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Abstract. In this paper, we have determined the adjacency, the Laplacian and the signless Laplacian
spectra of quasi-corona R-vertex join, represented by Glu|H and quasi-corona R-edge join, represented by
Gle]H and obtain several adjacency, Laplacian and signless Laplacian cospectral of non-regular graphs.
Further, we have also determined the Kirchhoff’s indices, Laplacian-energy-like-invariant (LEL) and the
number of spanning trees from Laplacian spectra.

1. Introduction

Consider a simple graph having n vertices and m edges, denoted as G = (U, E). Let U = {uy,uy, ..., uy}
be the vertex set and & = {e1, ey, ..., .} be the edge set of G.

The adjacency matrix of the graph G is n X n square matrix and defined as A(G) = [4;;], where
1 , if u~u jr
0, otherwise.
The incidence matrix of G is n X m matrix and defined as B(G) = [b;;], where
b = 1, ife;isincident on u;,
7710, otherwise.

Eli]‘ =

Let £(G) be the line graph and consider B(G) = B. Then B'B = A(L(G)) + 2, and BBT = A(G) + rl,, where
I, and I, are the identity matrices. The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) is
defined as D(G) — A(G) and D(G) + A(G) respectively, where D(G) be the diagonal matrix. The characteristic
polynomials of A(G), L(G) and Q(G) are defined as ®g(A;x) = |xI, — A(G)|, Pg(L;x) = |xI, — L(G)| and
Dg(Q; x) = IxI, — Q(G)|, respectively. The eigenvalues of A(G) are the adjacency eigenvalues of G and are
denoted by A1 > Ay > --- > A,,. Similarly, y1 < pup < --- < pyand vy > v, > -+ > v, denote respectively
the eigenvalues of L(G) and Q(G). Also, the eigenvalues (with multiplicities) of A, L and Q-spectrum is
denoted by {A}", A5, ..., Ay}, {ul", py?, ..., uy"y and {(v]", V0%, v,/"} respectively, where my,my, ..., m,
are its multiplicities. Moreover, if two graphs share the same spectrum, they are referred to as cospectral.
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For any connected graph G, the sum of the resistance distances between all pairs of vertices of G is the
Kirchhoff index, denoted by Kf(G) and is defined as Kf(G) = n )i, m The Laplacian spectrum based

Ny

graph invariant, Laplacian energy-like-invariant LEL, is defined as LEL(G) = }.}2,

trees with n vertices is determined by {G) = M

Several graph operations exist in the literature, such as the complement, union, join, corona operations
and graph product. Their spectra are determined in [1, 3, 5, 8, 11, 13, 14, 17]. Borah, Singh and Prasad [2]
defined four new graphs based on subdivision and central graph, and obtained their A, L, and Q spectra.
As an application, the number of spanning trees and the Kirchhoff’s indices are determined. Given a graph
G, the R- graph [5] is the graph obtained from G by introducing a new vertex to each edge of G and then
joining each new vertex to the end vertices of that edge. Lan and Zhou [12] determined A, L and Q-
spectra of the resulting graphs based on R- graph. Also, they used their results to obtain several pairs of
non-regular A, L and Q-cospectral graphs. Das and Panigrahi [7] obtained A, L and Q- spectra of R-vertex
and edge join graphs and determined pairs of non-regular A, L and Q-cospectral graphs. Hou et al.[10]
defined quasi-corona SG -vertex join and multiple SG- vertex join of graphs and obtained their adjacency
spectra for regular graphs.

Consider two graphs G and H with 1 and n, vertices, and m; and m, edges.

v/t and the spanning

Definition 1.1. The quasi-corona R-vertex join of G and H, represented by G|lu]H, is a graph constructed
from R(G) and H by choosing a copy of R(G) and n; copies of G and then connecting each old vertex of G
to every vertex of H.

Definition 1.2. The quasi-corona R-edge join of G and H, represented by Gle]H, is a graph constructed from
R(G) and H by choosing a copy of R(G) and n; copies of H and then connecting each new vertex of G to
every vertex of H.

We observe that Glu|H and G|e]H have the same number of vertices ny + my + ni1n, and Glv|H has
2n1 + nymy + nin, edges and Gle|H has ny + mymy + min; edges.

Example 1.3. Let us take G = K3 and ‘H = Py, then K3|u]P, and K;|e|P; are given by Figure 1 and Figure 2

respectively.

