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Lie triple centralizers and generalized Lie triple derivations on
triangular operator algebras by local actions

Xinzhuo Liu**, Jianhua Zhang?

?School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China

Abstract. Let U be a triangular operator algebra, and ¢ : U — U be a linear map. In this paper, under
some mild conditions on U, we prove that if ¢ satisfies

(U, V], W) = [[(U), V], W] = [[U, ¢(V)], W]

for any U, V, W € U with UV = UW = P being the standard idempotent(resp. UV = UW = 0), then there
exist A € Z(U) and a linear map 7 : U — Z(U) satisfying t([[U, V], W]) = 0 for any U, V, W € U with

UV = UW = P(resp.UV = UW = 0) such that ¢p(U) = AU + 7(U) for U € U. As an application, we give a
characterization of generalized Lie triple derivations on U.

1. Introduction

Let X and Y be Banach spaces over the complex field C. By B(X) we denote the algebra of all bounded

linear operators on X. Let A and B be unital subalgebras of B(X) and B(Y), respectively. Let M C B(Y, X)

be a faithful (A, B)-bimodule, that is, for a € A, aM = 0 implies a = 0, and for b € 8, Mb = 0 implies b = 0.
Under the usual matrix operations,

fu=Tri(ﬂ,M,B)={( g ) ):aeﬂ,meM,beB}cB(X@M)

is a triangular operator algebra with the unit I = ( Lz

0 Iy ), where Iz and Ig are the units of the algebra A
and B, respectively. Denote

I O 0 0 o
PlZ(Oﬂ 0)/P2:(0 Iy )’(L(ijzpiﬂpj(:lSZS]SZ),
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and P; is called the standard idempotent. It is clear that U can be represented as U = U1 + U1z + Uy, and
Uy is a faithful (U1, Uzp)-bimodule. Let Z(U) be the center of U. It follows from [7] that

Z(’L[)z{( g 2 ):amzmbforallmeM}.

Let us define two natural projections 715 : U — Aand g : U — Bby

T(j[((a) ?)=aandng(g rg):b'

Then ta(Z(U)) € Z(A) and ng(Z(U)) € Z(B). There exists a unique algebraisomorphismn : na(Z(U)) —
nig(Z(U)) such that am = mn(a) for all m e M.

Recall that a linear map ¢ : U — U is called a centralizer if p(UV) = ¢(U)V = UPp(V) forall U,V € U,
a linear map ¢ : U — U is called a Lie centralizer if ¢([U V]) = [¢p(U), V] for all U,V € U, where
[U V] = UV — VU is the Lie product of U and V. The structure of Lie centralizers on rings and operator
algebras, has attracted some attention over past years. The relationship between a Lie centralizer ¢ : U — U
and the sum of a centralizer ¢ : U — U and a map C : U — Z(U) has been studied(see [4], [8], [11] and
references therein). For example, in [4], Fosner and Jing proved that under mild assumptions, every Lie
centralizer ¢ from a triangular ring R to itself is of standard form, that is, ¢ can be expressed through a
centralizer ¢ : R — R and a linear mapping C : R — Z(R) vanishing at commutators. Jabeen in [8]
considered Lie centralizers on generalized matrix algebras.

There exist some important classes of mappings on algebras, such as Lie triple centralizers and Lie triple
derivations, and their generalizations. A linear map ¢ : U — U is called a Lie triple centralizer if

o([IU, VI, W) = [lo(), V1, W]

forall U, V, W € U. It can be easily checked that ¢ is a Lie triple centralizer on U if and only if ([[U, V], W]) =
[[U ¢p(V)], W]forall U, V, W € U. Obviously every Lie centralizer is a Lie triple centralizer, but the converse
is generally not true. We say that a linear map o : U — U is a Lie triple derivation if

a([[A, B], C]) = [[o(A), B], C] + [[A, a(B)], C] + [[A, B], 0(C)]

forall A,B,C € U. A linear map A : U — U is called a generalized Lie triple derivation associated with
the Lie triple derivation o

