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Abstract. The concept of gyrogroups was introduced during the researches of Einstein velocity addition
that Einstein introduced in [16] which founded the special theory of relativity. In this paper, we mainly
investigate the quotient spaces generated from a strongly topological gyrogroup with respect to closed
strong subgyrogroups. It is shown that if G is a strongly topological gyrogroup and H is a closed first-
countable and separable strong subgyrogroup of G, the quotient space G/H is an ℵ0-space, then G is an
ℵ0-space; if the quotient space G/H is a cosmic space, then G is also a cosmic space; if the quotient space G/H
has a star-countable cs-network or star-countable wcs∗-network, then G also has a star-countable cs-network
or star-countable wcs∗-network, respectively.

1. Introduction

By the study of the c-ball of relativistically admissible velocities with Einstein velocity addition that
Einstein introduced in [16] which founded the special theory of relativity, A.A. Ungar discovered that the
seemingly structureless Einstein addition of relativistically admissible velocities possesses a rich grouplike
structure and he introduced the concept of gyrogroups in [34]. Clearly, every group is a gyrogroup. Then the
gyrogroup was equipped with a topology by W. Atiponrat [3] such that the binary operation ⊕ : G×G→ G
is jointly continuous and the inverse mapping ⊖(·) : G → G, i.e. x → ⊖x, is also continuous and she called
it a topological gyrogroup. By further researches of the classical Möbius gyrogroups, Einstein gyrogroups,
and Proper Velocity gyrogroups, Bao and Lin [6] found that each of them has an open neighborhood base at
the identity element 0 such that all elements of the base are invariant under the groupoid automorphisms
with standard topology. Therefore, they posed the concept of strongly topological gyrogroups. A series of
results on topological gyrogroups and strongly topological gyrogroups have been obtained in [2, 4, 5, 7–
11, 20–23, 29, 36–38].

In [32], T. Suksumran and K. Wiboonton introduced the notion of L-subgyrogroups and showed that
if H is an L-subgyrogroup of a gyrogroup G, then the set {a ⊕ H : a ∈ G} forms a disjoint partition of G.
Then, Bao and Xu [12] constructed a subgyrogroup H in a strongly topological gyrogroup G such that
1yr[x, y](H) = H for all x, y ∈ G, hence they introduced the concept of strong subgyrogroups in topological
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gyrogroup. Clearly, for a topological gyrogroup G, every strong subgyrogroup of G is an L-subgyrogroup.
Therefore, it is natural to investigate the quotient spaces of a strongly topological gyrogroup with respect
to strong subgyrogroups. In particular, since every topological group is a strongly topological gyrogroup,
we would like to extend some important results of coset spaces of topological groups to quotient spaces of
strongly topological gyrogroups.

As we all known, being separable or metrizable is a three space property on topological groups, and
every separable metrizable space is a cosmic space, but being a cosmic space is not a three space property
[35]. Moreover, it is proved in [26, Corollary 3.5] that if H is a closed second-countable subgroup of a
topological group G, and the quotient space G/H is an ℵ0-space (resp., cosmic space), then G is also an
ℵ0-space (resp., cosmic space). In this paper, we extend these important results to strongly topological
gyrogroups. We show that if G is a strongly topological gyrogroup and H is a closed first-countable and
separable strong subgyrogroup of G, the quotient space G/H is an ℵ0-space, then G is an ℵ0-space; if the
quotient space G/H is a cosmic space, then G is also a cosmic space; if the quotient space G/H has a
star-countable cs-network or star-countable wcs∗-network, then G also has a star-countable cs-network or
star-countable wcs∗-network, respectively.

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be Hausdorff, unless otherwise is explicitly
stated. Let N be the set of all positive integers and ω the first infinite ordinal. The readers may consult
[1, 17, 27, 33] for notation and terminology not explicitly given here. Next we recall some definitions and
facts.

Definition 2.1. ([3]) Let G be a nonempty set, and let ⊕ : G × G→ G be a binary operation on G. Then the
pair (G,⊕) is called a groupoid or a magma. A function f from a groupoid (G1,⊕1) to a groupoid (G2,⊕2) is
called a groupoid homomorphism if f (x⊕1 y) = f (x)⊕2 f (y) for any elements x, y ∈ G1. Furthermore, a bijective
groupoid homomorphism from a groupoid (G,⊕) to itself will be called a groupoid automorphism. We write
Aut(G,⊕) for the set of all automorphisms of a groupoid (G,⊕).