Figure 1: K3|u|P,

The M-Coronal, represented by I'y(x)[16], is defined as T (x) = JI(xI, — M)7!],, where M is the square

matrix of order n and ], is the column matrix of order n X 1 whose entries are 1 and T'y(x) = ;% if row sum
of n order square matrix is equal to a constant t. Further, for the Laplacian matrix L(G), I'.(x) = £ [16] and
for the signless Laplacian matrix Q(x), I'q(x) = 55 [6].

From [5, 7, 14], we get the following lemmas which will be used in our proof.

Lemma 1.4 (([14])). det(M + yJuxn) = det(M) + )/]leadj(M)]nxl, where adj(M) is the adjoint of M and y is a real
number. Further, det(xl, — M — y],) = {1 — yI'm(x)} det(xI,, — M).
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Figure 2: K3|e]P;

Lemma 1.5. ([5]) Let By, By, B3 and By be four by X by, by X by, by X by and by X by matrices, where By and By are
non-singular square matrices. Then,

B1 B

det (B3 B,

)=da@gdawl—BﬁjB@:da@gdaw4—&3f&y

Lemma 1.6. ([7]) For any real numbers p,q > 0, we get

1
p(p — nq)

The Kronecker product of two matrices A = (a;j) of order a; X a; and B = (b;;) of order b; X b, denoted
by A ® B, is defined as the matrix of order a1b; X ab; and is obtained by replacing each 4;; of A by a;;B [9].
Also, for any four matrices By, By, B3 and By, we get (B1 ® B,)(B3 ® By) = B1B3 ® B,By. Further, for any two
non-singular matrices By and B; it follows that (B; ® B;)™' = B;' ® B," and det(B1 ® B;) = (det B1)"(det B)",
where u and v are respectively the order of the square matrices B; and B,.

First, we determine A, L and Q spectra of quasi-corona R-vertex and quasi-corona R-edge join of graphs.
Then, we have shown the existence of simultaneous pairs of cospectral graphs of these two graphs. Further,
we obtain the Kirchhoff index, Laplacian-energy-like-invariant and the number of spanning trees.

]an'

1
(PIH - qlnxn)_l = ;In +

2. Spectra of quasi-corona R- vertex join
We start with the following result about adjacency spectra of Glu|H.

Theorem 2.1. ([10]) Let G be an r1- reqular and H be any graph, then

Dgup(A;x) = x™M™™M H{x - ALi(H)I™ H{Xz - M(G)x — 11 — MG —rx — 21y — mxlaer, (1)}
i=2 i=2

Now, we have the following observations from the above Theorem 2.1.
Observations.
(1) If H is an r, regular graph, then A-spectrum of G|u|H contains the following eigenvalues
(i) 0 with multiplicities m; — 1.
(i1) Aj(H) with multiplicities ny, j = 2,3,--- 1,
(iif) the roots of the quadratic equation ¥ -A(@x—-1r—-Ai(G)=0,i=2,3,---m
(iv) the roots of the cubic equation x° — (1 + r2)x? + (r1r2 — 2r1 — n3n2)x + 217, = 0

(2) If H = K, 3, then the A-spectrum of G|u]K,} contains the following eigenvalues
(1) 0 with multiplicities m; +ny(a +b —3)
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(i) Vab with multiplicities 14
(iii) the roots of the quadratic equation x? — A;(G)x — A(G) — r1 = 0 and
(iv) the roots of the quadratic equation X2 —rx—2r — nleA(Ka/b)@nl (x)=0.

Now, we determine the L- spectra of G|v]H.

Theorem 2.2. Let G be an ri-regular and H be any graph, then

12

Dg (L x) = (x = 2T Mxlx? — 2+ 11 + 1y + mng)x + 2ny + myry + 2mmo)y | |y —ng - wi(H)™

j=2
H{x2 = (r1+ming + 2+ pi(G))x + 2mna + 3ui(G)}-
i=2
Proof. By proper labelling of the vertices, L(G|u]H) can be expressed as
(71 + nlnz)lf’ll + L(g) _B _]”1 Xty ® ]Z;]
L(GluJH) = -B" 2Ly, Opyscns ® I,
_]nZXm ® ]nl Onzxml ® ]nl nllnz + L(?‘[) ® In1

The characteristic polynomial of L(GluJH) is gy, j#(L; X)

= det(xly, nyrny+m — L(GLu]H))

