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Abstract. The paper focuses on a new generalized inverse, Bott-Duffin core inverse, which is a general-
ization of the Bott-Duffin inverse. Several properties, characterizations and representations of Bott-Duffin
core inverse are presented. We discuss the constrained matrix approximation problem in the Frobenius
norm by using the Bott-Dulffin core inverse.

1. Introduction

In this paper, C"" is the set of m X n complex matrices. If L is a subspace of C", we use the notation
L < C". Bott and Dulffin, in their famous paper [3], introduced the “constrained inverse” of a square matrix
as an important tool in the electrical network theory. This inverse is called in their honor the Bott-Duffin
inverse in [2]]. Let A € C™", L < C" and let P;, be the orthogonal projection on L. If AP, + P;. is nonsingular,
then the Bott-Duffin inverse of A with respect to L, denoted by AEZ; ), is defined by Azz)l ) = P (AP + Pru)7L.

In [4], Chen defined the generalized Bott-Duffin inverse of A (denoted by AEB) . It is particularly worth
noting that the form of definition, Ag)) = P (AP, + P;1)", is a natural extension of AEZ;) = P (AP, + Py.)7L.

It is interesting to consider that if AP} + Py is core invertible, can a new generalized inverse be formed?
Let CM be the set of 11 X n matrices of index one, that is,

CM = {A € €| rank(A?) = rank(A)} .

Let us recall that A € C™" has the core inverse if and only if A € C{M. For the convenience of describing
the article, we first provide the following definition:

Definition 1.1. Let A € C™", L < C". If (AP + P1.) € CM, then
AE%) = PL(APL + PLJ.)®,

is called the Bott-Duffin core inverse of A with respect to L.
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Our main contributions can be summarized as below:

(1) We give some properties of Bott-Duffin core inverse, especially showing Bott-Duffin core inverse is
an outer inverse with prescribed range and null space.

(2) Some characterizations of Bott-Duffin core inverse are provided by using range space, projections,
matrix equations and EP-property.

(3) Though a appropriate matrix decomposition, we conclude the explicit representations of Bott-Duffin
core inverse. Moreover, we give the limit expression for Bott-Duffin core inverse.

(4) We study the constrained matrix approximation problem in the Frobenius norm by using the Bott-
Duffin core inverse. Moreover, we give the unique solution to two classes of matrix equation, and
provide a Cramer’s rule for the unique solution.

This paper is organized as follows. In Section 2, we introduce some necessary notations, definitions and
lemmas. In Section 3, we give some properties of Bott-Duffin core inverse. In Section 4, we present several
characterizations of the Bott-Duffin core inverse in terms of range space, projections, matrix equations
and EP-property. In Section 5, some representations of the Bott-Duffin core inverse are provided. The
applications of Bott-Duffin core inverse in solving two classes of matrix equation are given in Section 6.

2. Notations and Preliminaries

The symbols R(A), N(A), A%, AT and rank(A) represent the range space, null space, conjugate transpose,
transpose and rank of A € C™", respectively. We denote the identity matrix in C™" by I,. The symbol
O stands for the null matrix. L+ means the orthogonal complement subspace of L. The dimension of L is
denoted by dim(L). P s stands for the oblique projection onto L along M, where L, M < C"and L& M = C".

Additionally, the Moore-Penrose inverse A" € C™" of A € C"™" is the unique matrix verifying the
following matrix equations (see [2, 9, [11]])

AATA = A, ATAAT = AT, (AAY) = AAT, (ATA) = ATA.

A matrix X € C™" that satisfies XAX = X is called an outer inverse of A and is denoted by A®. Let
L<C" dimL =1 < rank(A) and S < C", dim S = m — I. There exists a unique outer inverse X of A such
that R(X) = T and N(X) = Sifand only if AT ® S = C™. In this case, the matrix X is called the outer inverse

. . : @ »
with prescribed range and null space and is denoted by A" (see [2}[11]).

The group inverse of A € C{M is the unique matrix A* € C™" verifying the following matrix equations
(see [218, [11])

AA*A = A, ATAAY = A%, AA* = A*A. (2)

For a given matrix A € CSM, the core inverse of A is defined to be the unique matrix A® ¢ gmxn satisfying
(see [11)

AA® = AAY, R(AD) c R(A). 3)
Moreover, Wang and Liu [12] prove that the core inverse of A € C{M is the unique matrix satisfying
AAPA = A, AABY? = A® (AAD) = AAD. (4)

Henceforth, the symbol CEP will stand for the set of n X n EP matrices, i.e.

CEP = [A|A € €™, AAT = ATA) = [A|A € C™", R(A) = R(A")}.



