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Abstract. Our aim is to prove one relation between characteristic determinant and norms of orthogonal
eigenvectors of eigenvalue problem for fourth order differential operator equation.That relation as appears

plays a crucial role in deriving the regularized trace formulas.
1. Introduction
Consider the next eigenvalue problem:

lolyl = ¥ (t) + Ay(t) = Ay(t)

1
¥(0) = y"(0) =0, @
-y”'(1) = AQuy(1), 3)
y'(1) =AQy (1) (4)

in L,(H,(0,1)) with an abstract separable Hilbert space H (see [7]). Coefficients A, Q1, Q> of the problem
are unbounded operators in H. They are assumed to be self-adjoint, positive-definite, moreover, A™! € o.
Denote the eigenvalues and eigenvectors of Aby y1 < y» < ...and ¢1, ¢, ..., respectively. For fourth order
differential operator equations with A in only one boundary condition and without unbounded operators
1, Q2 we refer to our works [5, 9, 10, 14]. For higher order differential operator equation and without
spectral parameter in boundary condition refer to [9, 13]. Sturm-Liouville operator equation cases were

treated for example, in [13, 14] with sum or able or nonsummable coefficients refer to [1-6, 8, 11, 12].
In H = Ly(H, (0, 1)) ® H?, define operator Lo:

D(LO) = {Y = {y(t)/ Y1, ]/2) € 7-{/ ]/(t) € W4(O/ 1)/
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v1 = Quy(1), y2 = Qy'(1), y(1) € D(Qn), y'(1) € D(Q2),

y”'(1), y”(1) € H, y(0) = y”(0) = 0} (5)

LoY = {loly), ~y"" (1), y (D) ©)
Recall here that W4(0, b) is a closure of C*(Hj, [0, b]) in the norm:

”y(t)”%\a(orb) = ||y(f)||%2(le(0,b)) + ”ylv(t)HLz(H,(O,b))/
where H; (j > 0) is a closure of D(A) with respect to norm produced by the scalar product

(M, M)H/. = (Aju/Aju)H-

Setting:

hiyl =y (1) + Ay(t) + q()y(t),
where g*(t) = gq(t) is bounded for each t € [0, 1], define operator L; with the same domain as in (5) and

LY = {hlyl, -y @),y ()}

It is known that spectrum of L is discrete. Because of cosC, QlA‘% and QzA‘% € 0w, and 4(t) is bounded
spectrum of L, is also discrete.
Solutions of problems(1), (2) are:

y(t) = shVAI — AtFy +sin VAI — AtF,, %

where [ is an identity operator in H and Fy, F, € Hzs.
For computing the asymptotics of eigenvalues of Ly, take Q1 = Q, = A, restricting a to the interval
(0,1/2) and let to hold the conditions Q1A™%/4, Q,A™1/2 € 0.,.
Putting in (3), (4) vector-function y(t) defined by (7) and using the spectral expansion of operator A:
A= Y02 vk do)Pr

also denoting

VA=V =2z, (F1, ) = cix,  (F2, i) = cox

one has
—2% chz ey + Zcosz ey = (2* + Voshzy, ci + (z* + Visinzy, cox (8)
zshz ¢y — zsinz oy = (24 + Vochzy, ci + (z* + Yk)COSZY} Cok 9)

Equations (8) and (9) form a system of linear algebraic equations in ci, cax, which has non-zero roots if
and only if the determinant of coefficients (so called the characteristic determinant) is zero:

—z3chz — (24 + yk) shz y¥ z°cosz - (24 + )/k) sinz ¢

A(z) = =0 (10)
zshz — <z4 + yk) chz yt  —zsinz — (24 + yk) cosz yf

or

=22 (2 + yx) 0 + 2Mhz — (24 + Vk)z)/iathz

tgz = (11)

442z (24 +yp) Yotz — (24 + pe) 2
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2. Orthonormal eigenvectors of the operator L,

Reminding that by {¢.} we denote orthonormal eigenvectors of the operator A, then orthogonal eigen-
vectors of Ly will have the next form

Yk,]' = {clk,]-sh :’Ak,j — th(Pk + C2k,jSl.1’l ,4[/\](,]‘ — ykt(pk, Clk,j)/kashﬂAk,j — )/k(pk+

+Cok,j VK SIN [ Akj = ViPk s Cik | Arj = ViV Chy[ Ak j = Viprt
+Cok,j ,4/)\;(,]- - ykyk cos [ Ak — Vi }, k=1,00, j=1,c0. (12)

Denote

14/)\}(/]' V= Zk/]'.