(x —r1 — mm)ly, — L(G) B Jrnyscny ® 1717'1
=det BT (x = 2)ln, Oy, ® T
]712><711 ® ]711 Onzxml ® ]711 {(x - nl)l‘rlz - L(?‘()} ® IVll
= det{((x - nl)Inz - L(q-{)) ® Im } det S/
where,
_ (X —-r - nan)Im - L(g) B ]n1><n2 ® ]Z -1 T T
=[O o) (e o0 e o, G oit)
_(((x =711 —mm)ly, — L(G) B _(Tugoet, € =11 Juxany Oy,
B BT (x - 2)Iml Omlxnl OleWl1
_ (=1 —mm)ly = Trger, (X = 11) Jnpan, — L(G) B
B BT (x - 2)1m1 '
So,

1
detS =det{(x = 2)Ly, } det{(x — r1 — mn2)l, = Tygoer, (X = 11)Jnyxn, — L(G) — XTZBBT}

= det{(x = 2)L, 1 = T pjer,, (x = nl)FL(G)Jr%(x — 11 — )} det{(x — 11 — mna)l,, — xszBBT}
Since,
T} e (X =71 = mang) = 22+ ;Zl.f.xnznzz))x +2mny
and
Ty, (x —m) = xni—nnzl'
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We get,

detS = det{(x — 2)I,,,,} {1 _mm ( ny(x —2) )}

x—np \x2 — (2471, + nyno)x + 2np

% det {(x = ), — xsz(A(g) + rllnl)}

= (x = 2)"7x3 — (2 + 1y + 11 + mnp)x? + 211 + nyry + 2n11)x)
1

(o = (r1 + mna + 2 + wi(G))x + 2mny + 3p(G)}

i=1

Applying the fact that 1;(G) = r1 — ui(G), p1(G) = 0 and pi(H) = 0, gives the desired L-spectrum of
GlulH. O

From Theorem 2.2, we get the following observations.
Observations.

(1) If G is an ry regular and H is a r, regular graphs, then L-spectrum of G| u|H contains
(@) 0
(i) 2 with multiplicities m; — ny
(it) ny + p;(H) with multiplicities n;

(iv) the roots of the quadratic equation X2 —2+r +nyny+ wi(@))x+2nny+3ui(G) =0, =2,3,4,...,m
and

(v) the roots of the quadratic equation X2 — 2+ 11+ 11+ nino)x + 2ny + niry + 2ninp) = 0.
(2) If Gis an 1y regular and ‘H = K,,,, then L-spectrum of G| uK,, contains
(@ 0
(if) 2 with multiplicities m; — ny
(iif) n; with multiplicities 1y
(iv) m + np with multiplicities nyn, — my

(v) the roots of the quadratic equation x2 — (2+71 + 112 + ui(G))x + 2mna +3ui(G) = 0,i = 2,3,4,...,m
and

(vi) the roots of the quadratic equation X2 — (2471 +ny +mnp)x + 2ny + nyry + 2nyny) = 0.
Next, we determine the Q-spectrum of Glu|H.
Theorem 2.3. Let G be an ri-regular and H be a v, regular graph, then

Dglur(Q;x) = (x —2)™™™ (x3 —@Bri+2+nny + 3r2)x2 + (2nyny + 4r1 + 3nyngry + 91y + 675 — n%nz)x
11

1y
— 6nynyry — 12111 + 21’1%7’12) H{x —ny = vi(H)™ 1_[{x2 —(r1 + mnp + 2 +vi{(G))x + 2niny + 2r — vi(G)}.
=2 i=2

Proof. The Q matrix of Glu]H can be expressed as

(r1 + mnp)ly, + Q(G) -B ~ s ® T
L(GlulH) = ~B" 2l Oy xn, ® ]Zl
_]n2><m ® ]m Oanfm ® ]m nllnz + Q(W) ® Im

The proof of the remaining part is similar to the proof of Theorem 2.2. [
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From Theorem 2.3, we get the following observations.
Observations.

(1) If G is an r; regular and H is a 1, regular graph, then Q-spectrum of Glu|H contains the following
eigenvalues

(i) 2 with multiplicities m; —my

(ii) ny +vj(H) with multiplicities 1,

(iv) theroots of the quadratic equation x> =241 +mnp+vi(G))x+2nyny+2r1 —vi(G) = 0,i = 2,3,4,...,m
and

(v) the roots of the cubic equation X - (3r1 + 2+ nyny + 3r0)x% + (2n1ny + 4r1 + 3ninary + 9rirs + 610 —
n3n)x — 6n1nyry — 12r172 + 2n3n; = 0.

