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Certain aspects of rough deferred statistical cluster points in normed
linear spaces
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Abstract. For any real valued sequence x = (xx), the number y is called deferred statistical cluster point of x,

provided that for every @ > 0, the set {p(n) <k<qgn): |xk - y| < (D} have a non-zero deferred density, where

p = (p(n)) and g = (g(n)) are the sequence of non-negative integers satisfying p(n) < g(n)and limg(n) = co. In
n—o0

the present article, we introduce and investigate the concept of rough deferred statistical cluster points in

a normed linear space. Several fundamental properties are established, and significant inclusion relations
are derived, enhancing the theoretical framework of statistical convergence.

1. Introduction and preliminaries

Fast [10] and Steinhaus [24] introduced statistical convergence independently as an extension of usual
convergence in the context of real sequences. The core concept driving statistical convergence is rooted
in the notion of natural density. Further exploration of this field and additional applications of statistical
convergence can be found in the works of Fridy [11, 12], Salat [21], Mohiuddine et al. [17], and Tripathy
[25, 26] and many others [13, 14, 18, 20, 22].

Agnew [1] generalized Cesaro mean to deferred Cesaro mean to obtain a more useful method having
stronger features. Deferred Cesaro mean, defined with the help of the sequences (p(1)).en and (g(1))nen,
seems like a new form of Cesaro mean, but it is a more effective summation method in terms of its features.
For example, although the Cesaro mean follows the Silverman Toeplitz theorem, the deferred Cesaro mean,

which seems to be a generalization of it, has the following property that the Cesaro mean does not provide
in addition to this theorem

“for each k € N, a,,, = 0 for almost all n € N”.

The provision of this property by the deferred Cesaro mean makes it more efficient in lower triangular
methods in that it converts bounded sequences to convergent sequences. The reason why the deferred
Cesaro mean is applied to many problems compared to other methods is because of its properties.
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Let p = (p(n)) and g = (q(n)) are the sequence of non-negative integers satisfying
p(n) < g(n) and limg(n) = co. 1

Suppose K € IN, and assume that K}, ;(1) indicates the set {k : p(n) < k < q(n),k € K}. Then, the deferred
density of K is defined as

1
D, ,(K) := lim ———
- n—eo q(n) — p(n)
provided that the limit exists. Here the vertical bars in (2) indicate the number of elements of the set K}, 4(1).

As D, ,4(K) may not exist for all K C IN, , it is practical to employ the upper deferred asymptotic density
of K, which is defined as follows:

|KM(”) / )

. _ Hk:p(n)+1 <k <q(n),keKj|
S = IP 700 = P
It is evident that:
i) Dp,4(K) = D;,q(K) provided that D, ;(K) exists,
i) D}, ,(K) > 0iff D,4(K) £ 0,
iii) T, ,(K) < D (M), provided that K ¢ M.
A sequence of real numbers, denoted as x = (x;) is considered to be deferred statistically convergent
[16] to xy € R provided that for any @ > 0,

Dp,q ({k e N : |xx — x| = @}) = 0.

The element y is referred to as a deferred statistical cluster point [27] of x, provided that for every @ > 0,

Dpq ({p(n) <k<qn): )xk - y| < (D}) #0.

Several investigations in this direction can be accessed from the works of Et et al. [6, 7] and Sengiil et al.
[23], and many others [2, 5, §, 9, 15, 27].

In a different context, the exploration of rough convergence in finite-dimensional normed spaces was
initially undertaken by Phu [19]. Phu primarily demonstrated that the set LIM’x possesses the properties
of being bounded, closed, and convex, unveiling the noteworthy characteristics of this intriguing concept.
Notably, the concept of rough convergence arises organically in numerical analysis, bearing interesting
applications in that domain. Aytar [3, 4] further advanced this field by combining the concepts of rough
convergence and statistical convergence, introducing rough statistical convergence and rough statistical
cluster points.