Coefficients c1x,; and ¢y, ; are the values of ¢, and ¢y in relations (8), (9) obtained by taking there A = Ay ;.
From (9)

zsinz + (24 + yk) cosz ¢

= shz — (z* +yr)chz vy €2 13)
We denote the multiplier at cy by H(z) :

ci = H(z)cox (14)
Then cyx,; denotes the value of cyx at z = z :

C1kj = Hi(zx j)cok,j (15)

Assuming for shortcut of notations cy,; = ¢ ; with all above in mind we have the following expressions for
Yk i
g

Yk,]‘ = Ck,j {sin Zk,]‘t(pk + H(Zk,j)Sth,jf(pk, y?sinzk,j(pﬁ

+H(zi, )y shzi i, 2k,jV5 €08 2k jopic + Hizi )z 7/ chzy jpe) =

= Ck,j Pk {sin Zk,jt +H (Zk,j) Sth,jt, y;: sin Zk,j + H(zk,j)y,‘fshzk,j, Zk/]‘)/? COS Z,j+

+H(Zk,j)zk,j)/ZChzk,j }, k=1,00, ] =1,00 (16)

Introduce the direct sum space A = L, ((0,1)) ® C?, (C is a complex space ) with a scalar product of the
elements u = (u (), uy,u2),v = (v(t),v1,v,) defined as

1

(M, Z))A = fuﬁdt + y;“ulﬁl + y;“uziz
0

Thus,

Yij = ¢k jox (17)

where by Wy ; € A we denote the vector in parenthesis in the right side of (16).
Set

Dy = Wy jox, (18)
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obviously @ ; € H. Yj; will form an orthonormal system of eigenvectors by putting in place of ¢ ; the
norming constants:

1 1
o, = = (19)

ol Il

It was used here that, ((I)k,j,qu,j)ﬁ = (\I’k,j,\lfk,]-)A (Pr, ) = (‘I/k,j,‘llk,j)A since (@, @) =1.
Thus,

1 1
||¢)k,]-Hi :f sin? zy jtdt + H(zk,j)zf sh’zy jtdt+
0 0

1
+2H(z, /) f shzy, jtsinzy jtdt + H(zy, ) >y *2ash’zy j+
0

+2H (2 )y shzy jsinzy,j + yi*2esin® zi j + H(zi, ;)Y 72k ;> ch*zy, j+

+sz,]-2yi“H(zk,j)chzk,jcoszk,]- + )/kZZOzzk,jzcossz,]-. (20)

Note that there is no need to compute the integral terms in (20) because the relationship established below
allows us to use norms of eigenvectors in general form, without specifying.

3. On relation between characteristic determinant and norms of eigenvectors

Recalling that y1 < y, < ... are eigenvalues and {@;}, k = 1,00 are orthonormal eigenvectors of the
operator A, in virtue of basicity of {¢} in H any y(t) from L, (H, (0, 1)) is expanded as

y(t) = Z (v (&) or, Pr ) Pk
=1

Denoting (y (t) ¢r, k) = yk(t), in (1)-(4) we have the following spectral problem for the scalar functions
i (B :

Ly () = vy (1) + vy () = Aye (D) (21)
v (0) =y, (0)=0 (22)
=y (1) = Ayfy (1) (23)
v (D) = Ay, (1) (24)

For each fixed k (k = 1, o) we denote the eigenvalues of that problem by Ay ;, and the solutions of (21),(22)
by yk (t, A = yx) . Obviously,

Yk (B A = yi) = cushyJA = vt + e sin yJA — yi t

Akj,k =1,00, j =1, 00 are the eigenvalues of problem (1)-(4).
It is easy to see that the vectors

(v (8 Avj = 76) vy (1 Awy = ve) Ve (1 Aw = 7))
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form a set of eigenvectors of the operator Ly, associated with the scalar problem (21)-(24) in space A and
acting as

Lo (y(®), vy, 72 (D) = (loewid®), =y (1), v )
Obviously, eigenvectors of Lo are orthogonal due to self-adjointness of Lo; and coincide with Wy ; :

(yk,j (t, Akj = )/k) Vi Yk (1, Akj— )/k) , V?y;(,j(L Akj = Vk)) = Wy .

Yy,; = cxjWkjand Yy ; = cx Py, ; are orthonormal eigenvectors of problems (21)-(24) and (1)-(4), respectively.

Recall here the notations /A — y; =z, Ak = vk = 2,j from previous sections.
Introduce the notations

w1(2) = v, (LA=y0) + Ay (LA - ) =

=y (L) + (& + )y (1) 25)
@2 (2) =y (LA =) = Aysyp (LA =) =
=y (L2) - (2 + 9e) viwe (1 2Y) (26)

The eigenvalues of (21)-(24) are defined from the system
wi(z) =0 (27)

w7 (Z) =0 (28)

Introduce the following function:

w1(z)

yk(l/ Z4)

(29)

frlz) = yk(1,24)yk(1,z4)[ w>(z) ]

’ T A
:| - yk(lfz )yk(L 24) [W

Define ¢y in terms of ¢y from (28). Now with that ¢y, in (27) w»(z) becomes a characteristic determinant
of Lo. Then fi(z) will take the form

fi(@) = ye(1, 24 w1 (2).

Prove the next theorem which has an important role in deriving the trace formula.

Theorem 3.1.
) 1
fi(z15) = 422;-“‘1’1@1‘ ||j\ = 422]‘?
k,j

where cij are norming constants.