Definition 2.2. ([33]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element 0 ∈ G such that 0 ⊕ a = a = a ⊕ 0 for all a ∈ G.
(G2) For each x ∈ G, there exists a unique inverse element ⊖x ∈ G such that ⊖x ⊕ x = 0 = x ⊕ (⊖x).
(G3) For all x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕gyr[x, y](z)

for all z ∈ G.
(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

Lemma 2.3. ([33]) Let (G,⊕) be a gyrogroup. Then for any x, y, z ∈ G, we obtain the followings:

1. (⊖x) ⊕ (x ⊕ y) = y. (left cancellation law)

2. (x ⊕ (⊖y)) ⊕ gyr[x,⊖y](y) = x. (right cancellation law)

3. (x ⊕ gyr[x, y](⊖y)) ⊕ y = x.

4. gyr[x, y](z) = ⊖(x ⊕ y) ⊕ (x ⊕ (y ⊕ z)).

5. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ gyr[y, x](z)).

Proposition 2.4. ([32]) Let G be a gyrogroup and let X ⊆ G. Then the followings are equivalent:
(1) gyr[a, b](X) ⊆ X for all a, b ∈ G;
(2) gyr[a, b](X) = X for all a, b ∈ G.

Notice that a group is a gyrogroup (G,⊕) such that gyr[x, y] is the identity function for all x, y ∈ G. The
definition of a subgyrogroup is as follows.
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Definition 2.5. ([32]) Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup, denoted
by H ≤ G, if H forms a gyrogroup under the operation inherited from G and the restriction of gyr[a, b] to H
is an automorphism of H for all a, b ∈ H.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if gyr[a, h](H) =
H for all a ∈ G and h ∈ H.

Definition 2.6. ([3]) A triple (G, τ,⊕) is called a topological gyrogroup if the following statements hold:
(1) (G, τ) is a topological space.
(2) (G,⊕) is a gyrogroup.
(3) The binary operation ⊕ : G × G→ G is jointly continuous while G × G is endowed with the product

topology, and the operation of taking the inverse ⊖(·) : G→ G, i.e. x→ ⊖x, is also continuous.

Obviously, every topological group is a topological gyrogroup. However, every topological gyrogroup
whose gyrations are not identically equal to the identity is not a topological group. In particular, it
was proved that the Einstein gyrogroup with the standard topology is a topological gyrogroup but not a
topological group, see Example 2 in [3].

Next, we introduce the definition of a strongly topological gyrogroup, it is very important in this paper.

Definition 2.7. ([6]) Let G be a topological gyrogroup. We say that G is a strongly topological gyrogroup if
there exists a neighborhood base U of 0 such that, for every U ∈ U , gyr[x, y](U) = U for any x, y ∈ G. For
convenience, we say that G is a strongly topological gyrogroup with neighborhood base U of 0.

For each U ∈ U , we can set V = U ∪ (⊖U). Then,

gyr[x, y](V) = gyr[x, y](U ∪ (⊖U)) = gyr[x, y](U) ∪ (⊖gyr[x, y](U)) = U ∪ (⊖U) = V,

for all x, y ∈ G. Obviously, the family {U ∪ (⊖U) : U ∈ U } is also a neighborhood base of 0. Therefore, we
may assume that U is symmetric for each U ∈ U in Definition 2.7.

In [6], the authors proved that there is a strongly topological gyrogroup which is not a topological group,
see Example 3.1 in [6].

Definition 2.8. ([12]) A subgyrogroup H of a topological gyrogroup G is called strong subgyrogroup if for
any x, y ∈ G, we have 1yr[x, y](H) = H.

It is noted that every strongly topological gyrogroup G contains some strong subgyrogroups which are
union-generated from open neighborhoods of the identity element by construction, see [12, Proposition
3.11].