2. Main results

Throughout the paper, p = (p(n)),p’ = (p'(n)),q = (g(n)) and ¢’ = (4’ (n)) are the sequence of non-negative
integers satisfying

p(n) < g(n),p’(n) < q'(n), limg(n) = co and limqg'(n) = co.
n—oo n—oo
Also E,E’, F and F’ denotes the range set of the sequences p,p’, g and g, respectively.

2.1. Characteristics of rough deferred statistical cluster points

Definition 2.1. Assume that (X, ||-||) represents a normed linear space. For r > 0, the vector y € X is termed
as the r-deferred statistical cluster point of x = (xy), if

Dp,q({ke]N:ka—y||<r+ca})¢0

holds for every @ > 0. The set encompassing all r-deferred statistical cluster points of x is denoted as I';(p, 4).
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Theorem 2.2. Let x = (xi) be any sequence in the normed linear space (X, |ll). Then, the set I',(p,q) is closed for
any r > 0 as well as for any choices of p, q.

Proof. =Assume that I';(p,q) # 0 and take y = (yx) € I} so that ]}im Y& = Y« Let us demonstrate that for

every @ > 0
Dy ({k eN: ||xk =Y

<r+ca})¢0.

Fix @ > 0. Since ]}im Yk = Y, there exists an ky = ko(@) € IN such that ”yk - 1.|| < ¢ for all k > ko. Fix jo such

>

2. Let j be any point of the set {k eN: ||xk - yj(,” <r+ %} Since

that jo > kg. Then we have ||]/]~0 -V <

“x]- - y]-(,” <r+9,we get

< i = yioll + [lio = v

<r+2+ 2240
r+—+—==r
2 2 ’

[[x; = v.

which shows that j € {k eN: ||xk — VY

<r+ cD}. Hence we have

ke N - yill <r+ 3} e fee N vy,

<r+a).

As the deferred density of the set on the left-hand side in the above inclusion relation is non-zero, it
follows that the deferred density of the set on the right-hand side is also non-zero. Therefore we have

Theorem 2.3. For any sequence x = (xi) with r > 0, x, € T'(p, q) iff there exists a sequence y = (yx) so that
x. €y(p,q) and Dy, ({k €eIN: “xk - yk“ > r}) =0.

Proof. Fix r and @. Assume that x. € I'(p, ). Hence we have D, ,(K) # 0, where

K:={keN:|x—-x| <r+ao}.

Define
X, llxg — x|l < rand k € K
Yi o= xk+r%, llxx — x.]| > rand k € K 3)
Zk, k¢K,

where the sequence z = (zy) is arbitrary. It is clear that

” ll = 0, if |l —xll <7 "
Yoo H= llxy — x| =7, otherwise
and
e = yel| < 7
for every k € K. Now, let us demonstrate the validity of the inclusion:
KQ:kE]N:“yk—x* <@}_ )

< r + @. Therefore, the two following scenarios may occur:
=0,ie., k€ {k eN: |y —x < ca}.

If ky € K, then we have ||xk0 — X,
(i) If ||, — x.
(i) If | g, — x.

< r, then from (4), we get ||y, - x.

> r, then from (4), we get

||yk0—x* :kao—x* —r<r+a)—r:@,i.e.,koe{keﬂ\l:||_1/k—x* <cD}.
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Since D, 4(K) # 0, , according to the inclusion relation (5), we can conclude that

Dpq (fk e N« [[ys —x.

< @}) #0.
Conversely, suppose that x. € I',(p, q) and fix @ > 0. Then, we have

Dp,q ({k eIN: ”]/k — Xx

< ca}) #0.

Takeje{keIN:“yk—x,e

< (D}. We can write

< [l = yill + 1y - =
<r+o.

||X]'—X*

Therefore we get j € {k € IN : ||xx — x.|| < r + @}, which shows that the inclusion

{keN:”yk—L

<o CtkeN: |y —xl <r+a)
holds. From this inclusion, we have D, ,({k € N : [lx; —x.]| <r+@}) #0. O

Theorem 2.4. B
T = ) Bio),

celx(pg)

where B,(c) :={y e X : |ly—cll < 7).