Proof. Let yx (t, A — i) and yi (t, Akj— yk) be the solutions of equation (21) with A and Ay j, respectively:

vy (A =) + vy (B A = yi) = Ay (A = i) (30)

i (6 A = 7e) * vee (b A = i) = A (8 Ay = ) o
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Multiply (30) by yx (t, Akj— yk), (31) by yx (t, A — yx), then subtract the second one from the first, integrate
both sides of the obtained relation along (0, 1), and to the obtained results add the term

(A — vk — (Axj - Vk)))/kayk (LA =70 yx (1, Akj— Vk)+
+(A =7 = Qi = 7)) (LA =72 v (1, A = v (32)
Note that addition of the last term is needed for finding the norm of the eigenvector of the operator Ly in

the direct sum space A = L, ((0, 1)) @ C? as it will become clear in the next derivations.
Thus,

X -
f(; vl (t, 24) Yk (t, zl‘ij)dt - L
+(= =2t v (L2") we (1"2%,]') (2 -2) (L) (1’221‘)7/? B

1 -
(et =at) [ ol o ot i () (2 o

+ (24 - zﬁ,].) v, (1,24) v, (1, zi].))/g (33)

Denoting the expression on the left of (33) by N and integrating by parts there yields

—_
v (t, zl‘ij)yk (t, 24) dt+

N=y” (1,24) yk(l,Zi,-)—
v (1,z§/j)yk (1,24) —yy (1,24) yllc(l’zé,j) +y (LZ;,]')%'( (1,24) N

+ (24 - Zﬁ,j) Vit Yk (1' 24) Yk (LZ?]‘) + (24 - Zi,f) Yi (1’ 24) Yi (1’2;1’)%‘& B

v whd)
v (1,2%) M (=" - )

= (1,2%,],)%{ (1,2")

— | v(1,2¢

(=) w ()
’ 4 ’

ot B -

kN 1 4

yk( ’Zk,j)

Because of relations(25)-(28) for terms in brackets in right side of (34) we have

—(z*-z,)7s (34)

v, (1,21%]

- _/\k,]'/
Yk (1’%])
y;c/ (1’ Zz]

= Aij.
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But yy; = zé it Ve (yx are real as eigenvalues of self-adjoint operator and z; are roots of (27), (28) and z%
as we know might be only real).Hence

SR
yk(l,zij) yk(l,zi/],)

v, (1,2;].) v, (1,2‘;/],)
, 1 oa
) i)

With that in mind substituting the expression for N from (34) into (33), dividing both sides of (33), by
z — zx,; and passing to the limit as z — z j, also recalling definition of dot product in A we get

1
42 [ fo ma zﬁ,].)|2 dt + 7 ’ (1,z§,].)|2] _

v (1"2@)” (1'24)[{((11;)) , ((1 M)) +(Z4‘Z§f)yf]
= lim {1, _

Z—7Zk, zZ — Zk,j

2
(a2 7t

Wil [563 - 2 s

z— i
=[ma2)f [%] ez a2 f -
:’yk(l,z‘k{j)‘ %”%* 1, k])‘ [ 0 24) 4 _
) 1 lz=z, —
= ‘yk(l'z‘i,j)r y:()i—(z)] T vi(1, 7 ])' [ Zi(i)4)] B (35)

(derivatives of expressions within square bracket in the last relation are taken with respect to z)
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2
y;c(l, zﬁj)' standing on the left side of (35) is square of the

1 2 2
Note thatf|yk(t,zéj)' dt+ ¢ yk(l,zi].)| +0
0

norm of eigenvectors of the operator associated with problem (21)-(24) in A:

vz =l (36)

2
Y(t, Zﬁ,]’)| +7%

fo 1 et =2 [ at + 72

Using (36) on the left side of (35) and notations (25), (26), we arrive at

a2} [lwi I, = ez [yzi(zz)‘*)] L, 4l [y:zi(zz)‘*)] st 7
As it was stated, the solution of problem (21) satisfying (22) is
vk (KA = i) = cush {//\——)/kt + cusinJA — it
or
Yk (t, 24) = cyxshzt + cyrsinzt (38)

For this function to be the first component of the eigenvector Wy ; of problem (21)-(24), it must satisfy also
(23) and (24) or equivalently (27),(28). Substituting it into (27), (28), we get again (8), (9).

Writing v (1, 24) from (38) with cy; defined from (13) into (24) yields (11) from which z; ; are found giving
/\k,j = Z;ij + Vi

Evaluate the derivative of f; (z) at z

/ 2y @1 (Zk'f) 2[ wie) |
fi() = () )| ||+ ezt [ il - 39)
z=zk | Yk (1,2%[].) Y (L, =2y,
by e @) | el @ T
(sl | || ] |
Z=2k, yl’((l,z;ij) yk s Z=Z,
which in virtue of w (zk,]-) =0, w; (zk, ]-) = ( yields
2[ wn) | P @@ |
Nze:) = (1, 22 )| | —222 — v,z 4
o) = 2) [yk(l,z4)] M A |, w0
From (40) with (36) in mind we get
fo () = 42, [, =421, (41)
k \“k,j k,j Il 57l A kj o2
k,j
where
Ci,]' 1 1

[l ol

which completes the proof.
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Thus, (41) relates the characteristic determinant f;(z) and norms of orthogonal eigenvectors. The
function f; (z) has essential role in our derivation of trace formula described in the next section.
If c1x is defined from (28), then f (z) from (29) is simplified to the form

fe @) =y (1,2 an(2) (42)

Yy = cx;jW,; are orthonormal eigenvectors of the operator Lo associated with problem (21)-(24) in the
space A, and

Yk,j = Ck,]-q)k,j = Ck,j\yk,j(Pk

are orthonormal eigenvectors of the operator Ly associated with problem (1)-(4) in H. O

4. Evaluation of regularized trace

Before passing to derivations, put on g(f) the following condition:

Y @O P )y < oo (43)
k=1

Define operator Q in H as Q(Y) = {g(t)y(#),0,0}, (Y = {y(t), y1, y2} € H)

Since Q is bounded in H and L is operator with purely discrete spectrum, then L; = Ly + Q is also discrete.
The eigenvalues of Ly and L; are denoted by A4 < A, < ... and y; < uy..., respectively. We found that
roots z; ; of equation (11) and eigenvalues A, of Ly have the next asymptotics:

{ T+ +O( )
(n]+ +O( ))

a4
Ay ~Cn*,n — oo,

where B by our assumption is order of eigenvalues y; of operator A : y, ~ djf, d >0, > 0.