We recall the following concept of the coset space of a topological gyrogroup.
Let (G, τ,⊕) be a topological gyrogroup and H an L-subgyrogroup of G. It follows from [32, Theorem

20] that G/H = {a ⊕H : a ∈ G} is a coset space which defines a partition of G. We denote by π the mapping
a 7→ a ⊕H from G onto G/H. Clearly, for each a ∈ G, we have π−1(π(a)) = a ⊕H. Indeed, for any a ∈ G and
h ∈ H,

(a ⊕ h) ⊕H = a ⊕ (h ⊕ gyr[h, a](H))
= a ⊕ (h ⊕ gyr−1[a, h](H))
= a ⊕ (h ⊕H)
= a ⊕H

Denote by τ(G) the topology of G, the quotient topology on G/H is as follows:

τ(G/H) = {O ⊆ G/H : π−1(O) ∈ τ(G)}.

Throughout this paper, denote by π the natural homomorphism from a topological gyrogroup G to its
quotient topology on G/H.
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3. Quotient spaces with locally compact strong subgyrogroups

In [14], the authors proved the following result, which generalized the well-known result [1, Theorem
3.2.2], which is important in this section.

Theorem 3.1. Let G be a strongly topological gyrogroup and H a locally compact strong subgyrogroup of G. Then
there exists an open neighborhood U of the identity element 0 such that π(U) is closed in G/H and the restriction of
π to U is a perfect mapping from U onto the subspace π(U).

Then, we give some applications about Theorem 3.1 combining generalized metric properties. In
particular, we assume that the strong subgyrogroup H of a strongly topological gyrogroup G is locally
compact.

A topological gyrogroup is feathered [6] if it contains a non-empty compact set K of countable character in
G. A space X is said to be a p-space [17] if it is Tychonoff and there exists a countable collection E= {γn : n ∈N}
of families γn of open sets in the Čech-Stone compactification βX of X such that

⋂
{St(x, γn) : n ∈ N} ⊆ X,

for every x ∈ X.

Lemma 3.2. ([9]) Let G be a strongly topological gyrogroup. Then the followings are equivalent:
(1) G is feathered,
(2) G is a p-space, and
(3) G is a paracompact p-space.

Theorem 3.3. Let G be a strongly topological gyrogroup and H a locally compact strong subgyrogroup of G. If the
quotient space G/H is a p-space, then G is a paracompact p-space.

Proof. By Theorem 3.1, there exists an open neighborhood U of the identity element 0 in G such that U is a
preimage of a closed subset of G/H under a perfect mapping. Moreover, since the class of p-spaces is closed
under taking closed subspaces, it follows from [1, Proposition 4.3.36] that U is a p-space, hence a feathered
space. Therefore, U contains a non-empty compact subspace F with a countable base of neighborhoods in
G, thus G is a paracompact p-space by Lemma 3.2.

Definition 3.4. ([31]) Let X be a topological space. A space is called strictly Fréchet-Urysohn at a point x ∈ X if
whenever {An}n is a sequence of subsets in X and x ∈

⋂
n∈N An, there exists xn ∈ An for each n ∈N such that

the sequence {xn}n converges to x. A space X is called strictly Fréchet-Urysohn if it is strictly Fréchet-Urysohn
at every point x ∈ X.

Lemma 3.5. ([26]) Suppose that X is a regular space, and that f : X → Y is a closed mapping. Suppose also that
b ∈ X is a Gδ-point in the space F = f−1( f (b)) (i.e., the singleton {b} is a Gδ-set in the space F) and F is countably
compact and strictly Fréchet-Urysohn at b. If the space Y is strictly Fréchet-Urysohn at f (b), then X is strictly
Fréchet-Urysohn at b.

Theorem 3.6. Let G be a strongly topological gyrogroup and H a locally compact metrizable strong subgyrogroup of
G. If the quotient space G/H is strictly Fréchet-Urysohn, then G is also strictly Fréchet-Urysohn.

Proof. By Theorem 3.1, there exists an open neighborhood U of the identity element 0 in G such that
π↾U

: U→ π(U) is a perfect mapping and π(U) is closed in G/H.
Put f = π↾U

: U → π(U). Then f (U) = π(U) is strictly Fréchet-Urysohn. For each b ∈ U, f−1( f (b)) =
π−1(π(b)) ∩ U = (b ⊕ H) ∩ U is compact and metrizable. It follows from Lemma 3.5 that U is strictly
Fréchet-Urysohn. Therefore, G is locally strictly Fréchet-Urysohn and G is strictly Fréchet-Urysohn.