Proof. Assume that u € UCGFX(M) B.(c). This implies the existence of a vector ¢ € I'y(p, ) so that p € B.(c), ie.,
llc— ull < r. Fix @ > 0. Since c € T'«(p, ), there exists a set K = K(@) := {k € N : [lxx — c|| < @} with D, 4(K) # 0.
We have

|l = ]| < i = ell + fle = wll

<D+r
for every k € K. Thus, we conclude that 1},,,,7 ({k eIN: ”xk - p” <o+ r}) # 0, thereby completing the first

part of the proof.
To establish the converse inclusion, consider p € I';(p, q). Then, we have

@({kelN:”xk—yH<(D+r})¢0 (6)

for every @ > 0. Let us show that 4 € Ucer, () B,(c). Assume that this condition is not met. Then, we get
1 & B,(c), i.e., [|u —cll > r for every c € T'(p, ). Since the set T'x(p, ) is closed, there exists a vector & € T'x(p, 9)
such that ||u — €|l = min{|lu —cll : c € Tx(p,q)}. We can write t := ||y — ]| > r, because ||y — c|| > r for all
¢ € Ix(p, q). Define @ := 5-. Then, we get

X\Bo Tx(p, ) 2y e X : llu—yll <@ +1}, 7)

where B, (I'x(p,9)) = {y € X : min{||ly — |l : ¢ € [x(p, 9)} < &}. According to the definition of I'y(p, g), it follows
that the set {k : xx ¢ By (I'x(p,9))} has deferred density zero. Following the inclusion (7), we can conclude
that

{k:xc ¢ Bz (Tx(p,9)} 2 {k : ||xk - y“ <o+ r}. 8)

Hence, based on the inclusion (8), it follows that the set {k : “xk - y” <@+ r} has deferred density zero,
which contradicts (6). O
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2.2. Some inclusion results for I';.(p, q)

Theorem 2.5. Let r > 0. Assume that lim 71/(%)—_;57((:)) =d # 0. Then, the following results are true:
n—oo
(i) If F" \ F is finite then I'.(p,q") € I'.(p, 9).

(ii) If F' AF is finite then I'.(p, q') = I't(p, 9).

Proof. (i) Since the set F’ \ F is finite, then there exists a positive natural number N such that
{g'(n) :n = N} c{g(n): n e N}

For n > N, let j(n) be a strictly increasing sequence such that g'(n) := q(j(n)). Let u € I, (p, 9').
Then, for any @ > 0,

Dy ({ke]N:”xk—y“ <r+ca})¢0
:b;’q,({ke]N:||xk—y“<r+ca})>0

‘{p(n) <k<qgn): ||xk - y” <r+ ca}|

= 111;1 _)S;IP 700 =00
i ‘{P(n) <k <q(jn) : || — pl| < 7+ (D}l 9
= H:f;lp 2G00) =P o

Now as the following inequality

|{p(n) <k<qgn): ||xk - yH <r+ ca}‘ N q(j(n)) - p(n) |{p(n) <k <q(j(n)): ||xk - y“ <r+ ca}‘
q(n) — p(n) ~q(m) —p(n) q(j(n)) — p(n)
holds, so by (9),

’{p(n) <k<qg(n): ||xk - y” <r+ @}’
q(1) = p(n)

g ({k eIN: ||xk - y“ <r+ ca}) = lim sup

In other words, D, ({k eN: ||xk - y“ <r+ (D}) # 0. Hence, u € I';(p,q) and this completes the proof.
(i) The proof of this part is straightforward, hence omitted. [

Theorem 2.6. Let r > 0. Assume that lim % =d # 0. Then, the following results are true:
n—oo

(i) If E’ \ E is finite then T',(p, q) C T%(v’, 9).

