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Abstract. This paper is devoted to prove existence of renormalized solutions for a class of non–linear
degenerate elliptic equations involving a non–linear convection term, which satisfies a growth properties,
and a Hardy potential. Additionally, we assume that the right-hand side is an Lm function, with m ≥ 1.

1. Introduction

LetW denote a bounded open subset of RN(N ≥ 3) such that 0 ∈ W. Consider the following model of
nonlinear elliptic problem with principal part having degenerate coercivity−div

(
|∇v|p−2

∇v
(1 + |v|)θ(p−1)

+ c0(x)|v|λ−1v
)
= γ
|v|s−1v
|x|p

+ f inW,

u = 0 on ∂W,
(1.1)

here p ∈ (1,+∞) and θ, λ, γ and s are positive numbers, c0(x) ∈ L
N

p−1 (W) and f is in Lm(W) with m ≥ 1. Let
us assume that the operator has no convection term and no Hardy potential, i.e. θ = c0 = γ = 0, in this case
the difficulties in studying problem (1.1) are due only to the right-hand side f . We recall that in the classical
case θ = 0, such kind of problems with convection term were studied well in the literature in a different
frameworks for an exhaustive review of this topic, we refer to [10, 20, 22, 24, 26, 28–30]. Moreover, we recall
also the works [1, 2, 16, 21, 27] where the classic boundary value problems involving the Hardy potential.

Given k > 0 and ∀n ∈N∗, denote by Tk the truncation function at level ±k define as

Tk(t) = min{k,max{−k, t}}, ∀t ∈ R.

It is well known that the framework of renormalized or entropy solution makes a sense according to the
following definition of the weak gradient
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Definition 1.1. (See [11], Lemma 2.1). If v is a measurable function defined onW that is almost everywhere finite
and satisfies Tk(v) ∈W1,p

0 (W) for all k > 0, then there exists a unique measurable function w :W→ RN such that

∇Tk(v) = wχ{|u|≤k}.

Thus, we can define the generalized gradient ∇v of v as this function w, and denote ∇v = w.

The same reasoning applies if we deal with the degenerate case, on condition that u is finite almost
everywhere inW and such that

∇Tk(v) ∈ (Lp(W))N for every k > 0. (1.2)

The degenerate case was firstly studied in [17]. In this paper, Boccardo and al have studied the existence
and regularity for the following quasi-linear elliptic problem−div(A(x, v)∇v) = f inW,

u = 0 on ∂W,
(1.3)

here f is assumed to be in Lm(W) with m ≥ 1, and A(x, t) : W × R → R is a measurable function with
respect to x for every t ∈ R, and continuous function with respect to t for almost every x ∈ W, satisfying
the following condition: there exist θ ∈ [0, 1], α, β ∈ (0,∞) such that

α

(1 + |t|)θ
≤ A(x, t) ≤ β, for a.e. x ∈ W, ∀t ∈ R.

Moreover, in the paper [14] the authors demonstrated the existence of a renormalized solutions for the
problem (1.3) with datum f ∈ L1(W) and A(x, t) :W×R→ RN×N is a Carathéodory function with values in
the space of matrices on R and is not assumed to be symmetric. A result on the existence and regularity of
weak and entropy solutions is obtained, by Alvino and al in [8], for a nonlinear degenerate elliptic problem
of the form−div

(
|∇v|p−2

∇v
(1 + |v|)θ(p−1)

)
= f inW,

u = 0 on ∂W,

where f is a measurable function in Lm(W) with m ≥ 1.
One of the main points that we stress in this paper is to analyze the interaction between the convection

term and the one singular at the origin, the so-called Hardy potential, to obtain the existence of a renormal-
ized solution for the problem (1.1). The influence of Hardy potential in elliptic problems has been studied
in several papers (see for example the book [27] for a more general framework).

