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Abstract. Our aim is to prove one relation between characteristic determinant and norms of orthogonal
eigenvectors of eigenvalue problem for fourth order differential operator equation.That relation as appears
plays a crucial role in deriving the regularized trace formulas.

1. Introduction

Consider the next eigenvalue problem:

l0[y] ≡ yIV(t) + Ay(t) = λy(t) (1)

y(0) = y′′(0) = 0, (2)

−y′′′(1) = λQ1y(1), (3)

y′′(1) = λQ2y′(1) (4)

in L2(H, (0, 1)) with an abstract separable Hilbert space H (see [7]). Coefficients A,Q1,Q2 of the problem
are unbounded operators in H. They are assumed to be self-adjoint, positive-definite, moreover, A−1

∈ σ∞.
Denote the eigenvalues and eigenvectors of A by γ1 ≤ γ2 ≤ . . . and ϕ1, ϕ2, . . . , respectively. For fourth order
differential operator equations with λ in only one boundary condition and without unbounded operators
Q1,Q2 we refer to our works [5, 9, 10, 14]. For higher order differential operator equation and without
spectral parameter in boundary condition refer to [9, 13]. Sturm-Liouville operator equation cases were
treated for example, in [13, 14] with sum or able or nonsummable coefficients refer to [1–6, 8, 11, 12].

InH = L2(H, (0, 1)) ⊕H2, define operator L0:

D(L0) =
{
Y =
{
y(t), y1, y2

)
∈ H , y(t) ∈W4(0, 1),

2020 Mathematics Subject Classification. Primary 34B05; Secondary 34G20, 34L20, 34L05, 47A05, 47A10.
Keywords. differential operator, spectrum, eigenvectors, characteristic determinant, regularized trace.
Received: 27 September 2024; Revised: 12 January 2025; Accepted: 15 January 2025
Communicated by Ljubiša D. R. Kočinac
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y1 = Q1y(1), y2 = Q2y′(1), y(1) ∈ D(Q1), y′(1) ∈ D(Q2),

y”′(1), y′′(1) ∈ H, y(0) = y”(0) = 0
}

(5)

L0Y =
{
l0[y],−y′′′(1), y′(1)

}
(6)

Recall here that W4(0, b) is a closure of C4(H1, [0, b]) in the norm:

∥y(t)∥2W4(0,b) = ∥y(t)∥2L2(H1,(0,b)) + ∥y
IV(t)∥L2(H,(0,b)),

where H j ( j > 0 ) is a closure of D(A) with respect to norm produced by the scalar product

(u,u)H j = (A ju,A ju)H.

Setting:

l1[y] ≡ yIV(t) + Ay(t) + q(t)y(t),

where q∗(t) = q(t) is bounded for each t ∈ [0, 1], define operator L1 with the same domain as in (5) and

L1Y = {l1[y],−y′′′(1), y′(1)}

It is known that spectrum of L0 is discrete. Because of cosC,Q1A−
3
4 and Q2A−

1
2 ∈ σ∞, and q(t) is bounded

spectrum of L1 is also discrete.
Solutions of problems(1), (2) are:

y(t) = sh
4√

λI − A t F1 + sin
4√

λI − A t F2, (7)

where I is an identity operator in H and F1,F2 ∈ H3/4.
For computing the asymptotics of eigenvalues of L0, take Q1 = Q2 = Aα, restricting α to the interval

(0, 1/2) and let to hold the conditions Q1A−3/4,Q2A−1/2
∈ σ∞.

Putting in (3), (4) vector-function y(t) defined by (7) and using the spectral expansion of operator A:

A =
∑
∞

k=1 γk(·, ϕk)ϕk

also denoting

4
√
λ − γk = z, (F1, ϕk) = c1k, (F2, ϕk) = c2k

one has

−z3 chz c1k + z3cosz c2k = (z4 + γk)shzγαk c1k + (z4 + γk)sinzγαk c2k (8)

zshz c1k − zsinz c2k = (z4 + γk)chzγαk c1k + (z4 + γk)coszγαk c2k (9)

Equations (8) and (9) form a system of linear algebraic equations in c1k, c2k, which has non-zero roots if
and only if the determinant of coefficients (so called the characteristic determinant) is zero:

∆ (z) =

∣∣∣∣∣∣∣∣∣
−z3chz −

(
z4 + γk

)
shz γαk z3 cos z −

(
z4 + γk

)
sin z γαk

zshz −
(
z4 + γk

)
chz γαk −zsinz −

(
z4 + γk

)
cos z γαk

∣∣∣∣∣∣∣∣∣ = 0 (10)

or

t1z =
−2z3

(
z4 + γk

)
γαk + z4thz −

(
z4 + γk

)2
γ2α

k thz

z4 + 2z
(
z4 + γk

)
γαk thz −

(
z4 + γk

)2γ2α
k

(11)
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2. Orthonormal eigenvectors of the operator L0

Reminding that by
{
φκ
}

we denote orthonormal eigenvectors of the operator A, then orthogonal eigen-
vectors of L0 will have the next form

Yk, j =
{
c1k, jsh 4

√
λk, j − γktφk + c2k, jsin 4

√
λk, j − γktφk, c1k, jγk

αsh 4
√
λk, j − γkφk+

+c2k, j γk
αsin 4
√
λk, j − γkφk , c1k, j

4
√
λk, j − γkγk

αch 4
√
λk, j − γkφk+

+c2k, j
4
√
λk, j − γkγ

k

α

cos 4
√
λk, j − γkφk

}
, k = 1,∞, j = 1,∞. (12)

Denote

4
√
λk, j − γk = zk, j.

Coefficients c1k, j and c2k, j are the values of c1k and c2k in relations (8), (9) obtained by taking there λ = λk, j.
From (9)

c1k =
zsinz +

(
z4 + γk

)
cosz γαk

zshz −
(
z4 + γk

)
chz γαk

c2k (13)

We denote the multiplier at c2k by H(z) :

c1k = H(z)c2k (14)

Then c1k, j denotes the value of c1k at z = zk, j:

c1k, j = H(zk, j)c2k, j (15)

Assuming for shortcut of notations c2k, j = ck, j with all above in mind we have the following expressions for
Yk, j :

Yk, j = ck, j

{
sin zk, jtφk +H(zk, j)shzk, jtφk, γ

α
k sinzk, jφk+

+H(zk, j)γαk shzk, jkφk, zk, jγ
α
k cos zk, jφk +H(zk, j)zk, jγ

α
k chzk, jφk

}
=

= ck, jφk

{
sin zk, jt +H

(
zk, j

)
shzk, jt, γαk sin zk, j +H(zk, j)γαk shzk, j, zk, jγ

α
k cos zk, j+

+H(zk, j)zk, jγ
α
k chzk, j

}
, k = 1,∞, j = 1,∞ (16)

Introduce the direct sum space Λ = L2 ((0, 1)) ⊕ C2, (C is a complex space ) with a scalar product of the
elements u = (u (t) ,u1,u2) , v = (v (t) , v1, v2) defined as

(u, v)Λ =

1∫
0

uvdt + γ−αk u1v1 + γ
−α
k u2v2

Thus,

Yk, j = ck, jΨk, jφk (17)

where byΨk, j ∈ Λwe denote the vector in parenthesis in the right side of (16).
Set

Φk, j = Ψk, jφk, (18)
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obviously Φk, j ∈ H . Yk, j will form an orthonormal system of eigenvectors by putting in place of ck, j the
norming constants:

ck, j
2 =

1∥∥∥Φk, j

∥∥∥2
H

=
1∥∥∥Ψk, j

∥∥∥2
Λ

. (19)

It was used here that,
(
Φk, j,Φk, j

)
H
=
(
Ψk, j,Ψk, j

)
Λ
·
(
φk, φk

)
=
(
Ψk, j,Ψk, j

)
Λ

since
(
φk, φk

)
= 1 .