However, for the property of Fréchet-Urysohn, we do not know whether it has the similar result.
Therefore, we pose the following question.
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Question 3.7. Let G be a strongly topological gyrogroup and H a locally compact metrizable strong subgyrogroup
of G. If the quotient space G/H is Fréchet-Urysohn, is G also Fréchet-Urysohn?

Theorem 3.8. Let G be a strongly topological gyrogroup and H a locally compact metrizable strong subgyrogroup of
G. If the quotient space G/H has property P, where P is a topological property. Then the space G is locally in P if P
satisfies the following:

(1) P is closed hereditary;
(2) P contains point Gδ-property, and
(3) let f : X→ Y be a perfect mapping, if X has Gδ-diagonal and Y is P, then X is P.

Proof. By the hypothesis, since G/H is in P and P contains point Gδ-property, {H} is a Gδ-subset in G/H,
that is, there exists a sequence {Vn : n ∈ N} of open sets in G/H such that {H} =

⋂
n∈N Vn. Therefore,

H =
⋂

n∈N π
−1(Vn). Since H is a metrizable strong subgyrogroup of G, there is a family {Wn : n ∈N} of open

neighborhoods of the identity element 0 such that {Wn ∩ H : n ∈ N} is an open countable neighborhood
base in H. Hence,

{0} =
⋂
n∈N

(Wn ∩H) =
⋂
n∈N

(Wn ∩ π
−1(Vn)).

Then G has point Gδ-property. It follows from [7] that every strongly topological gyrogroup with countable
pseudocharacter is submetrizable. So G has Gδ-diagonal.

By Theorem 3.1, there is an open neighborhood U of the identity element 0 in G such thatπ↾U
: U→ π(U)

is a perfect mapping and π(U) is closed in G/H. Then by (1) and (3), the subspace U is in P. Therefore, G is
locally in P.

It is well-known that all stratifiable spaces, semi-stratifiable spaces and σ-spaces satisfy the conditions
in Theorem 3.8, respectively. Moreover, it was claimed in [10] and [25] that if a strongly topological
gyrogroup G has point Gδ-property, then G has a KG-sequence and if f : X→ Y is a perfect map and Y is a
k-semistratifiable space, then X is a k-semistratifiable space if and only if X has a KG-sequence. Therefore,
the following corollary is obtained.

Corollary 3.9. Let G be a strongly topological gyrogroup and H a locally compact metrizable strong subgyrogroup
of G. If the quotient space G/H is a stratifiable space (semi-stratifiable space, k-semistratifiable, σ-space), then G is a
locally stratifiable space (semi-stratifiable space, k-semistratifiable, σ-space).

4. Quotient spaces with closed first-countable and separable strong subgyrogroups

In this section, we study the quotient space G/H with some generalized metric properties, where G is a
strongly topological gyrogroup and H is a closed first-countable and separable strong subgyrogroup of G.
In particular, we prove that if the quotient space G/H is an ℵ0-space, then G is an ℵ0-space; if the quotient
space G/H is a cosmic space, then G is also a cosmic space; if the quotient space G/H has a star-countable
cs-network or star-countable wcs∗-network, then G also has a star-countable cs-network or star-countable
wcs∗-network, respectively.

Definition 4.1. ([19, 24]) Let P be a family of subsets of a topological space X.
1. P is called a k-network for X if whenever K ⊆ U with K compact and U open in X, there exists a finite

family P
′

⊆ P such that K ⊆
⋃
P
′

⊆ U.
2. P is called a wcs∗-network for X if, given a sequence {xn}n converging to a point x in X and a

neighborhood U of x in X, there exists a subsequence {xni }i of the sequence {xn}n such that {xni : i ∈N} ⊆ P ⊆ U
for some P ∈ P.