Actually, if c0(x) = 0 and f is a nonnegative function in Lm(W) with m ≥ 1, the authors established, in [25],
an existence and non-existence result of non-negative renormalized solutions for a nonlinear degenerate
elliptic problem of the form

−div
(
|∇v|p−2

∇v
(d(x) + |v|)θ(p−1)

)
= γ
|v|s

|x|p
+ f inW,

u ≥ 0 inW,

u = 0 on ∂W,

where γ and s are positive numbers and d :W→ (0,+∞) is a bounded measurable function. In addition,
one of the most interesting phenomena that exhibit this problem if s = (1 − θ)(p − 1) and f ∈ L1(W) is
the non-existence of solutions. This non-existence result can be illustrated by considering the following
simplest problem, studied in [16],−∆v = γ

v
|x|2
+ f inW,

u = 0 on ∂W.
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On the other hand, in the case where f is a Radon measure with bounded variation defined onW, T.
Del Vecchio and M.R. Posteraro demonstrated, using the symmetrization method, the existence of weak
solutions for a class of nonlinear and noncoercive problem involving a lower order term, whose prototype
is −div(|∇v|p−2

∇v + c0(x)|v|λ) + d(x)|∇v|µ = f inW,

u = 0 on ∂W,
(1.4)

in this context, the functions d(x) and c0(x) belong to LN(W) and L
N

p−1 (W) respectively. Moreover, in the
case when γ = µ = p− 1 they supposed that ∥d(x)∥LN(W) or ∥c0(x)∥

L
N

p−1 (W)
is small enough. The most delicate

case was to obtain a priori estimate for v and ∇v in the case when ∥c0(x)∥
L

N
p−1 (W)

is not small. Recently, in

the paper [22], O. Guibé and A. Mercaldo studied the problem (1.4) in the general framework of Lorentz
spaces. The authors successfully demonstrated the existence of renormalized solutions under the conditions
0 ≤ µ, λ ≤ p − 1 and ∥c0(x)∥

L
N

p−1 (W)
is not small. This is done by proving the following uniform estimate

∀η > 0,∃νη > 0 meas{|v| > νη} ≤
1
ηp , (1.5)

which allowed them to derive the estimate (1.2) which implies an estimates on |v|p−1 and |∇v|p−1, thanks to
the lemma 2.4, in some Lorentz-Marcinkiewicz space.

However, in the case θ , 0 and γ , 0, one can not prove (1.5) but instead one only has

∀η > 0,∃ν̄η > 0 meas{|ϱ̃(v)| > ν̄η} ≤
1
ηp .

with ϱ̃(t) denotes the primitive of a decreasing continuous function given by

ϱ(t) =
1

(1 + |t|)θ
θ ∈ [0, 1),

which satisfies the following behavior at∞

lim
|t|→+∞

ϱ̃(t) = ±∞. (1.6)

Moreover, there exists a positive constant C̃ > 0 and a positive real number k0 such that for every |t| > k0,
one has

|t|λ

(1 + |ϱ̃(t)|)p−1 ≤ C̃. (1.7)

We stress that the method used in [22], is not apply directly in our case since the right hand side of our
problem involving the Hardy potential. In order to overcome this difficulty, we prove an L1

−estimate on
Hardy potential term by arguing as in [25]. This is enough, thanks to (1.6) and (1.7), to ensure that u satisfies
(1.5).

Finally we explicitly remark that if we consider 0 < s, λ < (1 − θ)(p − 1). Thanks to (1.7), the following
inequalities hold∫

W

|v|s

|x|p
dx ≤ C̃

∫
W

(1 + |ϱ̃(v)|)p−1

|x|p
dx,

and ∫
W

c0(x)|v|λ dx ≤ C̃
∫
W

c0(x)(1 + ϱ̃(v))p−1 dx.
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Therefore, the equation (1.1) may be equivalently written as−div
(
|∇ϱ̃(v)|p−2

∇ϱ̃(v) + c̃0(x)|ϱ̃(v)|p−1
)
= γ
|ϱ̃(v)|p−1

|x|p
+ 1 inW,

ϱ̃(v) = 0 on ∂W,
(1.8)

such that c̃0(x) ∈ L
N

p−1 (W) and the the right-hand side, 1 ∈ Lm(W) with m > 1. In general, the problem (1.8) is
not coercive and has no weak solution when 1 ∈ L1(W), γ > 0. Thus, in the present paper, we face the two
difficulties arise from the presence of both the non–linear convection term and Hardy potential. This means
that we will be dealing with all the difficulties previously described, at the same time. To our knowledge,
the exploration of the combined impact of the non–linear convection term and the Hardy potential has not
been undertaken before.