J. Zhou et al. / Filomat 39:12 (2025), 3873-3889 3875

Lemma 2.1. [10] Let A € CM. Then:

®_ A0 :
(@) A% = Ay

(b) ABPA = A*A = AA* = Pruayna)-

Lemma 2.2. Let A € C5M and let U € C™" be a unitary matrix. Then,
(i) (UAUY = UA*U;
(i) (UAU"® = UA®L,

Proof. (i). It can be verified directly by (2).
(i). From [1} Theorem 1], we have

A® = AtAAT (5)
Then, (UAU)® = (UAU)*UAU*(UAUY)' = UA*UUAUUATU* = UA®U*. O
Lemma 2.3. [4] Lemma 1] For any A € C™" and L < C", we have

R(APp + P1.) = R(PLAP, + P.) = AL+ L* = PLAL®L*,
and

N(PLA + Pr.) = N(PLAP, + P1.) = (A'L)* N L = N(PLAP;) N L.

Lemma 2.4. [11} Theorem 1.3.2] Let Py be the projection on Ry along N1, P, the projection on Ry along N», then
P = P1 + P, is a projection if and only if

PP, = P,P; =O.
In this case, P is a projection on R = Ry ® Ry = R(P1) ® R(P;) along N = N1 NNy = N(P1) N N(Py).

Lemma 2.5. [6, Theorem 1] Let T = [ 40 ] be a partitioned matrix of C"", where A € C™", B € Cm-mxn

B D

and D € Co=x0m=1 - Syppose A® and D® exist. Set Ep = I, — DD and Fp = I, — AA. Then, T® exists if and
only if EpBF 4 = O. In this case

T®=( T T2 )

Ty Tax
where

Ty = A®(I+(EpBAYEpBAY),

T = A®(EpBAY)(I+EpBA*(EpBAT))

Tn = ((I-DD*)BA'-D®B)A®(1+ (EDBAJF)*EDBA*)%,

Tn = D®+((1-DD*)BA" - D®B) AB(EpBA") (I + EpBAT(EpBA' )*)_1

Lemma 2.6. [6, Theorem 2] Let S = [ A be a partitioned matrix of C"™™, where A € C"™", C € C"™(m=")

C
O D
and D € COm=mx01=m) - Syppose A® and D® exist. Set E4 = I, — AAY and Fp = I,,_, — D'D. Then, S® exists if and
only if EACFp = O. In this case

® S11 S
S Sx» )’
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where
Sn = A®+((1-A4*)cD' - A®C)DP(1+ (EACD+)*EACD+)_1(EACD+)*,
S = ((1-AA*)CD' - A®C)D®(1 + (ECDY) EaCDY)
Sn = D®(1+(EsCD")EACD') (EACD'),
Sm = D®(1+(EACD')EACDY) .

3. The properties of Bott-Duffin core inverse

Let A € €™ and L < C". In order to discuss some properties of the Bott-Duffin core inverse, we will
consider an appropriate matrix decomposition of A with respect to L. Since there exists a unitary matrix
U € C™" such that

_ I O], .
PL—U[O O]U, (6)

where [ = dim(L). On the basis of @, the decomposition of Py, a matrix A can be written as

_ AL Br |,
A_U[CL DL]U, )
where A € C™, B, € C*0-) C; € C-0X Dy e Cl=Dx(n=D),

Using this decomposition, we give the necessary and sufficient condition for the existence of A

@)
A 0 -

@)

@0 as

well as the representation of

Theorem 3.1. Let P and A be given by (H) and , respectively. Then AE? exists if and only if AL € C*M. In this
case,

®
@) _ ALY O |, p
A(L)_u[ o O]u. (8)

Proof. From (6) and (7), we have

©)

APy + Pr. =u[ 4. 0 ]u*.

CL In—l

In [1]], Baksalary pointed out that (AP, + Py« )® exists if and only if (AP; + Pr.) € CM. Using @, we can
verify (AP, + Pr.) € C$M if and only if A, € C{M. From Lemma @ and Lemma/2.5) we have

®
(AP, +P.)® = u[ A © ]U*.

-aA® I
By using (1), we can get (§). O

@)
A(L)

Theorem 3.2. Let A e C™", L < C", T = R(PLAPL) and S = N(PLAPy). If (AP +P1.) € CEM, then the following
statements hold.:

The basic properties of are given in the following theorem.

NoA@) _ @ _ ,@p _ @ p .
(Z) A(L) = PLA(L) = A(L) PL = PLA(L) PL,
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.. @)y _ @)y _ L.
(ii) R(A(L) )=Tand N(A(L) ) =T+

(@) @) _ A(@).
(iii) A(L) AA(L) = A(L) ;

(iv) AAE%’ = Parre and AE%)A = Pramyt;

(v) PLAASY = Prand AP AP, = Pr;

0NoA@) _ @ _ @p_ _ @,
('UZ) A(L) = PTA(L) = A(L) PT = PT,SA(L) ;

(vii) Pr(A - AAES?)A) =(A- AAEE?)A)PT,S =0;

(viii) AE%) - A(TZ,)TL = (APL)(TZ/)TL = (PLA)(TZ,)TM'

(ix) AD = (PLAP)®.