3. Spectra of the quasi-corona R edge join Gle]H

We begin with the adjacency spectra of G|e]H for regular graphs.

Theorem 3.1. Let G be an r1- regular and H be a ry regular graph, then

]

Dgejp(A; x) = x™ x{x3 = (r1 + 12)x% — (211 + MmNy — rir)x + 21110 + rimymna) | |x - Aj(H)™
=2

[ [0 - A@x - =A@

i=2

Proof. By labelling the vertices appropriately, A(Gle]H) becomes

A(QI_EJ(]“{) = BT 07111 X1y ]m1 xi; & ]”1

A(g) B Oﬂlxnz ®Ir;t:1]
On2><7l1 ® ]m ]lexml ® ]”1 A(?‘{) ® Iﬂ1

The characteristic polynomial is

xly, — A(G) -B Oy, ® ]31“%
Dg i (A; x) = det -BT XIm, ~Jimixn, ® ]n1
OnZXm ® ]nl _Inzan ® ]nl (xlnz - A(?‘()) ® Im

=det{(xI,, - A(H)) ®1I,,} det S
= det(xL,, — A(H))" det,

where,

— _ T
(19 ) (o~ o oo )

(xlm - AG) -B )

_BT 'XIml - 1—'14(7'{)®I,,1 (x)]im XMy
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So,
-1
detS =det{xly, — Tarer, (X)Jmxm } detixly, — A(G) - B(xlml ~ Tagel,, (x)]mlml) B")
=XT{1 —Ta@oer, (X)— }det{ — A(G) = B(xIn, = Tager, () iy )" BT}
{1 = a0 det 1, ~ 4(G) — B( L1, + 200 )
=X A(H)®Ly, X et Xy, m x(x — mlI‘A((H)(@L@ (x)) Lmel
m BBT Lager,, (%) )
=x41-T }dt{l— _Z }
xl{ Acrer,, (V)77 p detx © x(x = mT g, Gy
a2 L 20
x)— pdet{xl,, — _ 22 U
A(W)@Im X X(.X _ mer(W)@I,,l (X))
Since,
Pagur @ = 2 and L, (0 = 227
We get,

51

det§ =x"™™"" l_l{x2 —A(G)x — 11 = Li(@MHx* = (11 + 1)x® = 21y + mymny — rir)x> + (2riry + rimynyny)x).

i=1
Thus, we have
5] np
Dyl (A; x) = x™M™M H{x — A | Hx? = Ai(@)x — 11 = A(@)x(x® = (11 + r)x® — (2r1 + mymyny
=2 i=2

— 1172)X + (2r172 + r1m N )}
[

From Theorem 3.1, we get the following observations.
Observations.

(1) If G is an r; regular and H is a r, regular graph, then A-spectrum of G|e|H contains
g g grap p
(i) 0 with multiplicities m; —ny +1
(ii) Aj(H) with multiplicities 1,
(iii) the roots of the quadratic equation x> — A;(G)x — r1 — A/(G) = 0 and
(iv) the roots of the quadratic equation X3 = (r1 + r)x? = 2r + myining — rir)x + (2riry + rimngng = 0.
(2) If Gis an rq regular and ‘H = K,,,, then A-spectrum of G|e]H contains
& p
(i) 0 with multiplicities m; —ny +1
(i) ny — 1 with multiplicities n;
(iif) -1 with multiplicities #n1(n; — 1)
(iv) the roots of the equation x> — A;(G)x — r1 — A;(G) = 0 and

(v) the roots of the equation x* — (113 — 1)x? — (2r1 + nymyng)x + 2r1(ny — 1) =

The next result gives the L-spectrum of Gle]H.
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Theorem 3.2. Let G be a ri-regular and H be any graph, then

Dgejp(L; x) = X(x = 2 = mmg)™ ™ H{x =y = i (FOV" | | 2% = (11 + mine + (G) + 2)x + 3p(G)+
j=2 i=2

mnyi(G) + i — (r1 +2mny + myp + 4)x2 + 2rimny +4nyny +2r +4 + n%n% +mqry + 4my+
ninpmy)x — (2rinyng + rln%ng + myrining + 2mqry + 4my + 2myniny)}.
Proof. : By labelling the vertices appropriately, L(Gle|H) becomes

1Ly, + L(G) -B Oy ® J1
L(Gle]H) = [ —BT (2 + nyna) Ly, ~Jinixcn, ® ]Zl ]
Onzxml ® ]nl _]nzxml ® ]Hl ml[ﬂz + L(?{) ® I”ll