In virtue of Theorem 3.1 from section 3 and Theorem 1 from [15] and above asymptotics of eigenvalues of
Lo holds relation

lim Z (10 = An = (QVkjns Y ), ) = 0 (44)

m—o0
n=1

for some subsequence of natural numbers {1,,}.
In virtue of the asymptotic formula for z;; and formula (16) for eigenvectors, the next lemma is valid
(proof is similar to one , from our work [14]).

Lemma 4.1. The series

is absolutely convergent.

From (44) and Lemma 4.1

Ny o)

’%grt}oz (tn = Ay) = lim Z QYk,,;n/Yk,,]n = Z i QYk],Yk])W (45)

]:1 k=1
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Denote by Y, (tn — A4) the limit on the left side of (46) and call it a regularized trace of L;.
n=1

Y A=Y Y Q%) (46)
n=1 j=1 k=1

Y n-10=Y Y (@1), =Y Y @ f ORACERLE 47)
n=1 j=1 k=1 j=1 k=1

= i i ci]. fol gx () [sinzzk,jt +2H (z]-,k) shzy jtsinzy, jt + H (zj,k)2shzzk,jt] dt,

where g (£) = (q (t) px, Px)-
Without loss of generality, putting f01 gi (t) dt = 0 with Theorem 3.1 in mind we come to

i(#n _An) =

fl qgx (£) [—cosszjt +4H (zjk) shzy jtsinzy it + H(zjk)zchZijt]dt

=ii%° : B — (48)

Consider, the N-th partial sum of the inner series:

1
qu ® [—cossz,]-t +4H (z]-,k) shzy jt sin zy jt + H(zj/k)2ch22k,j] dt
0

N
Y. 5 (49)

k=1

N 1
or in a more compact form Y, c,%]. qu (B yi(t, 2 *)dt
k=1 p

Our aim in that section is to find the sum of the series in (48). For that sake in our previous works , for example, for
evaluating the value of the right side of (46) we use Cauchy’s residue theorem, further tending contour of integration to
infinity and using asymptotic formulas for the integrand. Namely, each time we have selected a function of a complex
variable with poles at z;; (zeros of characteristic determinant): they are the functions, the denominators of which are
defined by the concrete form of characteristic determinants A(z) corresponding to the problem (whose equivalent in
the present work determinant in (10) and numerators are suggested by numerators of series the sum of which to be
evaluated (here the integrand of (49). Usually, the residues at poles of that function give terms of sum analog of which
here is (49) which indicates on some relation between characteristic determinant of the associated operator and norming
constants (normus of eigenvectors). Further, using asymptotic formulas found for z; on the integration contour, we
get the desired formulas.

In this work, since the norming constants defined by (19) and (20) and A(z) from (10), (11) have too long expressions,
and that is why to manipulate with them by using the above indicated methods is impossible.

For thatreason , by (39) and (41) we establish the indicated above relation between fi(z) (A(z)) and norming constants
existence of which was intuitively clear for us in all previous works. Remind that by determining, for example, c1x
from w, (z) = 0 and substituting in w, (z) = 0 yields an equation equivalent to A (z) = 0. Note that this is more general
method and may be used in studying regularized traces in future.

Interchange the integrating and the sum in (49) and denote by Sy(t) the following expression

N
Sn(t) =Y. &, vt 7)) (50)

j=1
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Now using (41),(42), we see that the following functions of a complex variable z
42%y2(t, 2%) 4222 (t, 2%)
fe@ v (1,241 (2)

Fy(z,t) = (51)

have poles at common roots z = z; of system (27),(28) and the residues of Fy (z, t) at these poles are the terms of the
sum (49)
res.—, Fr(z,D) = ¢ i (t,2%) (52)

In virtue of (47), (52), we arrive at the next lemma

Lemma 4.2.
o0 o 1
Y =20 = 3 Y [ resm B0t 63)
n=1 k=1 j=1 V0

where, Fi (z,t) is defined by (52).