Proof. (i). From , multiplying AE%) = P (AP, + PLL)® by P, from the left, we have PLAES?) = A%). By

Lemma[2.3] we get L+ C R(AP; + P;.), then it follows that Pgap, +p, NP, +P, ) Pr = Pr+. Note the fact that
24 (APL+P L) N(APL+PL L)

PL(AP; + PL)®(AP, + P1.)Pps
= PL(APL + PLL)(APL + PLL)#PLL

PLPrAp, +P, 1) N(AP+P, ) PLt

P (AP, + P.)®P..

= PLPLJ.
= 0.
Then, by (),
ADp, = PP, +PL)®PL+ Py (AP, + PL)®PL
= P(APL+PL)® (P + PLy)
_ (@)
- A(L) ’
Consequently,

@p _ @ _ 4@
PLADP, =P AY = AD.

(i6). It follows from (1) and Lemma [2.1{ (a) that R(A(Y) = R(PL(AP + P1.)®) = PLR((AP, + PL.)®) =

PLR(APL + PLL) = R(PLAPL) =T. By @ and @, we have

N(A(®)) = N(PL(AP; + PLJ-)®) C N(PLAPL(APL + PLJ_)@)

0 N(PL(APL + P1.)(APL + P )®)

[R((APL, + P1.)(AP; + P1.)®P))].

From @), Lemma and Lemma we get (APp + P )(AP; + PL;)@ = Prap,+p,.) = Prerr = Pr + Ppe.

Since PrP, = Pr, it follows that N(Ag”) C [R(APy, + P ) (AP, + PLO)®P))E = [R((Pr + PLo)P)]* = T2

Since dim(N (Ag)))) =n-— dim(R(Ag)))) =n —dim(T) = dim(T+), we can obtain N/ (AE?) =T+
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(iif). From the proof of (i), we have P (AP + P )®Pp;. = O. Thus,

AEE?)AA%) = P.(AP, +P.)® AP, (AP, + P1.)®
Pi(AP; + P1.)® (AP, + Ppa) (AP, + Pp)®
P. (AP + P1.)®

()
A(L) .

(iv). From (ii) and (iii), note the facts that R(AAE?) = AR(AE%)) = AT, N(AAE%’) = N(Ag)) =T* and

AAD 44D = AA®, we have AAY) = Pyrr.. The proof of AP A = Pp .. is similar.

(v). Since Py Pt = Pr, premultiplying the equation (AP, + Pr.)(AP, + PLL)® = Pr + P with Py, gives

P AP (AP, + P.)® = Pr.

Thus, PLAAE? = Pr. By (i), (i), , Lemma (b) and Lemma

AE%’APLA@)APL = Pu(AP, + Pr)®(AP, + P )PL(AP, + Pr)®PAP;

= Pu(AP, + Pp.)*(APy + Pp. )AE?;)APL

= PLPR(APL+PL¢),N(APL+PLL)AE§)APL

= PLP(PLAL@LL),N(APHPH)Ag)APL

= PAD AP,

= ADAP,.
We can also derive from the above equation that AE?)AAE? = AE%)' Then ﬂ(AE?) = 72(AE§)APLAE§)) C
RADAPL). 1t is clear that RATAP) ¢ RAD). By (i), RADAP) = RAD) = T. Since § c

N(AES?’PLAPL) = N(AE%’APL) and rank(Agfi?)ApL) = rank(PLAP}), it follows that N(AE?APL) =S.
(vi). From (i) and (v), (vi) can be directly derived.
(vii). By (v), (vii) can be directly derived.
(viii). By (ii) and (iii), we have A® = AT .
(APL)%)TL‘ The proof of Ag) = (PLA)(TZ,)Tl is similar.

(ix). From (i) and (v), we get PLAPLAE?)”PLAPL = PrAP;. Since Pr = PrPp and T = R(PLAP;), PrAP;

PrP AP, = PLAP;. By (i), (v) and (vi), PLAPL(A§§>)2 = PTA§§> = Ag). In terms of (i) and (v), we can obtain

(PLAPLAD) = PLAPLA® 1t follows from (4) that A®) = (PLAP)®. [

; (@) @) _ A@®) @)
From (i), we have A(L) APLA(L) = A(L) . Thus, A(L)

4. Some characterizations of the Bott-Duffin core inverse

In this section, we provide several characterizations of the BD-inverse core inverse of A € C™" (in the
case when it exists) mainly in terms of range space, projections, matrix equations and EP-property. In the
following theorem, using Theorem [3.2)(ii), we present some characterizations of Bott-Duffin core inverse.