Thus,

∥∥∥Φk, j

∥∥∥2
1
=

∫ 1

0
sin2 zk, jtdt + H(zk, j)2

∫ 1

0
sh2zk, jtdt+

+2H(zk, j)
∫ 1

0
shzk, jtsinzk, jtdt +H(zk, j)2γk

22αsh2zk, j+

+2H(zk, j)γ2α
k shzk, jsinzk, j + γk

22α sin2 zk, j +H(zk, j)γ2α
k zk, j

2ch2zk, j+

+2zk, j
2γ2α

k H(zk, j)chzk, jcoszk, j + γk
22αzk, j

2cos2zk, j. (20)

Note that there is no need to compute the integral terms in (20) because the relationship established below
allows us to use norms of eigenvectors in general form, without specifying.

3. On relation between characteristic determinant and norms of eigenvectors

Recalling that γ1 ≤ γ2 ≤ . . . are eigenvalues and
{
φk
}
, k = 1,∞ are orthonormal eigenvectors of the

operator A, in virtue of basicity of
{
φk
}

in H any y(t) from L2 (H, (0, 1)) is expanded as

y (t) =
∞∑

k=1

(
y (t)φk, φk

)
φk

Denoting (y (t)φk, φk) = yk(t), in (1)-(4) we have the following spectral problem for the scalar functions
yk (t) :

lkyk (t) ≡ yIV
k (t) + γkyk (t) = λyk (t) (21)

yk (0) = y
′′

k (0) = 0 (22)

−yk”′ (1) = λγαk yk (1) (23)

y
′′

k (1) = λγαk y
′

k (1) (24)

For each fixed k (k = 1,∞) we denote the eigenvalues of that problem by λk, j, and the solutions of (21),(22)
by yk

(
t, λ − γk

)
. Obviously,

yk
(
t, λ − γk

)
= c1ksh 4

√
λ − γk t + c2k sin 4

√
λ − γk t

λk, j, k = 1,∞, j = 1,∞ are the eigenvalues of problem (1)-(4).
It is easy to see that the vectors(

yk, j

(
t, λk, j − γk

)
, γαk yk, j

(
1, λk, j − γk

)
, γαk y′k, j

(
1, λk, j − γk

))
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form a set of eigenvectors of the operator L0k associated with the scalar problem (21)-(24) in space Λ and
acting as

L0k

(
yk(t), γαk yk(1), γαk y′k(1)

)
=
(
l0kyk(t),−y′′′k (1), y′′k (1)

)
Obviously, eigenvectors of L0k are orthogonal due to self-adjointness of L0k and coincide withΨk, j :(

yk, j

(
t, λk, j − γk

)
, γαk yk, j

(
1, λk, j − γk

)
, γαk y

′

k, j(1, λk, j − γk)
)
= Ψk, j.

Υk, j = ck, jΨk, j and Yk, j = ck, jΦk, j are orthonormal eigenvectors of problems (21)-(24) and (1)-(4), respectively.
Recall here the notations 4

√
λ − γk = z , 4

√
λk, j − γk = zk, j from previous sections.

Introduce the notations

ω1(z) ≡ y
′′′

k
(
1, λ − γk

)
+ λγαk yk

(
1, λ − γk

)
=

= y
′′′

k

(
1, z4
)
+
(
z4 + γk

)
γ
α

k
yk

(
1, z4
)

(25)

ω2 (z) ≡ y
′′

k
(
1, λ − γk

)
− λγαk y′k

(
1, λ − γk

)
=

= y
′′

k

(
1, z4
)
−

(
z4 + γk

)
γαk y′k

(
1, z4
)

(26)

The eigenvalues of (21)-(24) are defined from the system

ω1 (z) = 0 (27)

ω2 (z) = 0 (28)

Introduce the following function:

fk(z) ≡ yk(1, z4)yk(1, z4)
[
ω1(z)

yk(1, z4)

]
− y′k(1, z4)y′k(1, z4)

[
ω2(z)

y′k(1, z4)

]
. (29)

Define c1k in terms of c2k from (28). Now with that c1k in (27) ω2(z) becomes a characteristic determinant
of L0k. Then fk(z) will take the form

fk(z) ≡ yk(1, z4)ω1(z).

Prove the next theorem which has an important role in deriving the trace formula.

Theorem 3.1.

f
′

k

(
zk, j

)
= 4z3

k, j

∥∥∥Ψk, j

∥∥∥2
Λ
= 4z3

k, j
1

c2
k, j

where c2
k, j are norming constants.

Proof. Let yk
(
t, λ − γk

)
and yk

(
t, λk, j − γk

)
be the solutions of equation (21) with λ and λk, j, respectively:

yIV
k
(
t, λ − γk

)
+ γkyk

(
t, λ − γk

)
= λyk

(
t, λ − γk

)
(30)

yIV
k

(
t, λk, j − γk

)
+ γkyk

(
t, λk, j − γk

)
= λk, jyk

(
t, λk, j − γk

)
(31)
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Multiply (30) by yk

(
t, λk, j − γk

)
, (31) by yk

(
t, λ − γk

)
, then subtract the second one from the first, integrate

both sides of the obtained relation along (0, 1), and to the obtained results add the term(
λ − γk − (λk, j − γk

)
)γk
αyk
(
1, λ − γk

)
yk

(
1, λk, j − γk

)
+

+
(
λ − γk − (λk, j − γk

)
)y′k
(
1, λ − γk

)
y′k
(
1, λk, j − γk

)
γk
α. (32)

Note that addition of the last term is needed for finding the norm of the eigenvector of the operator L0k in
the direct sum space Λ1 = L2 ((0, 1)) ⊕ C2 as it will become clear in the next derivations.