For ease of reading, in the Sec. 2, we recall some well-know preliminaries, properties and definitions
of the Lorentz-Marcinkiewicz space, as well as we set our main assumptions. While in Sec. 3 we give the
proof of the existence result.

2. Some preliminaries and definitions

Now, we give some basic tools for functional analysis that we will use in our study. The Lorentz space
Lq,r(W) is the space of Lebesgue measurable functions such that for any (q, r) ∈ (1,∞)2

∥ f ∥Lq,r(W) =

(∫ meas(W)

0

[
f ∗(t)t

1
q
]r dt

t

)1/r

< +∞.

Where, f ∗ stands for the decreasing rearrangement of the function f which defined by

f ∗(t) = inf{r ≥ 0 : meas {x ∈ W : | f (x)| > r} < t} t ∈ [0,meas(W)].

We also mentioned that, for any q ∈ [1,+∞) the Lorentz-Marcinkiewicz space Lq,∞(W) is the set of measur-
able functions f :W→ R such that

∥ f ∥Lq,∞(W) = sup
t

t
(

meas {x ∈ W : | f | > t}
) 1

q < +∞. (2.1)

Moreover for any z and q such that 1 ≤ q < r < z ≤ +∞, the following chain of continuous inclusions in
Lebesgue spaces holds true

Lz(W) ⊂ Lr,∞(W) ⊂ Lq(W) ⊂ L1(W). (2.2)

For references about rearrangements see, for example, [19].
The following lemmas introduce some well-known inequalities that will be very useful in a number of

situations such as a priori estimates.

Lemma 2.1. (Poincaré’s inequality). Suppose p ∈ [1,N) and v ∈W1,p
0 (W) . Then there exist a constant c(N, p) such

that

∥v∥Lp(W) ≤ c(N, p)∥∇v∥Lp(W), (2.3)

Lemma 2.2. (Sobolev’s inequality). Suppose p ∈ [1,N) and v ∈W1,p
0 (W) . Then there exist a constant S such that

∥v∥Lp∗ (W) ≤ S∥∇v∥Lp(W),

with p∗ = Np
N−p .
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Lemma 2.3. (Hardy’s inequality). Suppose p ∈ (1,N) and u ∈W1,p
0 (W) . Then we have∫

W

|v|p

|x|p
dx ≤ H

∫
W

|∇v|p dx,

withH =
( p

N−p

)p
optimal and not achieved constant.

Proof. See [21].

An important lemma which generalize a result of [11] is the following:

Lemma 2.4. Assume thatW is an open subset ofRN with finite measure and that p ∈ (1,N). Let ψ be a measurable
function satisfying Tk(ψ) ∈ W1,υ

0 (W), for every positive k, and such that for some constants M and L we have the
inequality∫

W

|∇Tk(ψ)|υ dx ≤Mkτ + L, ∀k > 0,

where (τ, υ) ∈ (0,N)2 are given constants. Then |ψ|υ−τ belongs to L
N

N−υ ,∞(W), |∇ψ|υ−τ belongs to L
N

N−τ ,∞(W) and
there exists a constant C which depending only on N and p such that∥∥∥|ψ|υ−τ∥∥∥

L
N

N−υ ,∞(W)
≤ C(N, p)

[
M +meas(W)1− υτ L

υ−τ
υ

]
, (2.4)∥∥∥|∇ψ|υ−τ∥∥∥

L
N

N−τ ,∞(W)
≤ C(N, p)

[
M +meas(W)

τ
υ (1− υτ )L

υ−τ
υ

]
. (2.5)

Proof. See [22].