Theorem 4.1. Let A€ C™", L < C", T = R(PLAPL) and S = N(PLAPy) be such that Ag) exists and let X € C™",
The following statements are equivalent:

_ A @®).
(a) X = A(L) ;
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(b) R(X)=Tand AX = Parrs;
(¢) R(X)=Tand PLAX = Pr;
(d) RX) =T, XAX = X and XPr = X;
(e) R(X)=T, XA = Pryr and XPr = X.

Proof. (a) = (b). This follows directly by Theorem (i) and (iv).

(b) = (c). From Theorem 3.2)(iv) and (v), we have PLAX = P Par: = Pr.

(c) = (d). Since R(X) = T and PLAX = Pr, we have rank(X) = dim(T) and N(X) = T+, which implies
XPr = X. From L+ c T+, we get XP; = X. Thus XAX = XP;AX = XPr = X.

(d) = (¢). From XAX = X, it is clear that XAXA = XA. Since R(X) = T and XAX = X, it follows
that R(XA) = R(X) = T. By R(X) = T and XPr = X, we get rank(X) = dim(T) and T+ c N(X), which
implies N(X) = T+. It follows from N(X) = T+ that N(XA) = [R(XA)']* = (A'NX)*1)* = (A'T)*. Thus,
XA = PT,(A*T)*'

(e) = (a). Since R(X) = T and XA = Pp 4.1y, it follows that XAX = X. From rank(X) = dim(T) and
XPr = X, we have N(X) = T*. Thus by Theorem(viii), weget X = Ag). O

Remark 4.2. Let A e C™", L < C", T = R(PLAPL) and S = N(PLAPy) be such that AE? exists and let X € C™",

The following statements are equivalent:

@ X =AY,

(b) R(X*) =T and XA = Py 41y,

(c) R(X*) = T and XAP, = Prg;

(d) RX*) =T, XAX = X and PrX = X;
(e) R(X") =T, AX = Parre and PrX = X.

Proof. It is similar to the proof of the Theorem We only provide the proof of (e) = (a).
(e) = (a). It is well known that R(X") = T if and only if N(X) = T*. Since N(X) = T+ and AX = Parr-,
it follows that XAX = X. From rank(X) = dim(T) and PrX = X, we have R(X) = T. Therefore, by Theorem

(viii), we get X = Ag). |

By Theorem we know that Ag) is an outer inverse of A. Using this property, some characterizations

of Agg) are given in the following theorem.

Theorem 4.3. Let A e C™", L < C", T = R(PLAPL) and S = N(PLAP) be such that Ag) exists and let X € C™",
The following statements are equivalent:

(@ X=A®;
(b) XAX = X, XPr = X and XA = Pp .y
(c) XAX = X, XAP, = Prgand AX = Parr.;
(d) XAX =X, PrX =Xand AX = Parts;

(e) XAX = X, PLAX = Pr and XA = Pp .y

() XAX = X, PrXPr = X and rank(X) = dim(T).
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Proof. (a) = (). This follows directly by Theorem (iii), (vi) and (iv).

(b) = (c). From Theorem 3.2/ (iv) and (v) , we have XAP|, = Pr 4.1 PL = Prs. It follows from XAX = X
that AXAX = AX, R(XA) = R(X) and N(AX) = N(X). In terms of XA = Pr 4.1+, we have R(X) = T, which
implies R(AX) = AT. From XPr = X and R(X) = T, we get N(X) = T*. Thus, AX = Parr-.

(c) = (d). From XAX = X and AX = Parr:, we have N(X) = N(AX) = T+, which implies rank(X) =
dim(T). Since XAX = X and XAP; = Prg, it follows that T ¢ R(XA) = R(X). Therefore, R(X) = T holds,
which means P7X = X.

(d) = (e). Similar to (b) = ().

(e) = (f). From XAX = X and XA = Pr1r, we have R(X) = T, which means PrX = X and
rank(X) = dim(T). It follows from PLAX = Pr and rank(X) = dim(T) that N(X) = L+ implies XPr = X.
Thus, PTXPT =X.

(f) = (a). In terms of PrXPr = X and rank(X) = dim(7T), it clear that R(X) = T and N(X) = T+. By

Theorem (viii), we can obtain X = Ag). O
From Theorem 3.2](iv), we have
X=A® = AX = Pary. , XA = Pripy. (10)

It is interesting to remark that the reverse of (10) is invalid as will be illustrated in the following example.

Example 4.4. Let

1200 100 E L -5 0
1100 010 L -4 0
— — =1 19 19 19
A‘osoo'L‘Roo1'X‘§—;§—g—%o
0000 000 0 0 0 1
Then, we have
w 9 3
R
Parme=|% 1§ B Pyt = ,
5 -5 B 0| ™D 3 300
0 0 0 O 0 0 00O
8§ 11 9
LT
A=l R P %,
9 19 19
0 0 0 O

We can directly verify AX = Par,rr and XA = Py gopy, but X # AE?.

In the following theorem, we add other conditions in AX = Par,r. and XA = Py 4.1+ to characterize the
Bott-Duffin core inverse.