Definition 4.2. ([30]) Let X be a topological space.
1. X is called cosmic if X is a regular space with a countable network.
2. X is called an ℵ0-space if it is a regular space with a countable k-network.
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It was claimed in [27] that every base is a k-network and a cs-network for a topological space, and every
k-network or every cs-network is a wcs∗-network for a topological space, but the converse does not hold.
Moreover, a space X has a countable cs-network if and only if X has a countable k-network if and only if X
has a countable wcs∗-network, see [26]. Therefore, it is natural that a topological space is an ℵ0-space if and
only if it is a regular space with a countable cs-network. Moreover, every ℵ0-space is a cosmic space and
every cosmic space is a paracompact and separable space.

The following lemmas are necessary.

Lemma 4.3. ([6]) Let G be a topological gyrogroup and H an L-subgyrogroup of G. Then the natural homomorphism
π from a topological gyrogroup G to its quotient topology on G/H is an open and continuous mapping.

Lemma 4.4. ([10]) Suppose that G is a topological gyrogroup and H is a closed and separable L-subgyrogroup of G.
If Y is a separable subset of G/H, π−1(Y) is also separable in G.

Lemma 4.5. ([8]) Every locally paracompact strongly topological gyrogroup is paracompact.

A family P of subsets of a topological space X is called star-countable [17] if the collection {P ∈ P :
P ∩ P0 , ∅} is countable for any P0 ∈P .

Lemma 4.6. ([15]) Every star-countable familyP of subsets of a topological space X can be expressed asP =
⋃
{Pα :

α ∈ Λ}, where each subfamily Pα is countable and (
⋃
Pα) ∩ (

⋃
Pβ) = ∅ whenever α , β.

Theorem 4.7. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong subgy-
rogroup of G. If the quotient space G/H is a local ℵ0-space, then G is a topological sum of ℵ0-subspace.

Proof. Let G be a strongly topological gyrogroup with a symmetric neighborhood base U at 0. Since the
quotient space G/H is a local ℵ0-space, we can find an open neighborhood Y of H in G/H such that Y has
a countable cs-network. Put X = π−1(Y). By Lemma 4.3, the natural homomorphism π from G onto G/H is
an open and continuous mapping, so X is an open neighborhood of the identity element 0 in G. Since Y is
an ℵ0-space and each ℵ0-space is separable, it follows from Lemma 4.4 that X is separable. Therefore, there
is countable subset B = {bm : m ∈N} of X such that B = X.

Since H is first-countable, there exists a countable family {Vn : n ∈ N} ⊆ U of open symmetric
neighborhoods of 0 in G such that Vn+1⊕(Vn+1⊕Vn+1) ⊆ Vn ⊆ X for each n ∈N and the family {Vn∩H : n ∈N}
is a local base at 0 for H. Since Y is an ℵ0-space, there is a countable cs-network {Pk : k ∈N} for Y.

Claim 1. X is an ℵ0-space.
Put F = {π−1(Pk) ∩ (bm ⊕ Vn) : k,m,n ∈ N}. Then F is a countable family of subsets of X. Suppose

that {xi}i is a sequence converging to a point x in X and U be a neighborhood of x in X. Then U is also
a neighborhood of x in G. Let V be an open neighborhood of 0 in G such that x ⊕ (V ⊕ V) ⊆ U. Since
{Vn ∩H : n ∈N} is a local base at 0 for H, there is n ∈N such that Vn ∩H ⊆ V ∩H. Moreover, (x⊕Vn+1)∩X
is a non-empty open subset of X and B = X, whence B ∩ (x ⊕ Vn+1) , ∅. Therefore, there exists bm ∈ B such
that bm ∈ x ⊕ Vn+1. Furthermore, (x ⊕ Vn+1) ∩ (x ⊕ V) is an open neighborhood of x and π : G → G/H is an
open mapping, so π((x ⊕ Vn+1) ∩ (x ⊕ V)) is an open neighborhood of π(x) in the space Y and the sequence
{π(xi)}i converges to π(x) in Y. It is obtained that

{π(x)} ∪ {π(xi) : i ≥ i0} ⊆ Pk ⊆ π((x ⊕ Vn+1) ∩ (x ⊕ V)) for some i0, k ∈N.