A([[A, B], C]) = [[A(A), B], C] + [[A, 0(B)], C] + [[A, B], 0(C)]

forall A, B, C € U if and only if A—o¢ is a Lie triple centralizer(see [2]). In [2], Fadaee et al. gave the necessary
and sufficient conditions for a Lie triple centralizer to be standard, and as an application, they characterized
generalized Lie triple derivations. Xiao [13] proved that under mild assumptions, every Lie triple derivation
0 on U is of standard form, that is, 6 = d + 7, where d is a derivation from U to itself and 7 is a linear map
from U to Z(U) vanishing on all second commutators of 7. Recently, there have been a great interest in the
study by local actions of Lie triple derivations and Lie triple centralizers. Liu[9] considered that Lie triple
derivations on zero product on factor von Neumann algebras. Liu[10] showed that Lie triple derivations
on projection product on von Neumann algebras. Let M be an arbitrary von Neumann algebra, Fadaee[3]
proved that if an additive map ¢ : M — M satisfies ¢([[A, B], C]) = [[¢(A), B],C] = [[A, $(B)], C] for any
A,B,C e Mwith AB =0, then ¢p(A) = WA + £(A) for any A € M, where W € Z(M)and & : M — Z(M) is
an additive mapping such that &([[A, B], C]) = 0 for any A, B, C € M with AB = 0.

In this paper, we will consider the structure of a kind of Lie triple centralizer by local actions on triangular
operator algebras. As an application, we give a characterization of generalized Lie triple derivations on U.
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2. Main result

The main result is the following theorem.

Theorem 2.1 Let U = Tri(A, M, B) be a triangular operator algebra satisfying
ona(Z(U)) = Z(A), na(Z(U)) = Z(B)
o Z(A) ={A e AlllAT],TI=0,T e A}, Z(B) ={Be BB, T],T1=0,T € B}
If ¢ : U — U is a linear map satisfying
o([IU, V], W) = [[oU), V], WT = [[U, $(V)], W]
for all U, V,W € U with UV = UW = Py, then there exist A € Z(U) and 7 : U — Z(U) such that
¢(U) = AU + t(U) for U € U, where t([[U, V], W]) =0 forall U, V, W € U with UV = UW = P;.

Proof: We will complete the proof by several claims.

Claim 1 (P(Pl) S 7/111 + (lez.
Since P1P; = P1P; = P;, we have

0 =¢([[P1, P1], P1]) = [[¢(P1), P1], P1] = ¢(P1)P1 + P1¢(P1) — 2P1p(P1)P1 = P1p(P1)P>,

and hence Qb(Pl) € (Lln + Uy».
Claim 2 ¢(U12) € Uio.
For any Ui, € Uiy, since (P1 + Uip)P1 = (P1 + Upp)P1 = P1, we have

d(Ur2) =@([[P1 + Uiz, P11, P1]) = [[P1 + Uiz, ¢(P1)], P1]
=[[P1, p(P1)], P1] + [[U12, (P1)], P1] = [[U12, (P1)], P1] = P1¢p(P1)U12 — U12¢(P1)Ps.
This 1mp11es that Plgb(llu)Pl = pz(i)(ulz)Pz =0. Consequently, (;b((Lllz) - 7/{12.
Claim 3 ¢(U;;) € U + Uxn(i=1,2).
For any invertible Ay; € Uy, since A[ A = Ajl A = Py, we get
0 =¢([[A7}, Anl Aul) = [[AT, p(An)], Aul = A p(A1)An — p(A1)P1 = Pip(An) + Audp(An)AT;.

Multiplying the above equation by P, from the right, we obtain that P1p(A11)P, = 0,and hence ¢(A11) € Ui+
Uy,. Forany Uy; € Uy, there exists an integer n such that nP; — Uy is invertible. Let Uy = nPy —(nP1—Ux),
by the above and Claim 1, we have ¢p(Uq1) € Ui + U, Unr € Ui,

For any Uy € Uy, since (P1 + UZZ)Pl = (P1 + Uzz)Pl = P, we get

0 =¢([[P1 + U, P1], P1]) = ¢([[P1, P1], P1]) + ¢([[U22, P1], P1])
=¢([[Uaz, P11, P1]) = [[¢(U22), P11, P1] = ¢p(Up)P1 + P1p(Uzz) — 2P1p(Up)P1 = P1dp(Ua2)P>,

and so (ﬁ(Uzz) € U + U, Uy € Up.