Thus,∫ 1

0
yk

IV
(
t, z4
)

yk

(
t, z4

k, j

)
dt −
∫ 1

0
yIV

k

(
t, z4

k, j

)
yk

(
t, z4
)

dt+

+
(
z4
− z4

k, j

)
γαk yk

(
1, z4
)

yk

(
1, z4

k, j

)
+
(
z4
− z4

k, j

)
y′k
(
1, z4
)

y′k

(
1, z4

k, j

)
γαk =

=
(
z4
− z4

k, j

) ∫ 1

0
yk

(
t, z4
)
yk

(
t, z4

k j

)
dt +
(
z4
− z4

k, j

)
γαk yk

(
1, z4
)

yk

(
1, z4

k, j

)
+

+
(
z4
− z4

k, j

)
y′k
(
1, z4
)

y′k

(
1, z4

k, j

)
γαk (33)

Denoting the expression on the left of (33) by N and integrating by parts there yields

N ≡ y′′′k

(
1, z4
)

yk(1, z4
k, j)−

y′′′k

(
1, z4

k, j

)
yk

(
1, z4
)
− y′′k

(
1, z4
)

y′k(1, z4
k, j) + y′′k

(
1, z4

k, j

)
y′k
(
1, z4
)
+

+
(
z4
− z4

k, j

)
γk
αyk

(
1, z4
)

yk

(
1, z4

k, j

)
+
(
z4
− z4

k, j

)
y′k
(
1, z4
)

y′k

(
1, z4

k, j

)
γk
α =

= yk

(
1, z4

k, j

)
yk

(
1, z4
) 

y′′′k

(
1, z4
)

yk (1, z4)
−

y′′′k

(
1, z4

k, j

)
yk

(
1, z4

k, j

) − (z4
− z4

k, j

)
γαk



−y′k
(
1, z4
)

y′k

(
1, z4

k, j

) 
y′′k
(
1, z4
)

y′k (1, z4)
−

y′′k

(
1, z4

k, j

)
y′k

(
1, z4

k, j

) − (z4
− z4

k, j

)
γαk

 (34)

Because of relations(25)-(28) for terms in brackets in right side of (34) we have

y′′′k

(
1, z4

k, j

)
yk

(
1, z4

k, j

) = −λk, j,

y′′k

(
1, z4

k, j

)
y′k

(
1, z4

k, j

) = λk, j.
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But γk, j = z4
k, j + γk, (γk are real as eigenvalues of self-adjoint operator and zk, j are roots of (27), (28) and z4

k, j
as we know might be only real).Hence

y′′′k

(
1, z4

k, j

)
yk

(
1, z4

k, j

) = y′′′k

(
1, z4

k, j

)
yk

(
1, z4

k, j

)

y′′k

(
1, z4

k, j

)
y′k

(
1, z4

k, j

) = y′′k

(
1, z4

k, j

)
y′k

(
1, z4

k, j

)
With that in mind substituting the expression for N from (34) into (33), dividing both sides of (33), by

z − zk, j and passing to the limit as z→ zk, j, also recalling definition of dot product in Λwe get

4z3
k, j

[∫ 1

0

∣∣∣∣yk(t, z4
k, j)
∣∣∣∣2 dt + γαk

∣∣∣∣yk(1, z4
k, j)
∣∣∣∣2 + γαk ∣∣∣∣y′k (1, z4

k, j

)∣∣∣∣2] =

= lim
z→zk, j


yk

(
1, z4

k, j

)
yk

(
1, z4
)  y′′′k (1,z4)

yk(1,z4) −
y′′′k

(
1,z4

k, j

)
yk

(
1,z4

k, j

) + (z4
− z4

k, j)γ
α
k


z − zk, j

−

−

yk

(
1, z4

k, j

)
y′k
(
1, z4
)  y′′k (1,z4)

y′k(1,z4) −
y′′k

(
1,z4

k, j

)
y′k

(
1,z4

k, j

) − (z4
− z4

k, j)γ
α
k


z − zk, j

 =

=
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2
 y′′′k

(
1, z4
)

yk (1, z4)


′ ∣∣∣∣∣∣

z=zk, j

+ 4z3
k, jγ
α
k

∣∣∣∣yk(1, z4
k, j)
∣∣∣∣2 −

∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2
 y

′′

k

(
1, z4
)

y′k (1, z4)


′ ∣∣∣∣∣∣∣∣

z=zk, j

− 4z3
k, jγk

α
∣∣∣∣y′k(1, z4

k, j)
∣∣∣∣2 =

=
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2
 y′′′k

(
1, z4
)

yk (1, z4)
+ z4γαk


′
∣∣∣∣∣∣∣∣
z=zk, j

−

∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2
 y′′k
(
1, z4
)

y′k (1, z4)
− z4γαk


′
∣∣∣∣∣∣∣∣
z=zk, j

=

=
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2 [ ω1(z)

yk(1, z4)

]′∣∣∣∣∣∣
z=zk, j

−

∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2 [ ω2(z)

y′k(1, z4)

]′∣∣∣∣∣∣
z=zk, j

(35)

(derivatives of expressions within square bracket in the last relation are taken with respect to z)
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Note that
1∫

0

∣∣∣∣yk(t, z4
k, j)
∣∣∣∣2 dt + γαk

∣∣∣∣yk(1, z4
k, j)
∣∣∣∣2 + γαk ∣∣∣∣y′k(1, z4

k, j)
∣∣∣∣2 standing on the left side of (35) is square of the

norm of eigenvectors of the operator associated with problem (21)-(24) in Λ:∫ 1

0

∣∣∣∣yk(t, z4
k, j)
∣∣∣∣2 dt + γαk

∣∣∣∣yk(t, z4
k, j)
∣∣∣∣2 + γαk ∣∣∣∣y′k(1, z4

k, j)
∣∣∣∣2 = ∥∥∥Ψk, j

∥∥∥2
Λ

(36)

Using (36) on the left side of (35) and notations (25), (26), we arrive at

4z3
k, j

∥∥∥Ψk, j

∥∥∥2
Λ
=
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2 [ ω1(z)

yk(1, z4)

]′∣∣∣∣∣∣
z=zk, j

−

∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2 [ ω2(z)

y′k(1, z4)

]′∣∣∣∣∣∣
z=zk, j

(37)

As it was stated, the solution of problem (21) satisfying (22) is

yk
(
t, λ − γk

)
= c1ksh 4

√
λ − γkt + c2ksin 4

√
λ − γkt

or

yk

(
t, z4
)
= c1kshzt + c2ksinzt (38)

For this function to be the first component of the eigenvector Ψk, j of problem (21)-(24), it must satisfy also
(23) and (24) or equivalently (27),(28). Substituting it into (27), (28), we get again (8), (9).