By the left cancellation law of Lemma 2.3, it is easy to verify that (x ⊕ Vn+1) ∩ (x ⊕ V) = x ⊕ (Vn+1 ∩ V).
Therefore, for an arbitrary z ∈ π−1(Pk)∩(bm⊕Vn+1), π(z) ∈ Pk ⊆ π(x⊕(Vn+1∩V)). Since z ∈ (x⊕(Vn+1∩V))⊕H,
and H is a strong subgyrogroup, then

z ∈ (x ⊕ (Vn+1 ∩ V)) ⊕H =
⋃

t∈Vn+1∩V

{(x ⊕ t) ⊕H} =
⋃

t∈Vn+1∩V

{x ⊕ (t ⊕ gyr[t, x](H))} = x ⊕ ((Vn+1 ∩ V) ⊕H).
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Therefore, ⊖x ⊕ z ∈ (Vn+1 ∩ V) ⊕H. Moreover, from z ∈ bm ⊕ Vn+1 and bm ∈ x ⊕ Vn+1, it follows that

z ∈ (x ⊕ Vn+1) ⊕ Vn+1

=
⋃

u,v∈Vn+1

{(x ⊕ u) ⊕ v}

=
⋃

u,v∈Vn+1

{x ⊕ (u ⊕ gyr[u, x](v))}

= x ⊕ (Vn+1 ⊕ Vn+1).

So, (⊖x)⊕ z ∈ Vn+1⊕Vn+1. Hence, (⊖x)⊕ z ∈ ((Vn+1∩V)⊕H)∩ (Vn+1⊕Vn+1). There exist a ∈ (Vn+1∩V), h ∈ H
and u3, v3 ∈ Vn+1 such that (⊖x)⊕ z = a⊕ h = u3 ⊕ v3, whence h = (⊖a)⊕ (u3 ⊕ v3) ∈ Vn+1 ⊕ (Vn+1 ⊕Vn+1) ⊆ Vn.
Therefore, (⊖x)⊕z ∈ (Vn+1∩V)⊕ (Vn∩H), and consequently, z ∈ x⊕ ((Vn+1∩V)⊕ (Vn∩H)) ⊆ x⊕ (V⊕V) ⊆ U.
Thus, we obtain that π−1(Pk) ∩ (bm ⊕ Vn+1) ⊆ U.

Since bm ∈ x ⊕ Vn+1, there is u ∈ Vn+1 such that bm = x ⊕ u, whence

x = (x ⊕ u) ⊕ gyr[x,u](⊖u)
= bm ⊕ gyr[x,u](⊖u)
∈ bm ⊕ gyr[x,u](Vn+1)
= bm ⊕ Vn+1.

Therefore, there exists i1 ≥ i0 such that xi ∈ bm ⊕Vn+1 when i ≥ i1, whence {x} ∪ {xi : i ≥ i1} ⊆ π−1(Pk) ∩ (bm ⊕

Vn+1). Thus F is a countable cs-network for X, and hence X is an ℵ0-space.
Since G is homogeneous, it is clear that G is a localℵ0-space. Therefore, G is a locally paracompact space.

Furthermore, every locally paracompact strongly topological gyrogroup is paracompact by Lemma 4.5, so
G is paracompact. LetA be an open cover of G by ℵ0-subspace. Because the property of being an ℵ0-space
is hereditary, we can assume thatA is locally finite in G by the paracompactness of G. Moreover, as every
point-countable family of open subsets in a separable space is countable, the family A is star-countable.
Then A =

⋃
{Bα : α ∈ Λ} by Lemma 4.6, where each subfamily Bα is countable and (

⋃
Bα) ∩ (

⋃
Bβ) = ∅

whenever α , β. Set Xα =
⋃
Bα for each α ∈ Λ. Then G =

⊕
α∈Λ Xα.

Claim 2. Xα is an ℵ0-subspace for each α ∈ Λ.
Put Bα = {Bα,n : n ∈ N}, where each Bα,n is an open ℵ0-subspace of G, and put Pα =

⋃
n∈NPα,n, where

Pα,n is a countable cs-network for the ℵ0-space Bα,n for each n ∈ N. Then Pα is a countable cs-network for
Xα. Thus, Xα is an ℵ0-space.

In conclusion, G is a topological sum of ℵ0-subspace.