Theorem 4.5. Let A € C™", L < C", T = R(PLAPy) be such that AES?) exists and let X € C™". The following
statements are equivalent:

- A®),
(a) X= A(L) ;
(b) AX = PAT,TL, XA = PT,(A*T)L and XAX = X,'
(c) AX = PAT,TL/ XA = PT/(AxT)J. and rank(X) = dll’n(T),

(d) AX = PAT,TJ-/ XA = PT,(A*T)L and XPT = X,'
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(6) AX = PAT,TL, XA = PT,(A*T)L and PTX =X.

Proof. (a) = (). This follows directly by Theorem (ii7) and (iv).
(b) = (c). From XA = Pr4.7y- and XAX = X, we have R(X) = R(XA) = T. Thus, rank(X) = dim(T).
(c) = (d). From AX = Par1: and rank(X) = dim(T), we have N(X) = T+, which implies that XPr = X.
(d) = (e). Since AX = Parr: and XPr = X, it follows that N(X) = L*, which means rank(X) = dim(T).
In terms of XA = Py 4.1+, we have T = R(XA)  R(X). Thus, R(X) =T, it can derive PrX = X.
(e) = (a). It follows from XA = Prq and PrX = X that R(X) = T, rank(X) = dim(T) and XAX = X.

From AX = Parr:, we have N(X) = L*. By Theorem. (viii), we can obtain X = AE?. O

Motivated by Theorem[4.5) we consider characterizing Bott-Duffin core inverse just using two conditions
which are one of AX = Parr: and XA = Py 4.1+ and another matrix equation.

Theorem 4.6. Let A € C™", L < C" and T = R(PrAPy) be such that Ag) exists and let X € C™". The following
statements are equivalent:

@®).
(a) X = AL) ;

(b) AX = Parrs and PrXPr = X;

(c) AX = Pyrre and PrAX?Pr = X;
(d) XA = Py ). and PrXPr = X;
(e) XA = Prypy and PrX?APr = X

Proof. (a) = (b). This follows directly by Theorem 3.2 (iv) and (vi).
(b) = (¢). Itis clear that PrPar . = Pr, then PrAX*Pr = PrXPr = X.
(c) = (a@). From AX = Parr: and PrXPr = X, we have XAX = X and R(X) ¢ T which mean N(X) =
N(AX) = L* and R(X) = T. By Theorem (viii), X = AD.
The rest of the proof follows similarly. [J

Using the Theorem (ii), we can conclude that Ag) € CEP. In the following theorem, we discuss other
characterizations of the Bott-Duffin core inverse.

Theorem 4.7. Let A € C™", L < C", T = R(PLAPL) and S = N(PLAPy) be such that Ag) exists and let X € C"™",
The following statements are equivalent:

@).
(a) X = AL) ;

(b)) X € CEP, XA = Pr ey and PrX = X;

(c) Xe CEP, XAP;, = PT,S and PrX=X;

(d) Xe CEP, AX = PAT,TL and XPr =X;

(e) Xe CEP, PAX =Py and XPr =X.
Proof. (a) = (b). This follows directly by Theorem 3.2](ii), (iv) and (vi).

(b) = (c). From T c L, wehave P; X = P P7X = PrX = X, then XAP; XAP; = XAP;. Since XA = Pramy,

it follows that R(XA) D R(XAP;) D R(XAP.XA) = R(XA). Therefore, R(XAP;) = T. Note the fact that
N(XAP;) = [RPL(XA]*F = (PLN(XA)L)*: = (PLA'T): = N(PrAPy), it follows form P Pr = Pr and

AP, = A that S © N(PrAPL) c N(AD'AP,) = N(Prs) = S, which means N(PrAP;) = S. Thus,
XAP; = pTS



J. Zhou et al. / Filomat 39:12 (2025), 3873-3889 3882

(c) = (d). Since PrX = X and T C L, multiplying XAP; by X from the right, we get XAX = X. Then
N(AX) = N(X) and AX is idempotent. From XAP; = Prs and PrX = X, we get R(X) = T. Hence
R(AX) = AT. Since X € CEP and R(X) = T, we have N(X) = T+. Thus, XPr = X and AX = Parr..

(d) = (e). From AX = Par,r+ and Theorem [3.2)(v), it is clear that PLAX = Pr.

(e) = (a). Since XPr = X and PLAX = Pr, it follows that N(X) = T*. From X € CEP and N(X) = T+, we
have R(X) = T. From XPr = X and L+ C T+, multiplying P AX by X from the left, we get XAX = X. Thus

_ A _ 4@
X=Arp = A(L) . O

5. Different representations of the Bott-Duffin core inverse

In this section, we give some representations of the Bott-Duffin core inverse.

