.

O2 = {(1,A); A ∈ τ2}.

Then (X,O1,P) is a soft T02-structure (T2-structure) which is not T03 (T3-structure), and (Y,O2,P) is a soft
T03-structure (T3-structure) which is not T04 (T4-structure).

Example 5.23. The structure (X,O,P) in Example 3.1 is TB
4 , so it is a T4-structure (by Theorem 5.20). But it

is not T01, since for the distinct soft points Px and Py there is no nonempty open soft set U with Px > U.
Thus (X,O,P) is not T04.

Now, we will give a decomposition for soft T3-structures.

Theorem 5.24. Let (U,O,P) be a soft regular structure.

1. If F is a closed soft set, then there is B ⊂ U s.t.

F =
⋃
x∈B

(x,P).

2. If U is an open soft set, then there is A ⊂ U s.t.

F =
⋃
x∈A

(x,P).

3. The collection
τ = {A ⊂ U; U =

⋃
x∈A

(x,P) is an open soft set}

is a topology onU.

Proof. 1. Let F be a closed soft set. It suffices to show that for any x ∈ U if x < F(ε0) for some ε0 ∈ P, then
x < F(ε) for every ε ∈ P. Suppose that x < F(ε0) for some ε0 ∈ P, then (x,P)̃<F. Since O is soft regular,
there is two disjoint open soft sets U and V s.t. (x,P)̃∈U and F⊂̃V. Since U and V are soft disjoint, we have
x < V(ε) ⊃ F(ε) for every ε ∈ P. Which completes the proof.

2. Obvious! Using (1) and the fact 1P −U is a closed soft set.
3. Straight forward!

Theorem 5.25. Let (U,O,P) be a soft T3-structure. Then

1. P is a singleton.
2. (U,O,P) is a T3 topological structure.
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Proof. 1. Suppose, by contrapositive, there are a, b ∈ P s.t. a , b. Consider the distinct strong soft points ax

and bx. Since O is a soft T1-structure, there are open soft sets U and V s.t. ax∈̃U, ax<̃V, bx∈̃V and bx<̃U. But
O is soft regular and ax∈̃U, so (from Theorem 5.24 part (2)) x ∈ U(ε) for every ε ∈ P. A contradiction with
bx<̃U. Hence, Pmust be a singleton

2. From (1), P is singleton; suppose that P = {ε}. Then for any soft set A we have A = {(ε,A(ε))}, so
soft sets can be considered as points in the set {p} × 2U . But {p} × 2U � 2U (here we used the symbol � to
refer equivalent sets). Thus soft sets are elements in the power set ofU. Which implies O (as a collection of
subsets ofU) is a topology onU. One can easily (using Theorem 5.24 part (2)) show that (U,O) is T3.

Corollary 5.26. 1. Every soft T3-structure is a soft T2-structure.
2. Every soft T3-structure is a soft T03-structure.

Proof. 1. Let (U,O,P) be a soft T3-structure. Then P = {a} is a singleton and (U,T ∗) is a T3-structure
where T ∗ = {U(a),U ∈ O}. To show that (U,O,P) is soft T2. Let ax and ay be two distinct soft points (note
that the only parameter in P is a). Then x , y. Since (U,T ∗) is a T2-structure, there are disjoint open sets
U(a),V(a) ∈ O∗ s.t. x ∈ U(a) and y ∈ V(a). It is clear that U and V are disjoint open soft sets with ax∈̃U and
ay∈̃V. That is (U,O,P) is soft T2.

2. Let (U,O,P) be a soft T3-structure, and (U,T ∗) as in part (1). From (1) we conclude (U,O,P) is a soft
T2-structure, so by (2) of Corollary 5.10) it is soft T02. It remains to show that (U,O,P) is a soft regular 0

structure. Let F be a closed soft set and ax>F. Then F(a) is a closed set in (U,T ∗) with x < F(a). But (U,T ∗)
is regular, so there are disjoint open sets U(a) and V(a) s.t. x ∈ U(a) and F(a) ⊂ V(a). It is clear that U and V
are disjoint open soft sets with ax∈̃U and F⊂̃V. Which completes the proof.

The following example shows that T03-structure is not T3-structure.

Example 5.27. Let U = {x, y} and P = {a, b}. Define O = {A : A is a soft set}. Then O is a soft topology.
Since P is not singleton, O is not soft T3 (see Theorem 5.25). And since each soft set is closed soft and open
soft, O is soft T03. Moreover, it is soft T4.

By the preceding example and the succeeding example, we elucidate the independency of the structures
of soft T4 and soft T3 of each other. That is, neither soft T4

⇒ soft T3 nor soft T3
⇒ soft T4.

Example 5.28. Let us consider a topological structure (X, τ) which is T3 not T4. Set P = {ε} and define:

Oε = {(ε,A); A ∈ τ}.

Then (X,Oε,P) is a soft T3-structure which is not T4.

6. Conclusion

It was founded the soft sets as a mathematical approach to dealing with uncertainty problems. Adequate
parameterization capabilities are an advantage of soft sets that are lost by the previous approaches like fuzzy
sets and rough sets. The theory of soft sets received attention from topologists, so they have studied the
classical notions of topology in soft topology. Soft points are one of the most controversial concept in soft
topological structures as it does not have a unified definition. And since soft separation axioms depend
on soft points, we have different classes for soft separation axioms. We draw the attention of the readers
to the main factors that should be taken into consideration when one studies soft separation axioms: 1)
what is the form of soft points that are used? How the distinct soft points are defined? and which types of
belonging and none belonging relations are applied?

We have aimed to achieve three goals. The first one was to solve an open problem “Is every soft
TB

i -structure soft TE
i for i = 2, 4?” that was set up in [8]. We have clarified, with the aid of sophisticated

counterexamples, that these soft structures are independent of each other in both cases of i = 2, 4. The
second target was to build concrete examples illustrating the relationships between soft TB

0 and soft TS
0
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and investigate the condition under which we obtain soft TB
0 → soft TS

0 . Finally, we have derived a new
definition of soft points from fuzzy sets, which includes two of existing definitions of soft points. We used
the new definition of soft points to structure two new classes of soft separation axioms. At first glance,
one expects the introduced two types of soft axioms to be equivalent with soft TS and soft TE existing in
the published literature; however, after deep thought that takes into consideration the way of separating
soft points inspired by the definition of fuzzy points, one can remark that the current types represent
different categories of soft topology. In general, we have looked at the master properties of these classes
and introduced a comparative study of the new classes with the old ones.

Last but not least, we hope the current contribution helps researchers construct an obvious view of the
behaviors of separation axioms in the environment of soft topologies and how one exploits this environment
to create further categories of soft structures as was done in the last section of this manuscript.
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