Writing yk

(
1, z4
)

from (38) with c1k defined from (13) into (24) yields (11) from which zk, j are found giving
λk, j = z4

k, j + γk

Evaluate the derivative of fk (z) at zk, j

f ′k
(
zk, j

)
=
(∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2)′ ∣∣∣∣∣∣

z=zk, j


ω1

(
zk, j

)
yk

(
1, z4

k, j

)
 +
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2 [ ω1(z)

yk (1, z4)

]′ ∣∣∣∣∣∣
z=zk, j

− (39)

−

(∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2)′ ∣∣∣∣∣∣

z=zk, j


ω2

(
zk, j

)
y′k

(
1, z4

k, j

)
 −
∣∣∣∣y′k(1, z4

k, j)
∣∣∣∣2 [ ω2(z)

y′k (1, z4)

]′ ∣∣∣∣∣∣
z=zk, j

which in virtue of ω1

(
zk, j

)
= 0, ω2

(
zk, j

)
= 0 yields

f ′k
(
zk, j

)
=
∣∣∣∣yk(1, z4

k, j)
∣∣∣∣2 [ ω1(z)

yk(1, z4)

]′∣∣∣∣∣∣
z=zk, j

−

∣∣∣∣y′k(1, z4
k, j)
∣∣∣∣2 [ ω2(z)

y′k(1, z4)

]′∣∣∣∣∣∣
z=zk, j

(40)

From (40) with (36) in mind we get

f
′

k

(
zk, j

)
= 4z3

k, j

∥∥∥Ψk, j

∥∥∥2
Λ
= 4z3

k, j
1

c2
k, j

(41)

where

c2
k, j =

1∥∥∥Ψk, j

∥∥∥2
Λ

=
1∥∥∥Φk, j

∥∥∥2
H

which completes the proof.
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Thus, (41) relates the characteristic determinant fk (z) and norms of orthogonal eigenvectors. The
function fk (z) has essential role in our derivation of trace formula described in the next section.

If c1k is defined from (28), then fk (z) from (29) is simplified to the form

fk (z) ≡ yk (1, z4)ω1(z) (42)

Υk, j = ck, jΨk, j are orthonormal eigenvectors of the operator L0k associated with problem (21)-(24) in the
space Λ, and

Yk, j = ck, jΦk, j = ck, jΨk, jφk

are orthonormal eigenvectors of the operator L0 associated with problem (1)-(4) inH .

4. Evaluation of regularized trace

Before passing to derivations, put on q(t) the following condition:

∞∑
k=1

(
q (t)φk, φk

)
H < ∞. (43)

Define operator Q inH as Q(Y) = {q(t)y(t), 0, 0}, (Y = {y(t), y1, y2} ∈ H)
Since Q is bounded inH and L0 is operator with purely discrete spectrum, then L1 = L0 +Q is also discrete.
The eigenvalues of L0 and L1 are denoted by λ1 ≤ λ2 ≤ . . . and µ1 ≤ µ2 . . . , respectively. We found that
roots zk, j of equation (11) and eigenvalues λn of L0 have the next asymptotics:

zk, j ∼

{
π j+ π4 +O( 1

k )
i(π j+ π4 +O( 1

k ))

λn ∼ Cn
4β

4+β , n→∞,

where β by our assumption is order of eigenvalues γ j of operator A : γk ∼ dj β, d > 0, β > 0.
In virtue of Theorem 3.1 from section 3 and Theorem 1 from [15] and above asymptotics of eigenvalues of
L0 holds relation

lim
m→∞

nm∑
n=1

(
µn − λn −

(
QYkn jn ,Ykn jn

)
H

)
= 0 (44)

for some subsequence of natural numbers {nm}.
In virtue of the asymptotic formula for zk, j and formula (16) for eigenvectors, the next lemma is valid

(proof is similar to one , from our work [14]).

Lemma 4.1. The series
∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
H

is absolutely convergent.

From (44) and Lemma 4.1

lim
m→∞

nm∑
n=1

(
µn − λn

)
= lim

m→∞

nm∑
n=1

(
QYkn jn ,Ykn jn

)
H
=

∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
H

(45)
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Denote by
∞
′∑

n=1

(
µn − λn

)
the limit on the left side of (46) and call it a regularized trace of L1.

∞
′∑

n=1

(
µn − λn

)
=

∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
H

(46)

From Lemma 4.1 and from (, with (16) in mind, we get:

∞
′∑

n=1

(
µn − λn

)
=

∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
H
=

∞∑
j=1

∞∑
k=1

c2
k, j

∫ 1

0
qk (t) y2

k(t, z4
k, j)dt = (47)

=

∞∑
j=1

∞∑
k=1

c2
k, j

∫ 1

0
qk (t)

[
sin2zk, jt + 2H

(
z j,k

)
shzk, jtsinzk, jt +H

(
z j,k

)2
sh2zk, jt

]
dt,

where qk (t) =
(
q (t)φk, φk

)
.

Without loss of generality, putting
∫ 1

0 qk (t) dt = 0 with Theorem 3.1 in mind we come to

∞
′∑

n=1

(
µn − λn

)
=

=

∞∑
j=1

∞∑
k=1

c2
k, j

∫ 1

0
qk (t)

[
−cos2zk, jt + 4H

(
z j,k

)
shzk, jtsinzk, jt +H(z j,k)2ch2zk, jt

]
dt

2
(48)

Consider, the N-th partial sum of the inner series:

N∑
k=1

c2
k, j

1∫
0

qk (t)
[
−cos2zk, jt + 4H

(
z j,k

)
shzk, jt sin zk, jt +H(z j,k)2ch2zk, j

]
dt

2
(49)

or in a more compact form
N∑

k=1
c2

k, j

1∫
0

qk (t) y2
k(t, zk, j

4)dt

Our aim in that section is to find the sum of the series in (48). For that sake in our previous works , for example, for
evaluating the value of the right side of (46) we use Cauchy’s residue theorem, further tending contour of integration to
infinity and using asymptotic formulas for the integrand. Namely, each time we have selected a function of a complex
variable with poles at z j,k (zeros of characteristic determinant): they are the functions, the denominators of which are
defined by the concrete form of characteristic determinants ∆(z) corresponding to the problem (whose equivalent in
the present work determinant in (10) and numerators are suggested by numerators of series the sum of which to be
evaluated (here the integrand of (49). Usually, the residues at poles of that function give terms of sum analog of which
here is (49) which indicates on some relation between characteristic determinant of the associated operator and norming
constants (normus of eigenvectors). Further, using asymptotic formulas found for zk, j on the integration contour, we
get the desired formulas.

In this work, since the norming constants defined by (19) and (20) and∆(z) from (10), (11) have too long expressions,
and that is why to manipulate with them by using the above indicated methods is impossible.

For that reason , by (39) and (41) we establish the indicated above relation between fk(z) (∆(z)) and norming constants
existence of which was intuitively clear for us in all previous works. Remind that by determining, for example, c1k

from ω1 (z) = 0 and substituting in ω2 (z) = 0 yields an equation equivalent to ∆ (z) = 0. Note that this is more general
method and may be used in studying regularized traces in future.

Interchange the integrating and the sum in (49) and denote by SN(t) the following expression

SN(t) =
N∑

j=1

c2
k, j y2

k(t, z4
k, j) (50)
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Now using (41),(42), we see that the following functions of a complex variable z

Fk (z, t) =
4z3 y2

k(t, z4)

fk (z)
=

4z3 y2
k(t, z4)

yk (1, z4)ω1 (z)
(51)

have poles at common roots z = zk, j of system (27),(28) and the residues of Fk (z, t) at these poles are the terms of the
sum (49)

resz=zk, j Fk (z, t) = c2
k, j y2

k(t, z4) (52)

In virtue of (47), (52), we arrive at the next lemma

Lemma 4.2.
′
∞∑

n=1

(
µn − λn

)
=

∞∑
k=1

∞∑
j=1

∫ 1

0
resz=zk, j Fk (z, t) qk(t)dt (53)

where, Fk (z, t) is defined by (52).