Theorem 5.1. Let A € C"™" gnd L < C". Let a,b € C be such that ab # 0. Ing)) exists, then

aPy(aAPy, + bP;.)®

aP(aP APy +bPp.)®
a(aPLAP; + bP)®P,

= a(aPLAP, + bP)® — gpLi.

@)
A(L)

Proof. Let P and A be given by (6) and (7), respectively. We have

_ {IlAL O *
aAP; + bP. = u[ aCr bl ]u. (11)

Using Lemma and Lemma 2.5} it follows that

14.®
14, o)
AP, +bP )@ =Uu| @ u. 12
(aAPL 1+) [—%CLAL® %In—l] (12)
From (6), (8) and (12),
I, O 14,® 0
P AP, +bP)® = ul| ™ a’’L u
aPp(aAPy L) [O OH——CLAL i
_ A® o],
= u[ O o]u
_ 4@

The rest of proof follows similar. [

Theorem 5.2. Let A € C™", L. < C", T = R(PLAPL) and S = N(PLAPL). Let a,b,c,d € C be such thata +b # 0

and cd # 0. If Azg) exists, then

A(®)

o (a + b)Pr(aAPrs + dPr. + bPrAPrs)®

(a + b)(@PrA + dP.. + bPrAPrs)®P;
c(cPrAPrs +dP.)® — gpLL.
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Proof. Let P and A be given by (6) and (7), respectively. We have

AA® O], .
Pr=U L u 13
T [O O] (13)

and

®

A%A; O],
Prs=Uul| ‘'L u. 14
TS [ 0 O] (14)

By Lemma it follows that
(@ +b)Pr(aAPrs + dP. + bPrAPrg)®

_ U [ @+0)A,A® O] @+ Z%AL u*
O @) lIlCLA AL dInl
[ @enaa® o amAL® .
= u 5 o u
d(a+b)CLAL a

O O )

— U_AL@ O]u A(®)

Similar, from Lemma[2.6] we have
(a + b)(aPrA + dP.. + bPrAP5)®P;
(ll + b)AL ﬂALAL®BL ]® [ ALAL® O ] u

@+ up =g dl,_, O 0

1 4 ® ®

AL AL BL A A O *
ul| @ d(u+b) LAL U
@ b)( [ O ,}zlnl H O C] )

A® o @)
[ 420 |ur - ag

The rest of the proof follows similarly. [J

Remark 5.3. Under the hypotheses of Theorem 5.2land additional assumption a = 0, we have the following equation:

(@)
A(L)

bPr(dPy. + bPrAPrg)®
= b(dPp. + bPrAP15)®Pr,
while b = 0, we have the following equation:

(@)
A(L)

LZPT(ﬂAPT,s +dPr. )®
= a(aPrA +dp.)®py.

In the next theorem, we present representations for the Bott-Duffin core inverse, using the projections
P = PTJ-,AT and Q = P(A*T)L,T'

Theorem 54. Let A € C™", L < C", T = R(PLAP.) and S = N(PLAPL) be such that Ag) exists. For any
a,b,c,d € Csuch that cd # 0 and a + b # 0, the following statements hold:

(@) AY = Prs(@APrs + bPrAPrs + cPPL)®(a + b)(I, — P);
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®) A = @+ 1)L - QPrs@APrs + bPrAPrs +cPL.Q)®;

(c) AE%) = cPrs(cPrAPrs + dPrsQ)®;

@ AD = c(cPrAPrs + dPrsQ)®Pr,
where P = PTL/AT and Q = P(A*T)J‘,T‘

Proof. (a). From (7), (8) and Theorem [3.2)(iv), we have

L-A44% o] .
P=1,—Pyrr: =U u-.
ALT [ -cA® Iy

Using (6), (7), (13), (14), and Lemma 2.5, we can obtain

(u @+bhA, O ]u*)®

N®
({ZAPT,S + bPTAPT,S + CPPL ) (ZCLAL®AL Clnfl

14 ®
— AL O
u a+b u:.
[ 1-C AL® e ]

T c(a+b)

Hence,

Prs(aAPrs + bPrAPrs + cPPL)®(a + b)(I, - P)
_ u[ A®a, 0 H HAa® o H @+04A® o ]u*

0 O|| -7CA% U, || @+pca® o
_ A% o],
- u A u
- A®

L -

(b). From (7), () and Theorem [3.2] (iv), we have

_ _ L-A%A -A®B |, .
Q=1 Py = u[ i L

The rest of the proof follows similarly. [

Example 5.5. Let

1020 100
1121 010
A=lo 2 0 o |™L=R[l o o 1
2010 000
From and (T6), we have
4 4 2 4 4 2
95, o 9, Y 3 3 35 0
_ |- & -z o0 B o o 0o -}
P=I-Parrr=| 7 2 o |/ Q=I-Prar=| 2 2 _1 _2
g 8 98 3 3 3 9
2 -3 -% 1 0 0 0 1

3884

(15)