Consider a nonlinear elliptic problem which can be written as−div(b(x, v,∇v) +B(x, v)) = γ
|v|s−1v
|x|p

+ f (x) inW,

u = 0 on ∂W,
(2.6)

with γ and s are positive constants. Throughout the paper, we assume that the following assumptions hold
true:

b :W×R ×RN
→ RN is a Carathéodory function which satisfies assumptions:

b(x, η, ξ).ξ ≥ αϱp−1(η)|ξ|p, (2.7)

|b(x, η, ξ)| ≤ C(G(x) + |η|p−1 + |ξ|p−1), (2.8)

[b(x, η, ξ) − b(x, η, ξ′)][ξ − ξ′] > 0, (2.9)

for almost every x ∈ W, for every (η, ξ) ∈ R×RN, α and C are positive real number, and G is a nonnegative
function in Lp′ (W).
B :W×R→ RN is Carathéodory function satisfies the growth condition

|B(x, η)| ≤ c0(x)|η|λ, with 0 ≤ λ < (1 − θ)(p − 1) and c0(x) ∈ L
N

p−1 (W). (2.10)

0 ≤ s <
p(1 − θ)(p − 1)

p∗
, γ ≥ 0 and f ∈ Lm(W), with m ≥ 1. (2.11)

We first give the definition of a renormalized solutions to problem (2.6). Then, we will discuss the
existence of a renormalized solutions to problem (2.6).

We will now provide the definition of a renormalized solutions to problem (2.6).
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Definition 2.5. A function v : W → R is considered a renormalized solutions to Problem (2.6) if it satisfies the
following conditions:

v is measurable and finite almost everywhere inW, (2.12)

Tk(ϱ̃(v)) ∈W1,p
0 (W) ∀k > 0, (2.13)

lim
n→+∞

1
n

∫
{|ϱ̃(v)|≤n}

ϱ(v)b(x, v,∇v)∇v dx = 0, (2.14)

and if for any h ∈W1,∞(R) with compact support in R, we have∫
W

b(x, v,∇v)ϱ(v)∇vh′(ϱ̃(v))φ dx +
∫
W

b(x, v,∇v)∇φh(ϱ̃(v)) dx

+

∫
W

B(x, v)ϱ(v)∇vh′(ϱ̃(v))φ dx +
∫
W

B(x, v)∇φh(ϱ̃(v)) dx

= γ

∫
W

|v|s−1v
|x|p

h(ϱ̃(v))φ dx +
∫
W

f h(ϱ̃(v))φ dx (2.15)

for every φ ∈W1,p
0 (W) ∩ L∞(W).

Remark 2.6. We notice that, since ϱ̃(±∞) = ±∞which means that the set {|ϱ̃(v)| ≤ n}may be equivalent to {|u| ≤ kn}

with kn = max{ϱ̃−1(n), ϱ̃−1(−n)}, then, due to (2.13) we deduce that the condition (2.14) is well defined.

Remark 2.7. It is worth noting that growth assumption (2.10) onB together with (2.12)− (2.14) allow to prove that
any renormalized solutions u verifies

lim
n→+∞

1
n

∫
W

|B(x, v)||∇Tn(ϱ̃(v))|dx = 0. (2.16)

Indeed, (1.6), (1.7) and the growth assumption (2.10) imply that∫
W

|B(x, v)||∇Tn(ϱ̃(v))| dx ≤
∫
W

c0(x)|u|λ|∇Tn(ϱ̃(v))| dx,

=

∫
W

c0(x)
|u|λ

(
1 + |ϱ̃(v)|

)p−1(
1 + |ϱ̃(v)|

)p−1 |∇Tn(ϱ̃(v))| dx,

≤ C̃
∫
W

c0(x)
(
1 + |ϱ̃(v)|

)p−1
|∇Tn(ϱ̃(v))| dx,

≤ C̃cp

∫
W

c0(x)|∇Tn(ϱ̃(v))|dx + C̃cp

∫
W

c0(x)|Tn(ϱ̃(v))|p−1
|∇Tn(ϱ̃(v))|dx,

where cp = max
{
1, 2p−2

}
.