In our previous works, we write ck, j in the open form and write concrete form for the expressions analogous to
yk (1, z4)ω1(z) in choice of Fk (z, t) .

The function Fk (z, t) together with zk, j has poles also at zeros of yk

(
1, z4
)
. Denoting the zeros of yk

(
1, z4
)

or yk (1, z4)

by z = βk, j and since it doesn’t matter for derivations writing yk (1, ·) instead of yk (1, ·), we have

resz=βk, j Fk (z, t) =
4βk, j

3 y2
k(t, βk, j

4)

ẏk

(
1, βk, j

4
)
ω1

(
βk, j

)
where the dot indicates a derivative with respect to z.

Taking into consideration yk

(
1, βk, j

4
)
= 0 in ω1(z)

resz=βk, j Fk (z, t) =
4βk, j

3 y2
k(t, βk, j

4)

ẏk

(
1, βk, j

4
)

y′′′k

(
1, βk, j

4
) . (54)

Note that βk, j
4 + γk are the eigenvalues of problem (21),(22) and (55),(56) for each fixed k

yk (1) = 0 (55)

y
′′

k (1) − λγαk y′k (1) = 0 (56)

and the collection
{
βk, j

4 + γk

}∞
k, j=1

are the eigenvalues of problem (1), (2), and (57), (58)

y (1) = 0 (57)

y
′′

(1) − λAαy′(1) = 0 (58)

Selecting the rectangular contour lN including inside it zk, j and βk, j for each fixed k and j = 1,N (we can choose such a
contour because of asymptotics of zk, j, βk, j ), see, for example, [1, 2] and applying the Cauchy theorem about residues
we have

N∑
j=1

resz=zk, j Fk (z, t) = −
N∑

j=1

resz=βk, j Fk (z, t) +
∫

lN

Fk (z, t) dz (59)

Multiplying by qk(t), integrating along [0,1] and passing to the limit in (59) as N→∞ yields

∞∑
j=1

∫ 1

0
resz=zk, j Fk (z, t) qk(t)dt =
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−

∞∑
j=1

∫ 1

0
resz=βk, j Fk (z, t) qk(t)dt + lim

N→∞

∫
lN

∫ 1

0
Fk (z, t) dz qk(t)dtdz. (60)

By using the asymptotics of Fk (z, t) for large |z| values it can be shown that as N tends to infinity, the integral along the
extended contours approaches zero. So, with (52) and (54) in mind

∞
′∑

n=1

(
µn − λn

)
=

∞∑
k=1

∞∑
j=1

∫ 1

0
resz=zk, j Fk (z, t) qk(t)dt =

= −

∞∑
k=1

∞∑
j=1

∫ 1

0
resz=βk, j Fk (z, t) qk(t)dt = −

∞∑
j=1

4β3
k, j

∫ 1

0
y2

k(t, β4
k, j)qk(t)dt

2ẏk

(
1, βk, j

4
)

y′′′k

(
1, βk, j

4
) (61)

Let L11 = L01 + Q, where L01 is an operator corresponding to (1),(2), (57), (58) which is defined in space H2 =
L2 (H, (0, 1)) ⊕ H of vectors Y = (y(t), y1),Z = (z(t), z1) where y1, z1 ∈ H, with a scalar product defined as, (Y,Z)

H2
=(

y (t) , z(t)
)

L2(H,(01))+
(
y1, z1

)
,D (L01) =

{
Y ∈ D

(
L∗0
)
, y (1) = 0, y1 = Aαy′(1)

}
, L01Y =

{
ly (t) , y”(1)

}
and Q this time is defined

as QY =
{
q (t) y (t) , 0

}
. Moreover, denote by L01k the operator defined by L01k

(
yk (t) , γαk y′k (1)

)
=
{
lk yk (t) , y′′k (1)

}
in space

Λ2 = L2 (0, 1) ⊕ C

Theorem 4.3.

resz=βk, j Fk (z, t) = −c2
k, j y2

k(t, β4
k, j)

with c2
k, j =

1∥∥∥∥Φk, j

∥∥∥∥2
H2

= 1∥∥∥∥Ψk, j

∥∥∥∥2
Λ2

, where
{
Φk, j

}
this time are orthogonal eigenvectors of the operator L01 inH2 associated with problem

(1),(2), (57), (58) andΨk, j are orthogonal eigenvectors of problem (21), (22) (55), (56).
To prove it, from the right side of (61) we can see that, it is enough to show

c2
k, j = −

4β3
k, j

ẏk

(
1, βk, j

4
)

y′′′k

(
1, βk, j

4
)

Proof. Again multiplying (30) by yk

(
t, λk, j − γk

)
, (31) yk

(
t, λ − γk

)
, subtracting the second relation from the first, inte-

grating the both sides of the obtained relation along (0,1), adding to the obtained results the term(
λ − λk, j

)
y′k
(
1, λ − γk

)
y′k
(
1, λk, j − γk

)
γk
α (62)

keeping in mind,

yk

(
1, λk, j − γk

)
= yk

(
1, βk, j

4
)
= 0 (63)

(we again keep notations 4
√
λ − γk = z, 4

√
λk, j − γk= βk, j , where this time λk, j = βk, j

4 + γk , j = 1,∞ are eigenvalues of the
problem (21),(22),(55), (56) we get:

E ≡
∫ 1

0
yIV

k

(
t, z4
)

yk

(
t, β4

k, j

)
dt−

−

∫ 1

0
yIV

k

(
t, β4

k, j

)
yk

(
t, z4
)

dt +
(
λ − λk, j

)
y
′

k

(
1, z4
)

y
′

k

(
1, β4

k, j

)
γαk =

=
(
z4
− βk, j

4
) ∫ 1

0
yk

(
t, z4
)

yk

(
t, βk, j

4
)

dt+
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y
′

k

(
1, βk, j

4
)
γαk (64)

Integration by parts gives

E ≡ y
′′′

k

(
1, z4
)

yk(1, βk, j
4) − y

′′′

k

(
1, βk, j

4
)

yk

(
1, z4
)
− y

′′

k

(
1, z4
)

y
′

k(1, βk, j
4)+

+y
′′

k

(
1, βk, j

4
)

y
′

k

(
1, z4
)
+
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y′k
(
1, βk, j

4
)
γk
α =
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= −y
′′′

k

(
1, βk, j

4
)

yk

(
1, z4
)
− y

′′

k

(
1, z4
)

y
′

k(1, βk, j
4) + y

′′

k

(
1, βk, j

4
)

y
′

k

(
1, z4
)
+

+
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y
′

k

(
1, βk, j

4
)
γk
α =

= −y
′′′

k

(
1, βk, j

4
) [

yk

(
1, z4
)
− yk

(
1, βk, j

4
)]
−

−y
′

k

(
1, z4
)

y′k
(
1, βk, j

4
)  y′′k

(
1, z4
)

y′k (1, z4)
−

y′′k
(
1, βk, j

4
)

y′k
(
1, βk, j

4
) +

+
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y′k
(
1, βk, j

4
)
γk
α.