Claim 4 There exists a map © : U — Z(U) such that p(U;;) — t(Uy) € Uy, for all Uy € Uy, i =1,2.
For any invertible element A1; € Uy and Ap € Uy, since (A} + An)An = (A} +An)A1 = P, we have

0 =p([[A]} + Axn, Anl, Anl) = [[9(A}] + An), Anl, Aul = [[P(AL)), Aul, Anl + [[P(Ax), Annl, Al
=[[¢(A), A11], A11] = [[P1p(A2)P1 + P2p(Ax)P2, A11], A1l = [[P1p(Ax)P1, An1], A (2.1)

Since A11(Ahl + Azz) = A11(A1_11 + Azz) = Py, we have

0 =p([[A11, A7} + Axn], A7} + Ax]) = [[$(An1), A7} + Anl Al + Ax]
=[[¢p(An), AT} 1 AL + Al + [[§(A11), Al Aj] + Anl. (2.2)
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Since AnnAj] = An(Aj] + An) = P1, we have

0 =¢([[A11, AL A + An]) = [[9(An), AL Af} + Axnl. (2.3)
By Egs. (2.2) and (2.3), then
0 =[[p(A11), Azl AT} + Anz] = [[P(An), Aal, AT 1 + [[P(A11), Az], Azl = [[Pap(A11)P2, Ann], Azl (2.4)

By the condition of theorem 2.1 and Eqs. (2.1) and (2.4), we have P1¢p(An)P1 € Z(U11) = P1Z(U)P;,
Pyp(A11)Py € Z(U) = P,Z(U)P,. For any Uy € Uy, there exists some numbers n such that nPq — Uy is
invertible. Then P1¢p(Ux)P1 € Z(U11) = PrZ(U)P1, Pop(U11)Pr € Z(Ux) = P, Z(U)P,.
For U;; € (L(il‘,i =1,2, let T1(U11) = qub(lln)Pz, "Cz(Uzz) = qu,’)(uZz)Pl. For U € 7/[, define the map
T: U - Z(U) as
t(U) = t(Un) + 77 (11 (Un)) + T2(Un2) + 1(12(Uz)).

It is obvious that ©(U) € Z(U). Then for any U1 € Uiy, it follows that
d(Un1) — 1(Un1) =P1p(U11)P1 + Pap(U11)P2 — 71(Ur1) — 7 (11(Un1)) = Pip(Unn)P1 — 7 (11 (Un1)) € Uns.

Similarly, we can obtain ¢p(Ux) — T(Uxn) € Uz.
Define a map ¢ : U — U as
p(U) = p(U) - =(U)
for any U € U. It follows from claims 2 and 4 that ¢(Ui2) € Uio, p(Us) = ¢(Uy) — ©(Uy) € U withi=1,2
for all U;; € U;;, meanwhile, p(U2) = ¢p(U12), for all Ui € Uio.

Claim 5 For any U;; € U;; (i = 1,2), we have
(@) (U U2) = @(Ui)Ur2 = Une(Urn);
(b) p(UiaUan) = p(Ui2)Ux = Upp(Usz).
(a) For any invertible element A1; € Uiy, and Uy, € Uiy Since (A} + A Un)An = (A} + A Un)An =
Py, we have
P(Anln) = p(AnUn) = P([[A}] + A7l Uz, Anrl, Annl) = [[9(AT] + Al Un), Al Anl
=[[p(A7]), Annl, Anl + [[P(AL Unn), Arl, Al = [[d(AL Unz), Anl, Anl. (2.5)

Replace U1, with A1;Up; in Egs. (2.5), then
P(AnAnUn) =[[P(A]] AU, A1l Anl = [[p(Ur), Anl, Al = AnAnd(Uin) = AnAne(Ui).
For any Uy € U1, there exists some numbers n such that we have nP; — Uy, is invertible. So
@((nPy — Up1)(nPy — U1)Uiz) = (P — Urp)(nPr = Un)e(Ui),

and hence
QU1 Uy2) = Upnip(Us2) (2.6)
for all U,']' € 7/11‘]‘.
For any invertible element A1y € Uiy and U € Uip. We have
P(A1Unn) = (A1 Un) = ¢([[A}] + Aj Uiz, Al An)
=[[A}] + A7l U, ¢(A1)], Anl = [[AL], P(A11)], Al + [[AT] Uz, p(A11)], Al = [[A}] Uz, p(A11)], Al
=[[A7} U1z, p(A11)], Al = Anp(A11)AT] Uno.