The characteristic polynomial is

q)gLej‘H(L 2 x) = det(XLnny+ny4m; — L(Gle]H))

(x - rl)lnl - L(g) B 07‘}11)(1’!2 ® ]3;1
=det BT (x =2 — mnp)ly, T, ® T,
Onzxml ® ]m ]nzxml ® ]m (x - mlInz - L(?‘{)) ® In1
=det{(x - mI,, - L(H))®1I,,}detS
where,

_[xX— rllnl - L(g) B _ 0m1 XMy ® ]r];] _ _ -1
_(x=nrly, — L(G) B
B BT (x =2 = mn2)l, = Trryer, (X = 1) Jonxomy -

Therefore, we get

det§ =det{(x = 2 = ), = e, (= 1) o, det {x = 11, = L(G)-

-1
B{x = 2= muma)l, = Tuggon, (& = 1) o) B

ny

:(x -2- nlnz)ml{l - FL(?‘{)@I (x - ml)x—z——nlnz} det {X - 1’11,11 - L(G)—

5 1 . T'ier, (X = 1m1) i BT}
x=2-mm " (x—2-mm)(x—2-nny - mIygoer, (X — 1)) e

ny

my
=(x-2- ﬂmz)ml{l — Ty, (X = ml)m} det {(x = 1)y, — L(G)—
BBT Troer,, (x —m1)

R

X=2-mhy (y—2-— n1n2)<x —2—mny = mlygyer, (X = ml))

== 2= mme)™ {1 = Tigp, (6 = m)—"— b det{(x = ), ~ L(G)-

X—2—mnn;
BBT T'Lrer, (X = 1m1) 2 }
- r
x=2-mny (x=2-mnp)(x =2 —mny — mTyger, (x —m1)) v
niny mq BBT
Y P T PN PR
x mnz) - x—2—mm) ¢ (=l ~L(G) x—2—nny

{(1 Tier,, (X —ma)
(x =2 = mn)(x = 2 = mnz — gy, (X —11))

1’%1"L(g)+ T (X — rl)}.

x=2-nyny
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Thus, we have

Dglejn(L; x) = x(x — 2 = nynp)™ ™™ H{x —my — wi(HO | | = (11 + minp + pi(G) + 2)x + 3G+
=2 i

mnapi(G) + rimnaHa® — (r1 +2mny + my + 4)x2 + (2rinmny + 4nyng +2r1 + 4 + n%n% + mqry + 4my+
ninamy)x — (2ringng + rm%n% + myrining + 2myry + 4my + 2myngny)}.
|

From Theorem 3.2, we get the following observations.
Observations. If G is an 1 regular and H is any graph, then L-spectra of G|eJH contains
@ 0
(if) 2 + nyn, with multiplicities my — n4
(iit) my + pi(H), where i = 2,3,4, ..., n, with multiplicities 1y
(iv) the roots of the quadratic equation X2 = +2+mnmmn + wi(@)x + rimngy + 3pi(G) + minopi(G) = 0,
1=2,3,4,..,n and
(v) the roots of the cubic equation x* — (r1 + 2111z + my + 4)x? + (2rining + dning + 2r1 + 4 + n3ng + myry +
4my + nyngmy)x — (2rinang + rnng + myringng + 2myry + 4my + 2myngng) =0
Next, we get Q-spectrum of Gle]H

Theorem 3.3. Let G be an ri-regular and H be a v, regular graph, then

51

Pglepp(Q 1) = (x = 2= noma)" ™ [ [0 = (r1 + 2+ mamy + vi(G))x + 21 + mmary +v{(G) + mmavi(G))
i=2
12
H X —my — 1/]-(?()"1 (ot — (4 +2mny +my + 371)x3 + (4mq + 8ry + 4 + dnyny + dnmynory + n%n%+
=2
nyming + 10r + 3rinyn, + 3rimy + 6r11’2)x2 — (dmy + 2myning + dnynary + drimng + 2n%n§r2+
6rimy + 12r1r, + 8r1 + 4rymy — 6r%n1n2r§)x + 8rymy + 16r17p — 8riraning — r%n%m)
Proof. The Q- matrix (G|lv]H) can be written as

rllnl + Q(g) -B Om1><112 ® ]Z
L(QLEJ(]{) = -BT (2 + nan)Iml _]mlxnz ® Inl
Onzxml ® ]nl _]nzxml ® ]111 mllnz + Q(?’[) ® In1

The proof of the remaining part of the theorem is similar to Theorem 3.2. O

From Theorem 3.3, we get the following observations.
Observations.