By Hölder’s and Sobolev’s inequalities it follows that∫
W

|B(x, v)||∇Tn(ϱ̃(v))|dx ≤ C̃
∫
W

c0(x)|∇Tn(ϱ̃(v))|dx + C̃cp

∫
W

c0(x)|Tn(ϱ̃(v))|p−1
|∇Tn(ϱ̃(v))|dx,

≤ C̃cp∥c0(x)∥Lp′ (W)∥∇Tn(ϱ̃(v))∥Lp(W) + C̃cp∥c0(x)∥
L

N
p−1 (W)

∥∥∥Tn(ϱ̃(v))
∥∥∥p−1

Lp∗ (W)

∥∥∥∇Tn(ϱ̃(v))
∥∥∥

Lp(W)
,

≤ C̃cp∥c0(x)∥Lp′ (W)∥∇Tn(ϱ̃(v))∥Lp(W) + C̃cpS
p−1
∥c0(x)∥

L
N

p−1 (W)

∥∥∥∇Tn(ϱ̃(v))
∥∥∥p

Lp(W)
,

which, using Young’s inequality and (2.14), gives (2.16).
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Remark 2.8. Note that the term γ

∫
W

|v|s−1v
|x|p

h(ϱ̃(v))φ dx is well-defined. Indeed, let k > 0 such that supp(h) ⊂

[−k, k]. It follows from (1.7), Hölder’s and Hardy Inequalities that∣∣∣∣∣∣γ
∫
W

|v|s−1v
|x|p

h(ϱ̃(v))v dx

∣∣∣∣∣∣ ≤ γ
∫
W

|v|s

(1 + |ϱ̃(v)|)p−1

(1 + |ϱ̃(v)|)p−1

|x|p
|h(ϱ̃(v))||φ| dx,

≤ Cγ

(∫
W

dx
|x|p

dx
) 1

p′

+H
1
p′

(∫
W

|∇Tk(ϱ̃(v))|p dx
) 1

p′


where

Cγ = γcpC̃∥h∥L∞(R)∥φ∥L∞(W)

(∫
W

dx
|x|p

dx
) 1

p

. (2.17)

Then we have, from (2.13), that
|v|s−1v
|x|p

h(ϱ̃(v))φ ∈ L1(W).

Remark 2.9. The renormalized equation (2.15) is formally obtained through a pointwise multiplication of (2.6) by
h(v)φ. Let us observe that by the previous remark, (2.13) and the properties of h, every term in (2.15) makes sense.

3. Existence of renormalized solutions

The main result of the present paper is the following existence result.

Theorem 3.1. Let us assume that the assumptions (2.7) − (2.11) hold and suppose that f ∈ Lm(W) with

1 ≤ m < mθ =
pN

pN − (N − p)(θ(p − 1) + 1)
. (3.1)

If λ < (1 − θ)(p − 1), s <
p(1 − θ)(p − 1)

p∗
and γ ≥ 0, then there exists a renormalized solutions of equation (2.6).

Proof. The proof of this result follows a classical approach that involves introducing a sequence of approx-
imate problems. Subsequently, we establish a priori estimates for both the approximate solutions and their
gradients in Lorentz-Marcinkiewicz spaces, thereby providing an estimate in L1(W) for the singular term.
Next, we prove an energy estimate, which constitutes a crucial element for the subsequent stages of the
proof. Moreover, in the fourth step of the proof, we establish the a.e. convergence of gradient in W by
proving Lemma 3.6. Finally, we pass to the limit in the approximate problem.
• First Step: Approximate problem
Let’s introduce a regularization of the data as follows: for a fixed ε > 0, let’s define

bε(x, η, ξ) = b(x,T 1
ε
(η), ξ) ∀η ∈ R, (3.2)

Bε(x, η) = B(x,T 1
ε
(η)) ∀η ∈ R, (3.3)

f ε = T 1
ε
( f ) and f ε → f strongly in Lm(W). (3.4)