Substituting it into (64),(
z4
− βk, j

4
) ∫ 1

0
yk

(
t, z4
)

yk

(
t, βk, j

4
)

dt +
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y
′

k

(
1, βk, j

4
)
γk
α =

= −y
′′′

k

(
1, βk, j

4
) [

yk

(
1, z4
)
− yk

(
1, βk, j

4
)]
− y

′

k

(
1, z4
)

y
′

k

(
1, βk, j

4
)  y′′k

(
1, z4
)

y′k (1, z4)
−

y′′k
(
1, βk, j

4
)

y′k
(
1, βk, j

4
) +

+
(
z4
− βk, j

4
)

y
′

k

(
1, z4
)

y
′

k

(
1, βk, j

4
)
γk
α (65)

Recall that the term yk

(
1, βk, j

4
)

can appear on the left side of (65) because of (63)
Dividing the both sides of (65) by z − βk, j , passing to the limit as z→ βk, j and denoting orthogonal eigenvectors of

the problem (21),(22),(55), (56) again byΨk, j, we get

4β3
k, j

∥∥∥Ψk, j

∥∥∥2

Λ2
= −y

′′′

k

(
1, β4

k, j

)
ẏk

(
1, β4

k, j

)
−

−y
′

k

(
1, β4

k, j

)2
lim

z→βk, j


y
′′

k (1,z4)
y′k(1,z4) −

y
′′

k

(
1,β4

k, j

)
y′k(1,βk, j

4)
z − βk, j

−

(z4
−β4

k, j)γ
α

k

z − βk, j

 =

= −y
′′′

k

(
1, β4

k, j

)
yk

(
1, z4
)′
|z=βk, j − y

′

k

(
1, βk, j

4
)2  y′′k

(
1, z4
)

y′k (1, z4)
− z4γk

α


′

|z=βk, j (66)

If c2k is defined from ω2 (z) = 0, then in the right side of (66)
y
′′

k (1,z4)
y′k(1,z4) − z4γk

α
≡ 0 and simplifies to

4βk, j
3
∥∥∥Ψk, j

∥∥∥2

Λ2
= −y

′′′

k

(
1, βk, j

4
)

yk

(
1, z4
)′
|z=βk, j (67)

or

∥∥∥Φk, j

∥∥∥2

H2
=
∥∥∥Ψk, j

∥∥∥2

Λ2
=
−y′′′k

(
1, β4

k, j

)
yk(1, z4)

′

|z=βk, j

4β3
k, j

(68)

We have (see (32), (63) )

ω1

(
βk, j

)
= −y

′′′

k

(
1, β4

k, j

)
(69)

So, for the norming constants of the problem (1), (2),(57), (58)

1
c2

k, j

=
∥∥∥Φk, j

∥∥∥2

H2
=
∥∥∥Ψk, j

∥∥∥2

Λ2
=
ω1(βk, j)yk(1, z4)′|z=βk, j

4β3
k, j

=

=
−y′′′k (1, 4β4

k, j)y
k
(1, z4)|z=βk, j

β3
k, j

(70)

From (54) and (70),
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resz=βk, j Fk (z, t) =
4βk, j

3 y2
k(t, β4

k, j)

ẏk

(
1, βk, j

4
)
ω1

(
βk, j

) = 4βk, j
3 y2

k(t, β4
k, j)

ẏk

(
1, βk, j

4
)

y′′′k

(
1, βk, j

4
) =

= −
y2

k(t, β4
k, j)∥∥∥Ψk, j

∥∥∥2

Λ2

= −c2
k, j y

2
k(t, β4

k, j) (71)

ck, j (if k is fixed )are now the norming constants of the problem (31),(32),(55),(56) or for varying k of the problem
(1),(2),(57),(58).

Denoting the eigenvalues of L01 and L11 by λn1 , µn1 respectively, we have for the regularized trace of L11 as in (47)

∞
′∑

n=1

(
µn1 − λn1

)
=

∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
H2
, (72)

where
{
Yk, j

}
are now orthonormal eigenvectors of the operator L01.

In virtue of (72) and application of Theorem 4.3 to L01 yields

∞
′∑

n=1

(
µn1 − λn1

)
=

∞∑
k=1

∞∑
j=1

c2
k, j

∫ 1

0
qk(t)y2

k(t, β4
k, j)dt = −

∞∑
k=1

∞∑
j=1

∫ 1

0

res
z=βk, j

Fk(z, t)qk(t)dt (73)

By comparing (73) and (61) we get

Corollary 4.4.

∞
′∑

n=1

(
µn − λn

)
=

∞
′∑

n=1

(
µn1 − λn1

)
Thus, the problem is reduced to evaluating a regularized trace of the corresponding operator L11.

From (73)

∞
′∑

n=1

(
µn1 − λn1

)
=

∞∑
k=1

∞∑
j=1

c2
k, j

∫ 1

0
qk(t)y2

k(t, β4
k, j)dt. (74)

To find the sum on the right side of (74), again apply the technique used above: select a function of a complex
variable with the poles at βk, j and residues equal to the terms of the series on the left of side (74). Really, setting

K(z) ≡ −yk (1, λ) y
′′′

k (1, λ) − y
′

k (1, λ) [y
′′

k (1, λ) − λγαk y
′

k (1, λ)]

and in the solution of (21),(22) defining c2k from condition (47) (y′′k (1, λ) − λγαk y′k (1, λ) = 0) we have

K
′
(
βk, j

)
= ˙−yk

(
1, β4

k, j

)
y
′′′

k

(
1, β4

k, j

)
(75)

So, if

F1k (z, t) =
4z3 y2

k(t, z4)

K(z)

then in virtue of (75),(70) and Theorem 4.3 (or relation (71))

resz=βk, j F1k (z, t) =
4βk, j

3 y2
k(t, β4

k, j)

K′
(
βk, j

) = −
4βk, j

3 y2
k(t, β4

k, j)

y′k
(
1, β4

k, j

)
y′′′k

(
1, β4

k, j

) =
=

y2
k(t, β4

k, j)∥∥∥Φk, j

∥∥∥2 = c2
k, j y

2
k(t, β4

k, j) = resz=βk, j Fk (z, t)
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Now, if we define in the last relation c2k from yk (1, λ) = 0, then F1k (z, t) will be simplified to the form

F1k (z, t) =
4z3 y2

k(t, z4)

−2y′k (1, z4) [y′′k (1, z4) − λγαk y′k (1, z4)]
(76)

Thus,

∞
′∑

n=1

(
µn1 − λn1

)
=

∞∑
k=1

∞∑
j=1

∫ 1

0

res
z=βk, j

F1k(z, t)qk(t)dt

But F1k (z) together with βk, j has poles also at the zeros of the function y′k
(
1, z4
)
. Denote them by δk, j. Thus,

resz=δk, j F1k (z, t) =
4δk, j

3 y2
k(t, z4)