In our previous works, we write ¢; in the open form and write concrete form for the expressions analogous to
Yk (1, z4)w1 (2) in choice of Fi (z,f) .
The function F (z, t) together with z; ; has poles also at zeros of y; (1,24). Denoting the zeros of (1,24) or yx (1,z%)

by z = f; and since it doesn’t matter for derivations writing v (1, -) instead of y; (1, -), we have
v (1B @ (Brs)

where the dot indicates a derivative with respect to z.
Taking into consideration yx (1, ﬁk,j4) =01in wy(2)

reszzﬁk'/Fk (z,t) =

4By, v (t, B
reszzﬁklij (z,t) = : ]4 k ” ! e (54)
Yk (Lﬁk,j )yk (1' Brj )
Note that ﬁkf + 7k are the eigenvalues of problem (21),(22) and (55),(56) for each fixed k
w (1) =0 (55)
v (1) = Ay (1) = 0 (56)
and the collection {ﬁkf + yk};:,:l are the eigenvalues of problem (1), (2), and (57), (58)
y(1)=0 (57)
y'(1)-AA"y' (1) =0 (58)

Selecting the rectangular contour ly including inside it z;; and fy ; for each fixed k and j = 1,N (we can choose such a
contour because of asymptotics of z ;, B ), see, for example, [1, 2] and applying the Cauchy theorem about residues
we have

N N
reszzzk,jl—"k (z,t) = — Z resz:,gk'ij (z,t) + fz Fi(z,t)dz (59)
j j N

j=1 j=1

Multiplying by g« (t), integrating along [0,1] and passing to the limit in (59) as N — oo yields

00 1
Z f resz:ZkJ,Fk (z, 1) qe(t)dt =
=0
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o 1 1
- Z f "esz:ﬁk,jpk (z, 1) qi(t)dt + [}]im f f Fi (z,t) dz qi(t)dtdz. (60)
=) 0 —00 Iy Jo

By using the asymptotics of Fy (z, t) for large |z| values it can be shown that as N tends to infinity, the integral along the
extended contours approaches zero. So, with (52) and (54) in mind

’

i(.“n = An) = Z”:

[

1
f res;—, Fie (z,) q(t)dt =
0

"= k=1 j=1
1
0 o0 1 oo 4‘33.f yZ(t,ﬁ“ )qk(t)dt
- Z Z f resz=ﬁk,]Fk (ZI t) qk(t)dt = - Z .k'] 0 k4 ”}ir] - (61)
k=1 j=1 0 =1 21 (Lﬁk,j )yk (Lﬁk/j )

Let L11 = Lop1 + Q, where Ly is an operator corresponding to (1),(2), (57), (58) which is defined in space H,
L, (H,(0,1)) ® H of vectors Y = (y(t),y1),Z = (z(t),z1) where y;,z1 € H, with a scalar product defined as, (Y,Z)y, =

(}/(f),Z(t))Lz(H,(m)ﬁ(}/h21),D (Loy) = {Y eD (LB)/ yM) =0, = A“y’(l)}, LaY ={ly(®), y”(1)} and Q this time is defined
as QY ={g () y (), 0}. Moreover, denote by Ly the operator defined by Lo« (yk ), vy, (1)) = {lkyk (1), y: (1) } in space
Az =Lz(0,1)63c

Theorem 4.3.

res.—p, Fi(z,1) = —c; ; yi(t, By )

— , Wwhere {dJk,j} this time are orthogonal eigenvectors of the operator Ly in H, associated with problem

with ¢ = 1 7 = —L—
YT

k.j
(1),(2), (57), (58) and Wy ; are orthogonal eigenvectors of problem (21), (22) (55), (56).
To prove it, from the right side of (61) we can see that, it is enough to show

. 48;
g (L Bes) vy (1, Be*)

2

G =

Proof. Again multiplying (30) by yx (t, Akj = yk), (31) vk (t, A — yx), subtracting the second relation from the first, inte-
grating the both sides of the obtained relation along (0,1), adding to the obtained results the term

(A=) e (1A =70 v (1 Awy = 7e) e (62)
keeping in mind,
Yx (1,/\k,j - )/k) = Yk (1,,3k,j4) =0 (63)

(we again keep notations {/A -Yk=2z, {//\k,j == By, i where this time A ; = ﬁk,]-‘l + Yk, j = 1,00 are eigenvalues of the
problem (21),(22),(55), (56) we get:

1
E= f o (62) e (B2, e
1
[ e () e (3= 20) 1 0,) i (1) 7 =

1
= (z* - Bi) j; v (b2 ) ye (B *) dt+ (2 = B ) v (1.2°) i (1 i) v (64)

Integration by parts gives
E=y, (12) e B - yk (LB we (1.2*) - we (1,24) Vi1, i)+

+y, (1,ﬁk,j4) v (1,24) + (24 - ‘Bk,]-“) Y (1,24) v (1,51(,],4) Y =
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= -y (L) e (1L2*) = v (L2) i@ i) + v (1Bes*) v (12*) +
+ (24 - ﬁk,f4) Vi (1/24) Vi (1rﬁk,j4))/ka =
==y (1pe) [ (1) = v (1 Be)] -
, , v, (1124) v, (1//3k,j4)
00 G i

+ (2t = Be ) v (1.2°) i (1 i) e
Substituting it into (64),

1
(1) [ o) () 025 0 e

' (1,24) v (L2) v (Lpe)
= =4 (1B e (U 2) = e ()] = w1 (1) i (1) [ A yk’k (l,ﬁk,j‘*) +

+(2* = Bet) v (121 e (1B *) e
Recall that the term y; (1, Br, j4) can appear on the left side of (65) because of (63)

4071

(65)

Dividing the both sides of (65) by z — fy; , passing to the limit as z — f; ; and denoting orthogonal eigenvectors of

the problem (21),(22),(55), (56) again by Wy ;, we get
457, Il = =i (1 E5) e (18L) -
i (1) _ %)