(16)
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By the direct calculation,

Prs(aAPrs + bPrAPrs + cPPL)®(a + b)(I, - P)
5(@+b)  4(a+b)  —2(a+b)

1 4 2 —L 0 —2_ 0 (
-z 3 -5 0 3(a+b 3(a+b 0
03 i 03 0 @) 1 @) 0 sarb)  S@rb)  2arb) 0
_ 5@ O@rh  O@rh 5 5 5
2 _2 4 0 4 2 —4 0 —2(a+b)  2(a+b) 8(a+b) 0
(3) 03 (3) 0 g Sah) S J2sb)  2arb)  8arb)
: 3cath) 9c(@+l) Oc@th) © 3 5 5 0
1 2
R
= _4§ g §4 0
5 5 5 0
000 0 0
4@

In [14], Yuan and Zuo present several limit expressions for some generalized inverses. Motivated by
this result, in the following theorem we give some similar expressions for Bott-Duffin core inverse.

Theorem 5.6. Let A € C™" and L < C" be such that Ag) exists. Then

(@) AD = lim PLAPLA* (AL, + (PLAYPLAY) Py
() AE?’ = lim PLAGL, + PLA"(PLAY) ' PLA'P;
(©) Ag) = lim (AL + PLAPLA"PLAY PLAPLA'P.

Proof. Let A; be given in @) From [14} Corollary 2.3], it follows that

A® = lim AL AL (AL + APAY (17)

Let M = PLAPLA* (AL, + (PLA)*PLA)"'Py. By (6) and (7), we have

g -1
B ALAL ALCL || AL+ ALPA ALPC L O,.
Mo=Ul 5" o H 0 AL, o ol|Y
_ oyl aar Ay AL +A2AY) " —(AL+AL2ASY 'A2cc [ I O U
- 0 0 0 ey O O
[ -1
_ ALALC AL + ALPA) O |
= U u.
0 o)

Hence, from (8) and (17), we have

* 2 1
limM = 1imu[ALAL(/Ul+ALAL) O]U*

A—0 A0 @) O
B A® o], .
_ u[ > 0 ]u
— A(®)

(O

Assertions (b) and (c) can be proved similarly. O
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Example 5.7. Let the matrix A and the subspace L be given as in the Example[5.5] By simple calculation, we have

5A2+451 5A2 —90A

T24I-1350 42421350 A0+2412-1351 0
5121151 617154 207604 0
M =| T+2412-1351  T+2412-1351  +2402-1350
~60A 212304 4171604 0
124021351  A042402-1350 13124121351
0 0 0 0
Thus,
1 2
EEEEE I
-5 5 5 0 @)
: - 3 9 9 -
ImM=1 2 3 % 4 |=4p
- 9 9 9
0O 0 0 O

6. The Bott-Duffin core inverse and constrained matrix approximation problem

The Frobenius norm is a matrix form of an m X n matrix A defined by

Al =

where a; ; represents the elements in the i-th row and j-th column of matrix A. In the following theorem,
we study the constrained matrix approximation problem in the Frobenius norm by using the Bott-Duffin
core inverse. Consider the following equation:

PrAx=b, (18)

where P; APy € CEM, L<C"and T = R(PLAP;). When b ¢ R(PLA), is unsolvalble, it has least-squares
solutions. Therefore, we consider the least-squares solutions of under the certain condition x € T, i.e.,

[IPLAx — bl = min subjectto xeT. (19)

Theorem 6.1. Let A € C™" and L < C" be such that Ag) exists. And let b € C". Then,

()
x=Au'b (20)
is the unique solution of (19).

Proof. Since x € T, it follows that there exists y € C" for which x = Py AP y. Then, x is the solution of (19) if
and only if y is the solution of

|[PLAPLAPLY - b||. = min.

Denote

b |
by

~

U"yz[ h ] andl,l*b:[
2

where y1, by € C'. From @ and @, we have

2
. = HAL2y1 - bl”i + [[B2l -

2 —
IPuAs ~ bl = H[ Ao
-2
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Since Ag) exists, we have A; € CfM. According to [5, Corollary 6], in @), matrix A, € C™ of rank r can
be represented in the form

YK XL .
AL—V[ O o ]V, (21)
where I = dim(L), V € €™ is unitary, X = diag(o1l,,,...,0},) is the diagonal matrix of singular values of
Ap,01>0>->0;>0,r+r+-+1,=r,and K € C™, L € C*" satisfy

KK*+LL =1,
In [1, Lemma 2], Baksalary and Trenkler point out that if A} € CfM be of the form . Then
®_ | CK? 0],
ALY = V[ o 0 V. (22)
Denote
I o |
Vyl—[ ]/2, ] andVb1—[ bzl ],

where y1/, by" € C". Tt follows from that

l

=Ky + ZKELy - by'|[2 + ||bo’

sy - tu];