(1) If G is an 1 regular and H is any graph, then Q-spectra of Gle]H contains

(i) 2 + nyny with multiplicities m; —my
(ii) my +vj(H), where j = 2,3,4,...,n, with multiplicities 7,
(iii) the roots of the quadratic equation x* — (r1 +2+ 111, +vi(@)x+2r +ninar1 +vi(G) + mnavi(G) = 0,
i=2,3,4,..,n and
(iv) the roots of the bi-quadratic equation x* — (4 + 2mny + my + 3r)xX° + (dmy + 81y + 4 + dnyny +
4nyngry + n3n3 + nyming + 1011 + 3rinyng + 3rimy + 6r1r2)x% — (4my + 2mynyng + 4nynary + 4rinyng +

2n3ngry + 6rimy + 12r1rp + 8r1 + 4rimy — 6rinnar3)x + 8rimy + 16111, — 8riranyng — rindng =0
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4. Pair of simultaneous cospectral graphs

From Theorems 2.1, 2.2, 2.3, 3.1, 3.2 and 3.3, it is observed that the A, L and Q-spectra of the join
graphs Glu]H and Gle]H depend only on the number of vertices, edges, degree of regularities and the
corresponding spectrum of G and H. The following are the main observations.

Observations.

(1) Let #1 and ¥, be two regular graphs that are both A and L-cospectral, and let ¥ be any graph.
Then, F1lulF (respectively, F1le]F ) and F>|u|F (respectively, F>|e]F ) are also simultaneously A and
L-cospectral.

(2) Let ¥ is a regular graph, and let 7 and ¥, are any two graphs that are both A and L-cospectral, then
Flulf (respectively, Fle]F1) and Flu|F> (respectively, ¥ e]F> ) are also simultaneously A and L-
cospectral.

(3) Let 1 and ¥, are any two regular graphs that are L or Q-cospectral and let H; and H, are any two
regular L or Q-cospectral, then, ¥ u]H; (respectively, F1le|H:) and Falu|H, (respectively, el H>)
are also L or Q-cospectral.

5. Applications

As an application of these two graph operations, we determine the following invariants from the
Laplacian spectra of the join of graphs Glu]H and Gle]H, where G is an r; regular and H is any graph.

(1) Kf(GlulH), LEL(Glu|H) and t(G|lu]H) of Glu]H are as follows

. _ my—ny 2411 +1q+111 112 I m ny 24+ i(G)
(l) Kf(QI_uJH) - (ml +n + 7’117’12)( 2 + 2ny+2n1nx+n11q + Z‘]':2 ny+uj(H) + Z‘1‘:2 2n1n2+31i(G) )

1/2 1/2
(i) LELGLufH) = (mr = n)2! + milimy + RO 4 (o22sgesdiu) . (nestonne V)

, where A = (2+7’1 +1q +7’111’12)2 —4(21’11 +n1r +21’111’12)

1/2 1/2
(7’1 +2+mm+i(G)+ \/Ez) / " ( r+2+mny+i(G) - \/Ez) /
2 2

and A = {2+ 11 + mna + (@) — 42nmns + 3ui(G))

2 2ny+myry+2n1m2) [172, (ma -+ (H))™ TT1%, (2m1ma+3114(G)
(iii) HGLulH) = e

(2) Kf(GlelH), LEL(Gle]H) and HGle]H) of Gle|H are as follows

() KFGlelH) = (b +muna)| Sy L, 2@y

2rnynp+my i+ +m g +2r A+ dny ng +nPn’
2+niny i=2 rimna+3pi(G)+ninz ii(G)

1My g+ 211 1y g 20 11+ 2 1y g 33T

Z‘flz ny
j=2 my+ui(H)

1/2 1/2
(i) LEL(QLeJﬂ):(m1—nl)(2+n1nz)1/2+n1{m1+y]-(7{)}1/2+(“+2+"1’12§”i(g)+‘/E) +(”+2+”1”2+2“1<9)‘VA7) +

wi'’?, where Az = {2+ 11 + pi(G) + mna)* — 4{rimng + mnapi(G) + 3ui(G)} and w;, i = 1,2, 3 are the
roots of the cubic equation.

(iii) HGlelH) = m{(Z + 1) T (i g + 2rimng + 2mary + 4my + 2mynyng + ninsry)

My

T12, (rimna + mnai(@) + 3@ [ [ omr + y(H)y™)

=2
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