Replace Uy, with A11U5,, then (p(A11A11 Upp) = A]](P(Al])u12.
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For any Uj; € U1, we may find some numbers n such that nP; — Uy is invertible. So

@((nP1 — Upq)(nPy — Up)Urz) = (nPy — Uyp)p((nPy — Up)Upe.

Thus,

no(Usz) — 2np(Us1 Unz) + p(Us Un Usz) = n*@(P1)Urp — np(Uy) Uiz — nUyyp(Pr)Uns + Ullgo(un)l(12127.)
Replace n withn +1

(n+ 12p(Urp) — 2(n + D(Ur1 Upz) + p(Us1 Uy Usz)

=(n +1°p(P1)Uz = (n + 1)p(Un) Uiz — (1 + 1)Unp(P1)Usz + Un@(Unn)Una. (2.8)
By Egs.(2.6) (2.7) and (2.8), then

2n@(Uiz) + (Uiz) — 29U Uiz) = 2n@(P1)Uin + @(P1)Ui2 — @(Uq1) Uiz — Unn1e(P1)Uis. (2.9)
Replace n with 7 + 1 in Egs. (2.9)

2(n + D)p(Urp) + @(Ui2) — 20U Uiz) = 2(n + 1)p(P1)Uie + @P1)Uiz — @(Ui1)Upp — U11§0(P1)U12'(2 10
By Egs. (2.9) and (2.10), then

p(Uz2) = p(P1)Uxz. (2.11)

By Eqs. (2.6), (2.7), (2.8), (2.11), then
p(U11Urz2) = o(Uzr)Uo.

We can prove that (a) is true.
(b) For any Uxn € Uxn, and Uy, € Uipp. Since (Pr + Uip)(Pr + Uy — UippUxn) = (P1 + Up)P1 = Pi, we
have
@(Ur2) = ¢(Ur2) = @([[P1 + Urz, P1 + U — UipUy], P1]) = [[P1 + Uiz, (P1) + ¢(U2z) — p(Ui2U)], P1]
=[[P1 + Uiz, (P1)], P1] + [[P1 + Urz, ¢(U22)], P1] = [[P1 + Uiz, p(Ur2U2)], P1]
=[[Ur2, p(P1)], P1] + [[U12, (Ua2)], P1] = [[P1, ¢(Ur2U2)], P1]
=[[Ui, p(P1)], P1] + [[U12, (U)], P1] = [[P1, p(U12U)], P1] = P1p(P1)U1z — Uinp(Up) + @(U12Uy).

Then, p(Ui2Uz) = Upa@p(Uz) and @(UpUzn) = @(P1UUzn) = @(P1)UpUx = @(Ui2)Us,. We can prove that
(b) is true.

Claim 6 For any A;; € Uj;, Bii € Uj;, S12 € U1o(i = 1,2), we have
(@) p(A11B11) = p(A11)B11 = Anip(B1);
(b) p(A22B2) = @(A22)Bxn = An@(Ba);
(a) For any S1, € Usp, by claim 5, on the one hand,

P(A11B11512) = p(A11B11)S12.

On the other hand,
@(A11B11512) = A119(B11512) = A119(B11)S12.

Combining the above two equations, we have

(A119(B11) — @(A11B11))S12 = 0.
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Since M is faithful (A, B)-bimodule, we get (A11B11) = A11¢(B11).