’ 7 14 7 1 7 (24_ 44)‘)/6!
-V (Lﬁﬁ/])z lim yk( Z) yk( Br,i ) _ kY i _

2B, z = B z = i,
, (1,24
o ()0, a0 2 6 -

v, (1,24

"o
If ¢y is defined from w; (z) = 0, then in the right side of (66) %124)) — z%4® = 0 and simplifies to
r(1,

a1l = v (1 ﬁk'fl)yk(l'?)/ ==,

or

v (LBE) 1,2 L,

o I = I, = =
We have (see (32), (63) )

o (Brs) = v (LAY
So, for the norming constants of the problem (1), (2),(57), (58)

1 2 2 wl(ﬁk,j)yk(lfz4)l|215k,'
% = H‘Dk,inwz = ||\I]k'j||Az = 452], =
ARy (1,2
- Bij

From (54) and (70),

(66)

(67)

(68)

(69)

(70)
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461, v (t, BE) 41, vt By )
resz:ﬁklij (z,t) = /) = J =

v (L) (Be) o (LB v (LBY)

2(¢ B4
_ _]/k( ﬁkz]) _ —Ci,jyi(t,ﬂ;j) 1)
(29
cj (if k is fixed )are now the norming constants of the problem (31),(32),(55),(56) or for varying k of the problem
(1)/2),(57),(58).
Denoting the eigenvalues of Ly; and L1; by A1, p1 respectively, we have for the regularized trace of Ly; as in (47)

i (b —

n=1 j

Z ka jr Yk/) (72)

k=1

‘M8

1l
—

where {Yk,]-} are now orthonormal eigenvectors of the operator L.
In virtue of (72) and application of Theorem 4.3 to Ly, yields

(tt — iiek, f a0t =-Y Y f = Rz, a0t 73)

k=1 j=1

’

8

I
—_

By comparing (73) and (61) we get [

Corollary 4.4.

i (zun - An) = i (,Unl - Anl)
n=1 n=1

Thus, the problem is reduced to evaluating a regularized trace of the corresponding operator Ly;.

From (73)
oo’ 0 1
Y==Y. Y, [ oo s (74)
n=1 k=1 j=1

To find the sum on the right side of (74), again apply the technique used above: select a function of a complex
variable with the poles at ff;,; and residues equal to the terms of the series on the left of side (74). Really, setting

K@) = -y (L) y, (1L,A) =y (L) [y, (1,4) = Ay, (1,A)]
and in the solution of (21),(22) defining ¢y from condition (47) (y;(/ (1,A) = Ayg y;( (1,A) = 0) we have

(ﬁkf) —Vy (1 ﬁk]) %:, (1 :Bk]) (75)
So, if
47342t z%)
Pt = —go—

then in virtue of (75),(70) and Theorem 4.3 (or relation (71))

ey o BRCE)  BEGR)

res.—p, Fi(z,1) = / = =

' K (ﬁk/f) yk(l ﬁk/)yk (1 ﬁk])
it Bt)

— —_ 2 .2 4\ _
= 5~ = CYic(t, By ;) = resz—p, Fr (z,1)

o
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Now, if we define in the last relation ¢y from yi (1, A) = 0, then Fi (2, t) will be simplified to the form
42%y2(t, 2%
-2y, (1,24 [y, (1,2%) — Ayty, (1,29)]

Fi(z,t) = (76)

Thus,
Z ([Jnl rll Z Zf ;esﬁk Fik(z, t)qk(t)dl’
n=1 =1
But Fix (z) together with f; ; has poles also at the zeros of the function y;( (1, z* ) . Denote them by 0y ;. Thus,
40k j3 2(t Z4)
1y, (L2 s, ¥ (L0

resz=s Fu (z,1) = @7)

Again taking the contour Iy (j = 1, N) including f; ; and 9,; and extending it to infinity, we will have

) 1 o 1
Z f resz:,sk,,Flk(z,t)qk(t)dt=—Z f res=s, Fi (z, 1) qe(t)dt =
j=1 0 =1 V0

Z fo 46y, Y2 (¢, 2*) qe(Dat
T [y, (L] = %yk (1,6%}),

D )
403

(78)

where

with the addltlonal conditions

is the norm of orthogonal eigenvectors of the operator corresponding to problem (21), (22)

(@) =0, 79)
¥, (1) =0 (80)
or the norm of orthogonal eigenvectors of the operator Ly, in H3 = L,(H, (0, 1)) corresponding to problems (1),(2) and
y1) =0, (81)
y (1)=o. (82)

The perturbed operator corresponding to it is Lip = Lo, + gq(¢).
When justifying in (78) that

—45y;°
[y, (1,2 |2=s, v (L, 6x))
really, are norming constants of the operator Ly, corresponding to (1),(2),(81),(82) in H; = L»(H, (0,1)) again use the
above technique, but this time we will not add any additional terms like the term (62) in (64) or term (32) in (33) (there
it was done for defining the norm in direct sum space, because of A in the boundary conditions. The last boundary
conditions don’t depend on A and those conditions define a selfadjoint operator in original space).