(ii) If E' AE is finite then I'.(p, q) = IT'L.(p’, 9).

Proof. Since the set E” \ E is finite, then there exists a positive natural number N such that
{p'(n):n = N} c{pn):neN}.

For n > N, let j(n) be a strictly increasing sequence such that p’(n) := p(j(n)). Let u € I, (p,q). Then, for any
@ >0,

ﬁp,q({kell\l:”xk—y”<r+ca})¢0
:b;,q({kell\l:||xk—y”<r+ca})>0

C fpm <k <qo: - pl <7+ a
= limsup 10)

n—o0 ‘7(”) - p(ﬂ)
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Now as the following inequality

(P <k < q00) : [ — | < 7 + ) _ am-pw [{pon) < k< g0 < o — | < 7+ 0
q(n) = p(j(n)) ~ q(m) - p(j(n) 4(n) = p(n)

holds, so by (10),

{P’(”) <k<qgn): ||xk - y” <r+ cD}|
q(n) —p’'(n)

D4 ({k eN: ka - y” <r+ ca}) = hr,?_itlp
In other words, D, , ({k €N: “xk - y” <r+ LD}) # 0. Hence, u € T(p’, q) and this completes the proof.
(ii) The proof of this part is straightforward, hence omitted. [

Theorem 2.7. Let r > 0. Assume that p(n) < p'(n) < q'(n) < q(n) and lim q‘;EZ;:Z;g) = d # 0 both holds

simultaneously. Then, I'.(p’,q") € I'i(p, 9).
Proof. Let u €I (¢’, q’). Then, for any @ > 0,
Dy g ({k eN: [ —pl| <7+ cD}) #0
= D), (ke N: [l - p

|<r+co})>0

y {Pf(n) <k<q@):|—p|<r+ ca}l
- II;I_)S;lP q/(n) — p,(n)

Now as the following inequality

(11)

|{p(n) <k<qgn): ”xk - y” <r+ (D}| N 7 (n) - p' (n) |{p’(n) <k<qgn): ||xk - [J“ <r+ ca}’
q(1) = p(n) —q(n) = p(n) q'(n) = p'(n)

holds, so by (11),

o) <k < )« v - | <+ o
q(n) = p(n)

D4 ({k €eN: ||xk - y“ <r+ @}) = lim sup

In other words, D, ({k eN: ||xk - y“ <r+ zD}) # 0. Hence, u € I',(p, q) and this completes the proof. [J

Theorem 2.8. Let r > 0. Assume that q(n) < n for all n € N and lim M =d #0. Then, I', 2 T%(p,q).

n—oo

Proof. Let u € Tl (p,q). Then, for any @ > 0,
Dpq (ke N [ — pf| < 7+ @}) 0
= b;,q({kelN: |l = | <1’+(D}) >0
' ‘{p(n) <k<gn): ka - p” <r+ cD}‘
=l q(1) = p(n)

Now as the following inequality

(12)

|{k <n: ||xk - y” <r+ (D}| N q(n) — p(n) |{p(n) <k <q(n): ka - y” <r+ LD}|
n - n . Q(n) —P(n)
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holds, so by (12),

'{ks;fl:||xk—y||<r+(a}|
>

E*({keIN: “xk—y” <r+a)})=limsup -

In other words, D ({k €eN: “xk - y” <r+ @}) # 0. Hence, u € I, and this completes the proof. [J

3. Conclusion

In this paper, we introduced and explored the concept of rough deferred statistical cluster points within
normed linear spaces. Theorem 2.2 proves the closedness property of the set I';(p, ) for any r > 0. Theorem
2.3 establishes the necessary and sufficient condition for a number x, to be a r—deferred statistical cluster
point of a sequence x = (xx). Theorem 2.5, Thorem 2.6, Theorem 2.7, and Theorem 2.8 reveals significant
inclusion relations for variation in the sequences p and g. Future work could explore the generalization of
these concepts to broader mathematical structures or their implications in practical computational contexts.
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