@(A11B11512) = p(A11)B11S12 = 9(A11B11)S12
that @(A11B11) = (A11)B11 = A11¢(B11). We can show that (a) holds.
(b) It follows from Claims 5 that
@(512A22B2) = S12¢0(A2B2).
On the other hand,
©(512422B20) = p(S12A2)B2 = S12¢0(A22)Bas

Combining the above two equations, we have
S12(p(A2B») — Ap@(By)) =0

Since M is faithful (A, B)-bimodule, we get ¢p(A2,B2) = A2 @(By;). Similarly, we can obtain that ¢(AzBx») =
@(Axn)Bxn, and hence p(A»B») = @(A»)Bxn = An@(B2).
We can show that (b) holds.

So, from steps 1-6, it follows that
p(AB) = Ap(B) = ¢(A)B.
forall A,B € U, then
P(A) = AA(L € Z(U)).

Claim 7 t([[U, V], W]) =0 for all U, V, W € U with UV = UW = P;.
For UV = UW = Py, it follows that

([[U, V], W]) = ¢([[U, V], W]) — o([[U, VI, W]) = [[p(U), V], W] = (U, V], W])
=[lp) + =), VI, W] = ([[U, V], W]) = [[U), V], W] = ¢(([L, V], W]) = 0.

It follows from claim 1-7 that there exists a A € Z(U) and a linear map 7 : U — Z(U) such that
o(U) = AU + t(U)(U € U), where t([[U, V], W]) =0 for any U, V, W € U with UV = UW = P;.
Theorem 2.2 Let U = Tri(A, M, B) be a triangular operator algebra satisfying
onta(Z(U)) = Z(A), ng(Z(U)) = Z(B).
o Z(A)={AeAllA X],Y]=0,X,Ye A}, Z(B)={BeB[B,X],Y]=0,XY e B}
If ¢ : U — U is a linear map satisfying

(U, VI, W) = [[¢(U), V], W] = [[U, $(V)], W]

for all U, V,IW € U with UV = UW = 0, then there exist A € Z(U) and 7 : U — Z(U) such that
o(U) = AU + t(U) for U € U, where t([[U, V], W]) =0forall U, V, W € U with UV = UW = 0.

Proof: We will use the same symbols with that in Theorem 2.1. We organize the proof in a series of
claims.

Claim 1 @(Pl) € U + Unn.
Since P1P, = P1P, = 0, we have

0 =¢([[P1, P2], P2]) = [[¢(P1), P2], P2] = P1¢p(P1)Ps.

We obtain that ¢p(P1) € U1 + Uy.

Claim 2 ¢p(U1z) € Us,.
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For any Ui, € Uy, since UjpPq = UppP1 = 0, we have

P(Ur2) =¢([[Urz, P1], P1]) = [[U12, (P1)], P1] = —U12p(P1) + P1¢p(P1)Unz.
This implies that P1¢p(Ui2)P1 = Pap(Ur2)P2 = 0. Consequently, ¢(Urz) € Us.

Claim 3 ¢(U;) € Uiy + Un(i=1,2).
For any Uj; € Uy, since Uy P = U1 P2 =0, we get

0 =¢([[U11, P2], P2]) = [[¢(U11), P2], P2] = P1p(U11) P>,
and hence (;[)(UH) € (L[n + 7/[22. Similarly, (i)(Uzz) € 7/{11 + 7/[22, Uy, € (lez.

Claim 4 There exists a map 7 : U — Z(U) such that ¢(U;;) — ©(Ui) € Uy, for all Uy; € Uy, i=1,2.
For any U; € (L{,’i, since Ux» U1 = U Upp =0, we have

0 =¢([[Ux, Un1], Ur2]) = [[¢(Uz2), U11], Ur2],

so [p(Ux), U11] € Z(U). Then, we obtain that [P1¢(Uxn)P1, U] € Z(Ui1). Similarly, we obtain that
[Ux, P2¢p(U11)P2] € Z(Up). By the condition of theorem 2.2, we have P1p(Uxn)P1 € Z(Un) = PrZ(U)P,,
Prp(U11)P2 € Z(Ux) = P2Z(U)P,.
For Uii S (Z/{,'i,i = 1,2, let Tl(ull) = P2¢(U11)P2, Tz(Uzz) = P1¢(u22)P1. For U € 7/[, define the map
T: U - Z(U)as
(U) = t1(Un1) + 07 (11(Unn)) + T2(Uz) + n(12(Un)).