Corollary 4.8. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong
subgyrogroup of G. If the quotient space G/H is an ℵ0-space, G is also an ℵ0-space.

By the similar proof of Theorem 4.7, the following result is obvious.

Theorem 4.9. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong subgy-
rogroup of G. If the quotient space G/H is a locally cosmic space, then G is a topological sum of cosmic subspaces.

Corollary 4.10. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong
subgyrogroup of G. If the quotient space G/H is a cosmic space, G is also a cosmic space.

Theorem 4.11. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong
subgyrogroup of G. If the quotient space G/H has a star-countable cs-network, G also has a star-countable cs-network.

Proof. Let U be a symmetric neighborhood base at 0 such that 1yr[x, y](U) = U for any x, y ∈ G and U ∈ U .
Since the subgyrogroup H of G is first-countable at the identity element 0 of G, there exists a countable
family {Vn : n ∈N} ⊆ U such that (Vn+1⊕ (Vn+1⊕Vn+1)) ⊆ Vn for each n ∈N and the family {Vn∩H : n ∈N}
is a local base at 0 for H.
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Let P = {Pα : α ∈ Λ} be a star-countable cs-network for the space G/H. For each α ∈ Λ, the family
{Pα ∩ Pβ : β ∈ Λ} is a countable wcs∗-network for Pα. Therefore, Pα is a cosmic space, and Pα is separable.
Then it follows from Lemma 4.4 thatπ−1(Pα) is separable. We can find a countable subset Bα = {bα,m : m ∈N}
of π−1(Pα) such that Bα = π−1(Pα).

Put
F = {π−1(Pα) ∩ (bα,m ⊕ Vn) : α ∈ Λ, and m,n ∈N}.

Then F is a star-countable family of G.
Claim. F is a cs-network for G.
Let {xi}i be a sequence converging to a point x in G and let U be a neighborhood of x in G. Choose an

open neighborhood V of 0 in G such that (x ⊕ (V ⊕ V)) ⊆ U. Since {Vn ∩ H : n ∈ N} is a local base at 0 for
H, there exists n ∈ N such that Vn ∩ H ⊆ V ∩ H. Since π : G → G/H is an open and continuous mapping,
there are i0 ∈N and α ∈ Λ such that {π(x)} ∪ {π(xi) : i ≥ i0} ⊆ Pα ⊆ π((x ⊕Vn+1) ∩ (x ⊕V)). Since x ∈ π−1(Pα),
(x ⊕ Vn+1) ∩ π−1(Pα) is non-empty and open in the subspace π−1(Pα). Moreover, since Bα = π−1(Pα), there
exists m ∈N such that bα,m ∈ x ⊕ Vn+1.

For an arbitrary z ∈ π−1(Pα)∩ (bα,m ⊕Vn+1), π(z) ∈ Pα ⊆ π((x⊕Vn+1)∩ (x⊕V)) = π(x⊕ (Vn+1 ∩V)). Then,
z ∈ x⊕ ((Vn+1 ∩V)⊕H) since H is a strong subgyrogroup. Since z ∈ bα,m ⊕Vn+1 and bα,m ∈ x⊕Vn+1, we have

z ∈ (x ⊕ Vn+1) ⊕ Vn+1

=
⋃

u,v∈Vn+1

{(x ⊕ u) ⊕ v}

=
⋃

u,v∈Vn+1

{x ⊕ (u ⊕ gyr[u, x](v))}

= x ⊕ (Vn+1 ⊕ Vn+1).

Then, (⊖x) ⊕ z ∈ Vn+1 ⊕ Vn+1. Hence, (⊖x) ⊕ z ∈ ((Vn+1 ∩ V) ⊕ H) ∩ (Vn+1 ⊕ Vn+1). Therefore, there exist
a ∈ (Vn+1 ∩ V), h ∈ H and u1,u2 ∈ Vn+1 such that (⊖x) ⊕ z = a ⊕ h = u1 ⊕ u2, whence h = (⊖a) ⊕ (u1 ⊕ u2) ∈
Vn+1⊕ (Vn+1⊕Vn+1) ⊆ Vn. It follows that (⊖x)⊕z ∈ (Vn+1∩V)⊕ (Vn∩H). Thus z ∈ x⊕ ((Vn+1∩V)⊕ (Vn∩H)) ⊆
x ⊕ (V ⊕ V) ⊆ U. Hence, π−1(Pα) ∩ (bα,m ⊕ Vn+1) ⊆ U.