−[y′k (1, z4)]′ |z=δk, j y
′′

k

(
1, δ4

k, j

) . (77)

Again taking the contour lN ( j = 1,N) including βk, j and δk, j and extending it to infinity, we will have

∞∑
j=1

∫ 1

0
resz=βk, j F1k (z, t) qk(t)dt = −

∞∑
j=1

∫ 1

0
resz=δk, j F1k (z, t) qk(t)dt =

=

∞∑
j=1

∫ 1

0
4δk, j

3 y2
k(t, z4) qk(t)dt

[y′k (1, λ)]′ |z=δk, j y
′′

k

(
1, δ4

k, j

) , (78)

where
−[y
′

k(1,z4)]
′
|z=δk, j

y
′′

k

(
1,δ4k, j

)
4δ3k, j

is the norm of orthogonal eigenvectors of the operator corresponding to problem (21), (22)

with the additional conditions

yk (1) = 0, (79)

y
′

k(1) = 0 (80)

or the norm of orthogonal eigenvectors of the operator L02 in H3 ≡ L2(H, (0, 1)) corresponding to problems (1),(2) and

y (1) = 0, (81)

y
′

(1) = 0. (82)

The perturbed operator corresponding to it is L12 = L02 + q(t).
When justifying in (78) that

c2
k, j =

−4δk, j
3

[y′k (1, z4)]′ |z=δk, j y
′′

k

(
1, δk, j

)
really, are norming constants of the operator L02 corresponding to (1),(2),(81),(82) in H3 = L2(H, (0, 1)) again use the
above technique, but this time we will not add any additional terms like the term (62) in (64) or term (32) in (33) (there
it was done for defining the norm in direct sum space, because of λ in the boundary conditions. The last boundary
conditions don’t depend on λ and those conditions define a selfadjoint operator in original space).

For not complicating notations denoting the eigenvectors again by techniqueΦk, j we have by illustrated in (33)-(41)
or (62)-(68) and defining c2k from (79):(

z4
− δ4

k, j

) ∫ 1

0
y2

k

(
t, z4
)

dt = y
′′′

k

(
1, z4
)

yk

(
1, δ4

k, j

)
− y

′′′

k

(
1, δ4

k, j

)
yk

(
1, z4
)
−

−y
′′

k

(
1, z4
)

y
′

k

(
1, δ4

k, j

)
+ y

′′

k

(
1, δ4

k, j

)
y
′

k

(
1, z4
)

(83)

Dividing the both sides of this relation by z − δk, j, letting z→ δk, j , defining c2k from (81) and taking into consideration
y′k
(
1, δ4

k, j

)
= 0 yields

4δ3
k, j

∥∥∥Φk, j

∥∥∥2

H3
= 4δ3

k, j

∥∥∥Ψk, j

∥∥∥2

Λ3
= [y′k(1, z4)]

′

|z=δk, j y
′′

k

(
1, δ4

k, j

)
(84)
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( Λ3 = L2(0, 1))
Thus,

∞
′∑

n=1

(
µn1 − λn1

)
= −

∞∑
k=1

∞∑
j=1

1∫
0

resz=δk, j F1k (z, t) qk(t)dt =

=

∞∑
j=1

∫ 1

0
4δ3

k, j y
2
k(t, z4)qk(t)dt

[y
′

k (1, λ)]′ |z=δk, j y
′′

k

(
1, δ4

k, j

) = ∞∑
j=1

∞∑
k=1

(
QYk, j,Yk, j

)
3

where Yk, j are orthonormal eigenvectors of the operator L02 in H3.
Denoting eigenvalues of L12,L02 by µn2, λn2, respectively,

∞
′∑

n=1

(
µn − λn

)
=

∞
′∑

n=1

(
µn1 − λn1

)
=

∞
′∑

n=1

(
µn2 − λn2

)
Now we come to the evaluation of the sum of the series

∞∑
k=1

∞∑
j=1

∫ 1

0
4δ3

k, j y
2
k(t, z4) qk(t)dt

[y′k (1, λ)]′|z=δk, j y
′′

k

(
1, δ4

k, j

) (85)

For that sake select the following function of a complex variable

F2k (z, t) =
4z3 y2

k(t, z4)

−y′′′k (1, z4) yk (1, z4) + y′k (1, z4) y
′′

k
(1, z4)]

(86)

the residues at δk, j give terms of series (85). Selecting c2k, the solution of boundary value problem from yk (1) = 0,
F2k (z, t) takes the form

F2k (z, t) =
4z3 y2

k(t, z4)

y′k (1, λ) y′′k (1, λ)]
(87)

and

resz=δk, j F2k (z, t) =
4δk, j

3 y2
k(t, δk, j

4)

[y′k
(
1, δ4

k, j

)
]′ y′′k (1, z)′ |z=δk, j

. (88)

Obviously F2k (z, t) will have poles also at the roots of the equation y′′k (1, λ) = 0. Denote these roots by ρk, j. Thus,
ρk, j are common roots of the equations

yk (0, λ) = 0, y
′′

k (0, λ) = 0,

yk (1, λ) = 0, (89)

y
′′

k (1, λ) = 0 (90)

moreover,

resz=ρk, j F2k(z, t) =
4ρ3

k, j y
2
k(t, ρ4

k, j)[
y′k(1, ρ4

k, j)
]′

y′′k (1, z)′|z=ρk, j

(91)

But

−[y′k
(
1, ρk, j

)
]′ y′′k (1, z)

′

|z=ρk, j

4ρ3
k, j

=
∥∥∥Φk, j

∥∥∥2

3

where Φk, j are the eigenvectors of problem (1), (2) with additional boundary conditions

y (1) = 0, y
′′

(1) = 0 (92)
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Really,(
z4
− ρ4

k, j

) ∫ 1

0
yk

(
t, z4
)2

dt =y
′′′

k

(
1, z4
)

yk

(
1, ρ4

k, j

)
− y

′′′

k

(
1, ρ4

k, j

)
yk

(
1, z4
)
−

−y
′′

k

(
1, z4
)

y′k
(
1, ρ4

k, j

)
+ y

′′

k

(
1, ρ4

k, j

)
y′k
(
1, z4
)
= −y

′′′

k

(
1, ρ4

k, j

) [
yk

(
1, z4
)
− yk

(
1, ρ4

k, j

)]
−

−y′k
(
1, ρ4

k, j

) [
y
′′

k

(
1, z4
)
− y

′′

k

(
1, ρ4

k, j

)]
(93)

If c2k is defined from (89), then from (93) as z→ ρk, j,

4ρ3
k, j

∥∥∥Ψk, j

∥∥∥2

Λ3
= −y

′′′

k

(
1, ρ4

k, j

)
yk

(
1, z4
)′
|z=ρk, j − y′k

(
1, ρ4

k, j

)
y
′′

k

(
1, z4
)′
|z=ρk, j (94)

c2
k, j =
∥∥∥Ψk, j

∥∥∥2

Λ3
=
−y′k
(
1, ρ4

k, j

)
y′′k
(
1, z4
)′
|z=ρk, j

4ρk, j
3

Denoting the eigenvalues of L03 and L03 + q(t) in L2(H, (0, 1)) by λn3, µn3, we come to the next theorem

Theorem 4.5.
∞
′∑

n=1

(
µn − λn

)
=
∞
′∑

n=1

(
µn1 − λn1

)
=
∞
′∑

n=1

(
µn2 − λn2

)
=
∑
∞
′

n=1
(
µn3 − λn3

)
.