It is obvious that 7(U) € Z(U). Then for any U1y € Uy, it follows that
d(Un) — ©(U1) =P1p(Un1)Py + Pap(Ur1)Pa — T1(Un1) — 07 (t1(Un)) = P1gp(Unn)P1 — 07 (t1(Unn)) € Un.

Similarly, we can obtain ¢p(Ux) — T(Uzx) € Uap.
Define a map ¢ : U — U as
() = o) — =(U)

for any U € U. It follows from claims 2 and 4 that ¢(Ui2) € Uio, e(Uy) = ¢(Uy) — ©(Uy) € U withi=1,2
for all u,'i € 7/[,‘1', meanwhile, (p(Ulz) = ¢(U12), for all Uu € (L{u.

Claim 5 For any U;; € U;; (i = 1,2), we have
(@) e(UnlUin) = p(Ui1)Uiz = Unne(Urn);
(b) p(UiaUa) = p(Ui2)Uxn = Upp(Uz).
(a) For any invertible element Uy, € U11, and Uy, € Uy, Since UgpUig = UppP1 = 0, we have

p(UpUrz) = p(Ur1Urz) = ¢([[U12, Uni], P1]) = [[¢(U12), U11], P1] = Unnp(Urz) = U p(Usz)

and,

@(UUro) = p(U11Ur2) = P([[Ur2, Ur1], P1]) = [[Ui2, @(U11)], P11 = [[Ur2, @(Ur1)], P1] = o(Ui)Ux2

We can show that (a) holds.
(b) Similarly, we can show that (b) holds.

Claim 6 For any A;; € Uj;, Bii € Ujj, S12 € U1o(i = 1,2), we have
(@) p(A11B11) = @(A11)B11 = Auip(B1);
(b) (A2B») = p(A2)Bn = An@(Bw);
(a)For any S1» € Uiy, by claim 5, on the one hand,

@(A11B11512) = @(A11B11)512.
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on the other hand,
@(A11B11512) = A119(B11512) = A119(B11)S12.

Combining the above two equations, we have

(A119(B11) — 9(A11B11))S12 = 0.

Since M is faithful (A, B)-bimodule, we get ¢(A11B11) = A11¢(B11).

It follows from
@(A11B11512) = @(A11)B11S12 = 9(A11B11)S12

that p(A11B11) = p(A11)B11 = A11¢(B11). We can show that (a) holds.
(b) Similarly, we can show that (b) holds.

So, from steps 1-6, it follows that
@(AB) = Ap(B) = p(A)B.
for all A, B € U, then
P(A) = AA(A € Z(U)).

Claim 7 t([[U, V], W]) =0 forall U, V,W € U with UV = UW = 0.
For UV = UW =0, it follows that

([[U, V], W]) = ¢([[U, V], W]) — o([[U, VI, W]) = [[p(UD), V], W] = ¢([[U, V], W])
=[lp) + =(U), VI, W] = ([[U, V], W]) = [l(U), V], W] = ¢(([U, V], W]) = 0.

Hence there exists a A € Z(U) and a linear map 7 : U — Z(U) such that p(U) = AU + t(L)(U € U),
where 7([[U, V], W]) =0 for any U, V, W € U with UV = UW = 0.

3. Application

Application 1: characterization of generalized Lie triple derivations by acting on idempotent products.
Theorem 3.1

Let U = Tri(A, M, B) be a triangular operator algebra satisfying
(Wra(Z(U)) = Z(A), ns(Z(U)) = Z(B),
2)ZA) ={A € AlAT], TI=0,Te A}, Z(B)={Be BB, T], T] =0,T € B}.