Since bα,m ∈ x ⊕ Vn+1, there is u3 ∈ Vn+1 such that bα,m = x ⊕ u3. Thus,

x = (x ⊕ u3) ⊕ gyr[x,u3](⊖u3)
= bα,m ⊕ gyr[x,u3](⊖u3)
∈ bα,m ⊕ gyr[x,u3](Vn+1)
= bα,m ⊕ Vn+1.

Therefore, there exists i1 ≥ i0 such that xi ∈ bα,m ⊕ Vn+1 whenever i ≥ i1, whence {x} ∪ {xi : i ≥ i1} ⊆
π−1(Pα) ∩ (bα,m ⊕ Vn+1).

In conclusion, G has a star-countable cs-network.

Theorem 4.12. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong
subgyrogroup of G. If the quotient space G/H has a star-countable wcs∗-network, G also has a star-countable
wcs∗-network.

Proof. Let U be a symmetric neighborhood base at 0 such that 1yr[x, y](U) = U for any x, y ∈ G and U ∈ U .
Since the subgyrogroup H of G is first-countable at the identity element 0 of G, there exists a countable family
{Vn : n ∈N} ⊆ U in G such that (Vn+1 ⊕ (Vn+1 ⊕ Vn+1)) ⊆ Vn for each n ∈N and the family {Vn ∩H : n ∈N}
is a local base at 0 for H.

We construct P and F by the same way in Theorem 4.11, and we show that F is a wcs∗-network for G.
Let {xi}i be a sequence converging to a point x in G and U be a neighborhood of x in G. Choose an open

neighborhood V of 0 in G such that (x ⊕ (V ⊕ V)) ⊆ U. Since {Vn ∩ H : n ∈ N} is a local base at 0 for H,
there exists n ∈N such that Vn ∩H ⊆ V ∩H. Since P is a wcs∗-network for G/H, there exists a subsequence
{π(xi j )} j of the sequence {π(xi)}i such that {π(xi j ) : j ∈N} ⊆ Pα ⊆ π((x⊕Vn+1)∩ (x⊕V)) for some α ∈ Λ. As the
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sequence {xi}i converges to x, we have some xi j ∈ x ⊕ Vn+2 for each j ∈ N. Furthermore, since xi1 ∈ π
−1(Pα),

(xi1 ⊕Vn+2)∩ π−1(Pα) is non-empty and open in π−1(Pα). Then it follows from Bα = π−1(Pα) that there exists
m ∈N such that bα,m ∈ xi1 ⊕ Vn+2. Then

bα,m ∈ xi1 ⊕ Vn+2

⊆ (x ⊕ Vn+2) ⊕ Vn+2

=
⋃

u,v∈Vn+2

{(x ⊕ u) ⊕ v}

=
⋃

u,v∈Vn+2

{x ⊕ (u ⊕ gyr[u, x](v))}

= x ⊕ (Vn+2 ⊕ Vn+2).

Moreover, it is proved in Theorem 4.11 that π−1(Pα) ∩ (bα,m ⊕ Vn+1) ⊆ U.
In conclusion, G has a star-countable wcs∗-network.

Lemma 4.13. ([28]) Let P be a point-countable family of subsets of a space X. Then P is a k-network for X if and
only if it is a wcs∗-network for X and each compact subset of X is first-countable (or sequential).

Theorem 4.14. Let G be a strongly topological gyrogroup and H a closed first-countable and separable strong
subgyrogroup of G. If the quotient space G/H has a star-countable k-network, G also has a star-countable k-network.

Proof. By Theorem 4.12, G has a star-countable wcs∗-network. It follows from Lemma 4.13 that each
compact subset of G/H is first-countable. Then, since “every compact subset is first-countable” is a three-
space property in topological gyrogroups by [13, Corollary 4.10], we know that every compact subset of G
is first-countable, thus G has a star-countable k-network by Lemma 4.13.
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