Hence,

∞
′∑

n=1

(
µn2 − λn2

)
=

∞∑
k=1

∞∑
j=1

∫ 1

0
resz=δk, j F2k (z, t) qk (t) dt =

= −

∞∑
k=1

∞∑
j=1

1∫
0

resz=ρk, j F2k (z, t) qk (t) dt =
∞∑

k=1

∞∑
j=1

(
QYk, j,Yk, j

)
H3

where Yk, j are now the set of orthonormal eigenvectors of the operator L03 .
But on the other hand, since the solution satisfying conditions (22) is given by (38), then from (89), (90) we have

c1ksinz + c2kshz = 0

−z2c1ksinz + c2kz2shz = 0

from which c2k = 0 and orthogonal eigenvectors are c1ksinzt
From boundary conditions (89), (90) follows sinz = 0 or z = π j, and eigenvalues are λk, j = (π j)4+γk and orthonormal

eigenvectors of L03 are Yk, j =
√

2sinπ jtφk, k, j = 1,∞
Thus, taking into consideration also the requirement (44)

∞
′∑

n=1

(
µn3 − λn3

)
=

∞∑
k=1

∞∑
j=1

(QYk, j,Yk, j)H3 = −

∞∑
k=1

qk(1) + qk(0)
4

Theorem 4.6.
∞
′∑

n=1

(
µn − λn

)
=
∞
′∑

n=1

(
µn1 − λn1

)
=
∞
′∑

n=1

(
µn2 − λn2

)
=

∞∑
n=1

′ (
µn3 − λn3

)
= −

∞∑
k=1

′

qk (1) + qk(0)
4

. (95)

If we put on q(t) stronger condition than (44), namely would q(t) belong to the trace class σ1, then from (95)we get

Corollary 4.7.
∞
′∑

n=1

(
µn − λn

)
=
∞
′∑

n=1

(
µn1 − λn1

)
=
∞
′∑

n=1

(
µn2 − λn2

)
=

=

∞
′∑

n=1

(
µn3 − λn3

)
= −

trq (1) + trq(0)
4

.
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Example 4.8. Consider in Ω × [0,T] , Ω= [0, 1]×[0, 1] the problem

∂u
∂t
=
∂4u
∂x4 +

∂4u
∂y4 +Q(x, y)u (96)

subject to

u
(
t, 0, y

)
= 0 (97)

u (t, x, 0) = u (t, x, 1) = 0 (98)

u
(
t, 0, y

)
= uxx

(
t, 0, y

)
= 0 (99)

−uxxx
(
t, 1, y

)
= uty

(
t, 1, y

)
(100)

uxx
(
t, 1, y

)
= utyx(t, 1, y), t ∈ [0,T] , x ∈ [0, 1] , y ∈ [0, 1]. (101)

Look for the solution in the form u
(
t, x, y

)
= U (t) V(x, y), substituting of which in equation yields

U
′

(t) V
(
x, y
)
=
∂4V
(
x, y
)

∂x4 U (t) +
∂4V
∂y4 U (t) +Q(x, y)V(x, y)U(t). (102)

Dividing both sides by of (102) U(t)V(x, y) we get U′(t)
U(t) =

∂4V
V∂x4 +

∂4V
V∂y4 , denoting U′(t)

U(t) by λwe come to

∂4V
∂x4 +

∂4V
∂y4 +Q(x, y)V = λV, (103)

V
(
0, y
)
= Vxx

(
0, y
)
= 0 (104)

−Vxxx
(
1, y
)
= λVy

(
1, y
)

(105)

Vxx
(
1, y
)
= λVyx(1, y) (106)

Define in L2(0, 1) the operator A by

Av
(
y
)
= −v

′′

(y),V(., y) ≡ v(y) (107)

D (A) =
{
v
′ (

y
)

is absolutely continous in L2 (0, 1) and v
′′

(y) ∈ L2 (0, 1) , v(0) = v(1) = 0
}

Obviously, the eigenvalues of the operator A are γk = π2k2 , orthonormal eigenfunctions are φk =
√

2sinπky . For each
fixed x the function V(x, y) is from L2 (H, (0, 1)). Let Q1 = Q2 = A

1
2 , thus QiV

(
1, y
)
= Vy

(
1, y
)
, i = 1, 2. For each y q(x, y)

acts in L2 (0, 1) , thus denoting it by q(x) and for each y denoting V(x, y) by u(x) we arrive at the following operator
theoretical formulation of problem (103)-(106)

uıV (x) + Au (x) + q(x)u(x) = λu,

u (0) = u”(0) = 0

−u
′′′

(1) = λQ1u (1)

u”(1) = λQ2u′(1)

By Lemma 4.2 the eigenvalues of the above theorem asymptotically behave as λn ∼ C2n
3
4 . Let Q(x, y) be continuous

in Ω and have second order partial derivatives with respect to x, moreover its expansion in Foirier series having only

cosine terms at points y = 0, 1 converges to its values at that points. Moreover,
∫ 1

0
Q
(
0, y
)

dy =
∫ 1

0
Q
(
1, y
)

dy = 0 . Then
by Theorem 4.6

∞
′∑

n=1

(
µn − λn

)
= −

∑
∞

k=1
(
q (0)φk, φk

)
+
∑
∞

k=1
(
q (1)φk, φk

)
4
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But
∞∑

k=1

(
q (0)φk, φk

)
= 2

∞∑
k=1

∫ 1

0
Q(0, y)sin2πkydy =

=
2
π

∞∑
k=1

∫ π

0
Q(0,

y
π

)sin2kydy =
2
π

∫ π

Q

(
0,

y
π

) 1 − cos2ky
2

dy = −
1
π

∫ π

0
Q
(
0,

y
π

)
cos2kydy =

= −
1
4

 ∞∑
k=0

2
π

cosk · 0
∫ π

0
Q(0,

y
π

)coskydy
∞∑

k=0

2
π

cosk · π
∫ π

0
Q(0,

y
π

)coskydy

 =
= −

1
4

[Q (0, 0) +Q(0, 1)]

In similar way one can show that

∞∑
k=1

(
q (1)φk, φk

)
= −

1
4

[Q (1, 0) +Q(1, 1)].

Thus,

∞
′∑

n=1

(
µn − λn

)
=

1
16

[Q (0, 0) +Q (0, 1) +Q (1, 0) +Q(1, 1)] .
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