Suppose that a linear map o : U — U

a([[A, B], C]) = [[0(A), B], C] + [[A, a(B)], C] + [[A, B], 0(C)]

forall A, B,C € U with AB = AC = Py, then ¢ is of the form ¢ = ¢ + h, where ¢ : U — U is a derivation, a
linear map h : U — Z(U) vanishing on [[A, B], C] for all A, B,C € U with AB = AC = P;.
Theorem 3.2 Let U = Tri(A, M, B) be a triangular operator algebra satisfying
onta(Z(U)) = Z(A), 13(Z(U)) = Z(B),
o Z(A)={Ac A|llAT],T]=0,Te A}, Z(B)={BeB[[B,T],T] =0,T € B}.
Suppose that a linear map A : U — U

A([[A, B], C]) = [[A(A), B], C] + [[A, 0(B)], CT + [[A, B], o(C)]

forall A, B, C € U with AB = AC = P;. Then, there exist A € Z(U), a derivation ¢ and h; : U — Z(U) such
that
A(A) = p(A) + i (A) + AA
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for A € U, where h1([[A,B],C]) =0 for all A,B,C € U with AB = AC = P;.
Proof: According to the theorem 3.1, there are linear maps ¢ and / on U,

o:U->U h:U—-Z(U)
h([A, B], C]) = 0 with AB = AC = Py. By assumption, for a Lie triple centralizer ¢ = A — o on U, we have
A,B,CeU,AB = AC = Py = ¢([[A, B, C]) = [[¢(A), B], C] = [[A, ¢(B)], C]

It follows from the result of this paper that there exist A € Z(U/) and a linear map 7 on U such that
P(A) = AA + ©(A), where 1(A) € Z(U) for all A € U and ([[A, B],C]) = 0,AB = AC = P;. Suppose
that hy = 7+ h, thus Iy : U — Z(U) is a linear map where h;([[A, B],C]) = 0 for all A,B,C € U with
AB = AC = P;. Thus, we have

A(A) =0(A) + P(A) = p(A) + h(A) + AA + 1(A) = p(A) + i (A) + AA
for all A € U, this completes the proof.

Application 2: characterization of generalized Lie triple derivations by acting on zero products.
Theorem 3.3 Let U = Tri(A, M, B) be a triangular operator algebra satisfying
(Mra(Z(U)) = Z(A), 18(Z(U)) = Z(B),
QZA) ={AcAlAX],Y]=0,XYeA}, Z(B)={BeB|[B,X],Y]=0,XY € B}

Suppose that a linear map o : U — U,

a([[A, B], C]) = [[o(A), B], C] + [[A, a(B)], C] + [[A, B], o(C)]

for all A,B,C € U with AB = AC = 0, then o is of the form ¢ = ¢ + h, where ¢ : U — U is a derivation, a
linear map h : U — Z(U) vanishing on [[A, B], C] for all A, B, C € U with AB = AC = 0.
Theorem 3.4 Let U = Tri(A, M, B) be a triangular operator algebra satisfying
onta(Z(U)) = Z(A), ng(Z(U)) = Z(B),
o Z(A)={AcAllAX],Y]=0,X,YecA}, Z(B)={BeB|[B,X],Y]=0,X,Y € B}.
Suppose that a linear map A : U — U,

A([[A, B], C]) = [[A(A), B], C] + [[A, 0(B)], C] + [[A, B], 0(C)]

forall A, B, C € U with AB = AC = 0. Then, there exist A € Z(U), a derivation ¢ and h; : U — Z(U) such
that
A(A) = p(A) + (A) + AA.

for A € U, where h1([[A,B],C]) =0 forall A, B,C € U with AB=AC =0.
Proof: According to the theorem 3.3, there exist linear maps ¢ and i on U

p:-U->U h:U—-Z(U)
h([A, B], C]) = 0 with AB = AC = 0. By assumption, for a Lie triple centralizer ¢ = A — o on U, we have
A,B,CeU,AB = AC =0 = ¢([[A, B], C]) = [[¢(A), B], C] = [[A, ¢(B)], C]

It follows from the result of this paper that there exist A € Z(U) and a linear map 7 on U such that
P(A) = AA + ©(A), where 1(A) € Z(U) for all A € U and 7([[A,B],C]) = 0,AB = AC = 0. Suppose that
hy = ©+h,thushy : U — Z(U) is alinear map where h1([[A, B],C]) =0forall A, B, C € U with AB = AC = 0.
Thus, we have

A(A) =0(A) + P(A) = p(A) + h(A) + AA + 1(A) = p(A) + I (A) + 1A

for all A € U, this completes the proof.
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