[ (ZK2y1” + EKELys - by’ ] ?
—by

F

2
Fe

Since XK is invertible, we have min,, ,, ||(ZK)2]/1’ + XKXLyy — by’ i = 0, that is, ||[PLAPLx — bl = min =

\IballF + Hbz' i, in which y,” € C'" is arbitrary, and ;" = —(ZK)'ZLy," + (ZK)72b;". It follows from

that
(ZK) by’
x = PLAPLy=U|:IAOL 8]11*]/:”[148/1]:11 V[ 0
O

_ A% | @
o[ A |-ag

that is, is the unique solution of (I9). O

When M € C™" is nonsingular, it is well known that the solution of Mx = b is unique and x = M1p,
where b € C". Let x = (x1,x2,...,%,)". Then,

 det(M(i > b)) .
X]‘—T(A/D, 1—1,2,...,7’1 (23)

is called Cramer’s rule for solving Mx = b. In the following Theorem, we give the unique least-square
solution of (19).

Theorem 6.2. Let A c CP", L <C",beC", T = R(PLAP.) and rank(P, APy ) = r be such that Ag) exists, and let
F € €= with rank(F) = n —r and R(F) = T*. Then, has the unique solution x = (x1,x2, . .. ,x) T satisfying

PLAP(i—b) F
det([ o0 O ])
X = (24)

P;AP;, F ’
el | 2 6 )
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wherei=1,2,...,n.

Proof. From [13| Lemma 3.3], we have

[ pAP, F
=" o

is invertible and

o [ A® (In—Ag)pLAPL)F(F*P)l]

(F'F)F e}

(25)

Then we get the unique solution £ = G™'b of G£ = b, in which £* = [ Xy ]* and b* = [ b O ]*. In terms
of (25), it follows that

[ x ] | A® @,-ADPAP)FER)T [ b ] [ a®e
y (F'0)'F O O (FE)'Fb |
Applying (23), we can obtain 24). O

Example 6.3. Let the matrix A and the subspace L be as in Example(5.5} and let

b=[2 1 3 1]T,F=[2 —2 1 O]T.

0 0 01
It is clear that b ¢ T, then is unsolvable. Therefore, by using Theorem [6.1| and Theorem [6.2} we consider the

T
least-squares solutions of . We can check rank(F) = 2 and R(F) = T+. Let x = [ X1 X2 X3 X4 ] is the

unique solution of . By Ag) in Example applying or , we can derive the components of x directly,

Le.

x—L—Lx—Ex——gx—O
1_3/ 2_9/ 3 = 9/ 4 =

In [3],let A € C™", b € C" and L < C", the constrained linear equation
Ax+y=b,xeL, yelL* (26)

arise in electrical network theory. When AP, + P;. is nonsingular, the constrained linear equation has
a unique solution

_ A1) _ (-1
X = A(L) b, y=(, —AA(L) )b,

for any b € C". In the following theorem, we discuss the solution of when AP + Pj. € CEM .

Theorem 6.4. Let A € C™", L < C"and b € R(APL + Pr.) be such that Agg) exists. The constrained linear equation
(26) has a unique solution

_ A@) _ @)
X = A(L) b, y=,— AA(L) )b.
Proof. Letz =x+y,wehave Pz =Pr(x+y) =P x+Pry=xand P,z = Pr.(x+y) = Pr.x+ Py = y. Thus,

Ax+y=b & APiz+PpLz=0»
=4 (APL + PLL)Z =D. (27)
From Theorem AES?) exists if and only if AP, + Pr. € CSM. If b € R(AP; + P;.), then the core-inverse

solution of 1) is unique (see [7]), i.e. z = (AP + P )®b. Thus, x = Pz = AE?)b and y = (I, — AA%))Z). O
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Example 6.5. Let the matrix A and the subspace L be as in Example[5.5} and let
=[5 8 6 5].

It is easy to check b € R(APy, + P.). By Theorem and Ag) in Example we can obtain the unique solution of
equation (26):

—A®, ] 7 4 r - @)y _ T
x=A®p=[2 3 4 0] andy=L-24aA%)=[0 0 0 -1].

7. Conclusion

The paper introduces a new generalized inverse, Bott-Duffin core inverse, which is a generalization of the
Bott-Duffin inverse. We study its properties, characterizations and representations. Moreover, we discuss
the application of Bott-Duffin core inverse, which is about constrained matrix approximation problem. On
a basis of the current research background, there are many topics on the Bott-Dufiin core inverse which can
be discussed. Some ideas are given as follows:

(1) Itis possible to discuss the algebraic perturbation theory of Bott-Duffin core inverse and the expression
of the algebraic perturbation of Bott-Duffin core inverse.

(2) Consider the relationships between the Bott-Duffin core inverse and other generalized inverses.

(3) The integral representation, continuity, and iterative calculation of the Bott-Duffin core inverse all can
be discussed.
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