For not complicating notations denoting the eigenvectors again by technique ®; ; we have by illustrated in (33)-(41)
or (62)-(68) and defining cy from (79):

1
(b)) [ o) =i (12 (108) - (108 ) e (1,2°) -

v (L) ye (L6¢,) + vy (1,6F)) i (1,2°) (83)
Dividing the both sides of this relation by z — 6y ;, letting z — 6y ; , defining cy from (81) and taking into consideration
v, (1, 6;/}.) =0 yields

2

Ck,j =

407 | 1, =458, 195, = 1L 2T koo 3 (101 (84)
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(A3 =Lx(0,1))

Thus,
Z (,Unl Am) = Z Z f”esz bk]Flk (z,t) ge(t)dt =
k=1 j=1

5480 2t 2)au(tyat

1 5t ) - Z Z (QY"J’ Yk'j)s

=Z [y (L ) oy, vy (1,

where Yk/]- are orthonormal eigenvectors of the operator L, in Hj.
Denoting eigenvalues of L1y, Loy by 2, Anp, respectively,

e

w—m-Z(um— M) = Z(#nz— oy

Il
—

n

Now we come to the evaluation of the sum of the series

i i fo 46, v (t,2*) q(b)dt

~ (85)
=S v D s,y (1,61)
For that sake select the following function of a complex variable
47312 (t, 24
Falz,t) = blh2) (86)

~y (L2 ye (L2 +y, (L2 y, (1,29)]

the residues at 0y; give terms of series (85). Selecting cy, the solution of boundary value problem from y; (1) = 0,
Fy (z,t) takes the form

Fa (z,1) = i (87)
T @, )y (1 )]
and
46, P Y2(E Ox )
res.-s, Fa (z,t) = A i Ok (88)

[y (1,88 )1 97 (1,2 ks,

Obviously Fx (z,t) will have poles also at the roots of the equation y; (1,A) = 0. Denote these roots by py ;. Thus,
Pk, are common roots of the equations

¥ (0,A) =0,y, (0,A) =0,

Yk (1/ A) = 0/ (89)
v, (1,A)=0 (90)
moreover,
4p, vt i)

res;—p, For(z,t) = 1)

[yt )] v (1,2 L=,

But

1y (L o)) (12) Ly, ,
408 = qu’f/]' ”
k.j
where @ ; are the eigenvectors of problem (1), (2) with additional boundary conditions

y(1)=0,y"(1)=0 92)
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Really,
1 "
(#=0t) [V = (2w () -, (10t s (129) -
v (129) i (Loky) + v (L) vi (1 21) = =9 (1o ) [we (12) = wie (1 ok )] -
v (Lot ) [ (12) - i (1)) ©3)
If cy is defined from (89), then from (93) as z — py j,

’
"

4p3k,j||wk/f||i\3 —Y (1 pk})yk (1 z ) l=py; = Yk (Lpéj) y: (1/24) l=py,; 4

i (Lo) vi (12) b=ny,
4pi,/?
Denoting the eigenvalues of Loz and Loz + q(t) in L>(H, (0, 1)) by A3, pus, we come to the next theorem

2
o= 1wl =
de k,j As

Theorem 4.5. Z (= A) = ): (Um — Am) = 21 (2 = Awz) = Loy (s = Aua).

n=1

Hence,
0 1
Z(an— ) ZZf res.—s, Fox (z,t) g (t) dt =
k=1 j=1 0
Z fresz Pk,j F2k Zt)fik(t)d :ZZ QYk]/ij

where Y} ; are now the set of orthonormal eigenvectors of the operator Los .
But on the other hand, since the solution satisfying conditions (22) is given by (38), then from (89), (90) we have

cusinz + cyshz = 0

—Z2eysinz + coyz?shz = 0

from which ¢y = 0 and orthogonal eigenvectors are cyxsinzt
From boundary conditions (89), (90) follows sinz = 0 or z = 1}, and eigenvalues are Ay ; = (1t j)4 + 7k and orthonormal

eigenvectors of Loz are Yy ; = V2sinm jtor, k,j=1,00
Thus, taking into consideration also the requirement (44)

&)

Y o= o) = X Y@V Yo = - 3 HELO

k=1 j=1 k=1

—_
-

Theorem 4.6. ; (pn — An) = g (Um — Am) = ;1 (U2 = A2)

1 0
_Z(Pns— M) = qu()+qk() (95)

n=1

If we put on q(t) stronger condition than (44), namely would q(t) belong to the trace class o1, then from (95)we get

Corollary 4.7. );l (4 — An) = Z_:l (Um — Am) = ;1 (Un2 — Ap) =

= Z(‘un?’ — /\113) - _M.
n=1
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Example 4.8. Consider in Q x [0,T], Q=][0,1] X[0, 1] the problem

?9_? = g;z 'u — +Q(x, y)u (96)
subject to

u(t,0,y)=0 97)

u(t,x,0) =u(tx,1) =0 (98)

u(t,0,y)=u_(t0,y)=0 (99)

—Upe (5,1, y) = gy (1, ) (100)

e (1, 1,y) = ure(t, 1, y), t €[0,T], x €[0,1], y € [0,1]. (101)

Look for the solution in the form u (¢, x, y) = U () V(x, y), substituting of which in equation yields

2*V (x,
HV(xy) = ( y y)U(t) U(t) +Qx, YV (x, YU(). (102)
ox y4

Dividing both sides by of (102) U(t)V(x, y) we get Z((:)) = 3;;/4 + vay4 , denoting u(t) by A we come to

iV HrV

W + W + Q(x, y)V = /\‘/, (103)

V(0,y) =V (0,y) =0 (104)

Vi (Ly)=AV, (L y) (105)

Vi (1/ ]/) = /‘Vyx(lr ]/) (106)
Define in L,(0, 1) the operator A by

Av(y) = -v" (), V(. y) = v(y) (107)

D(A) = {v/ (v) is absolutely continous in L, (0,1) and v (y) € L, (0,1), v(0) = v(1) = O}

Obviously, the eigenvalues of the operator A are y; = m2k? , orthonormal eigenfunctions are @ = \/isinnky . For each
fixed x the function V(x, y) is from L, (H, (0,1)). Let Q1 = Q> = A%, thus QiV Ly =V,(1,y),i=1,2. Foreachyq(x,y)
acts in L, (0,1), thus denoting it by g(x) and for each y denoting V(x, y) by u(x) we arrive at the following operator
theoretical formulation of problem (103)-(106)

u (x) + Au (x) + g(x)u(x) = Au

u@=u"0)=0

—u" (1) = AQiu (1)

u”(1) = AQqu' (1)
By Lemma 4.2 the eigenvalues of the above theorem asymptotically behave as A, ~ Czng. Let Q(x, y) be continuous
in Q and have second order partial derivatives with respect to x, moreover its expansion in Foirier series having only

cosine terms at points y = 0,1 converges to its values at that points. Moreover, fol Q0,y)dy = fol Q@1,y)dy =0. Then
by Theorem 4.6

i (= A) = — Li1 (9 (0) px, px) Z Lt (9(1) pr, i)
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= SRS
Z (7 0) o, i) =2 Z](; Q(0, y)sin*mkydy =
=] =

_%‘” 7T z .2 _% 71( z)l—COSZky __lfn ( z) )
_nkz_:‘fo Q(0, )sin kydy—nfg 0 ) ———dy=—— ) Q|0, = |eos2kydy =

=Y 2osk0 [ 00, Lycoskydy Y Zeosk- e [ 00, Lcoskydy| =
= 4[2 ncosk Oj[; Q(O,n)coskydy;; 7_(cosk nfo Q(O,n)coskydy] =

k=0

- _411 [Q(0,0) + Q(0, 1]

In similar way one can show that

Y @@ g =5 [Q(1,0) + 001, 1)
k=1

Thus,

Y (1 = M) =7 100,00+ Q(0,1) + Q(1,0) + Q(1, 1.
n=1

References

(1]

[2]
(3]

[4]
[5]
(6]
(71
(8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

N. M. Aslanova, A trace formula of a boundary value problem for the operator Sturm-Liouvilla operator equation, Sibirskij Math. J. 49
(2008), 1207-1215.

N. M. Aslanova, About the spectrum and trace formula for the operator Bessel equation, Siberian Math. J. 51 (2010), 569-583.

N. M. Aslanova, Study of the asymptotic eigenvalues distribution and trace formula of a second order operator-differential equation,
Boundary Value Problems 2011 (2011), Art. ID 7, pp. 1-22.

N. M. Aslanova, The asymptotic of eigenvalues and trace formula of operator associated with one singular problem, Boundary Value
Problems 2012 (2012), Art. ID 8, pp. 1-12.

N. M. Aslanova, Kh. M. Aslanov, Some spectral properties of fourth order differential operator equation, Operators Matrics 12 (2018),
287-299.

N. M. Aslanova, Kh. M. Aslanov, On self-adjoint extensions of symmetric operator with exit to larger space, TWIMS J. Pure Appl. Math.
14 (2023), 91-105.

N. M. Aslanova, Kh. Aslanov, On some boundary value problems for the fourth order differential operator equation, Analysis, Topology
and Applications, Vrnajacka, Banya, Serbia, 2024.

N. M. Aslanova, M. Bayramoghlu, Distribution of eigenvalues and trace formula for the Sturm-Liouvilla operator equation, Ukranian
Math. J. 62 (2010), 1005-1017.

N. M. Aslanova, M. Bayramoghlu, On generalized regularized trace of a fourth-order differential operator with operator coefficient,
Ukranian Math. J. 66 (2014), 145-152.

N. M. Aslanova, M. Bayramoghlu, Kh. M. Aslanov, ”Eigenvalue problem associated with the fourth order differential-operator equation”,
Rocky Mountain J. Math. 48 (2018), 1763-1779.

N. M. Aslanova, M. Bayramoghlu, Kh. M. Aslanov, On one class eigenvalue problem in the boundary condition at one end-point, Filomat
32 (2019), 6667-6674.

V. 1. Gorbachuk, M. L. Gorbachuk, The spectrum of selfadjoint extensions of the minimal operator generated by a Sturm-Liouville equation
with operator potential, Ukrainskii Mat. Zh. 24 (1972), 726-734.

M. L.Gorbachuk, A. N. Kochubei, Selfadjoint boundary value problems for certain classes of differential-operator equations of higher order,
201 (1971), 1029-1033.

L. A. Oleynic, Nonhomogeneous boundary value problems for fourth order differential operator equations, in: Appl. Methods Funct. Anal.
Problems Math. Physics, Kyiv, 1987, 110-113

V. A. Sadovnichii, V. E. Podolskii, Traces of operators with relatively compact perturbation, Mat. Sbor. 193 (2002), 129-152