Observe that

|bε(x, η, ξ)| = |b(x,T 1
ε
(η), ξ)|

≤ C(G(x) + |T 1
ε
(η)|p−1 + |ξ|p−1),

≤ C(G(x) +
1
εp−1 + |ξ|

p−1) ∈ Lp′ (W),

(3.5)
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and

bε(x, η, ξ)ξ = b(x,T 1
ε
(η), ξ)ξ ≥

α|ξ|p

(1 + 1
ε )θ(p−1)

≥ α̃|ξ|p, (3.6)

moreover

|Bε(x, η)| = |B(x,T 1
ε
(η))| ≤

c0(x)
ελ
∈ Lp′ (W). (3.7)

Let vε ∈W1,p
0 (W) be a weak solution to the following approximate problem−div(bε(x, vε,∇vε) +Bε(x, vε)) = γ

|T 1
ε
(vε)|s−1

T 1
ε
(vε)

|x|p + ε
+ f ε inW,

vε = 0 on ∂W,

(3.8)

in the sens that∫
W

bε(x, vε,∇vε)∇φ dx +
∫
W

Bε(x, vε)∇φ dx = γ
∫
W

|T 1
ε
(vε)|s−1

T 1
ε
(vε)

|x|p + ε
φ dx +

∫
W

f εφ dx (3.9)

∀φ ∈W1,p
0 (W) ∩ L∞(W).

According to (3.5), (3.6) and (3.7) the existence of a solution vε of (3.8) is a well-known result (see,
e.g.,[23]).
• Second step: A priori estimates
In this step we deal with the approximate problem (3.8). We begin by proving some a priori estimates

on ϱ̃(vε), ∇ϱ̃(vε), vε, and ∇vε.

Proposition 3.2. Suppose that f ∈ Lm(W) with 1 ≤ m < mθ. Under the assumptions (2.7) − (2.10) and if
λ < (1 − θ)(p − 1), s < p(1−θ)(p−1)

p∗ and γ ≥ 0. Then, every weak solution of the problem (3.9) satisfies∥∥∥|ϱ̃(vε)|p−1
∥∥∥

L
N

N−p ,∞(W)
≤ c1

(
N, p, α,meas(W), c0

)
(3.10)

∥∥∥|∇ϱ̃(vε)|p−1
∥∥∥

L
N

N−1 ,∞(W)
≤ c2

(
N, p, α,meas(W), c0

)
(3.11)∥∥∥|vε|(1−θ)(p−1)

∥∥∥
L

N
N−p ,∞(W)

≤ c3
(
N, p, α,meas(W), c0

)
(3.12)∥∥∥|∇vε|(1−θ)(p−1)

∥∥∥
L

N
N−1−θ(p−1) ,∞(W)

≤ c4
(
N, p, α,meas(W), c0

)
(3.13)

for some positive constants c1, c2, c3 and c4.

Proof. We will divide the proof of this proposition into two steps. Initially, we will establish that our
sequence of weak solutions vε is almost everywhere finite inW. Following this outcome, we will derive
uniform bounds for Tk(ϱ̃(vε)) and Tk(vε) in Lebesgue spaces. Let us mention that throughout the paper
Ci, i ∈ N∗, denotes positive constants independent of ε that are different from line to line. At last, for any
measurable set D ⊂ RN, Dc denotes its complement.
• Step 1: vε is finite a.e. inW.
This step is devoted to establish that assuming conditions (2.7), (2.10), and f ∈ L1(W), the sequence of

weak solution satisfies

∀η > 0,∃kη > 0 meas{|vε| > kη} ≤
1
ηp , uniformaly w.r.t ε. (3.14)
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To this aim, let us consider the real valued function ψp : R→ R defined by

ψp(t) =
∫ t

0

dr

(β
1

p−1
ε + |r|)p

,

where βε > 1, is a suitably chosen parameter.
We use ψp(ϱ̃(vε)) as test function in (3.9), we get

∫
W

bε(x, vε,∇vε)∇ψp(ϱ̃(vε)) +
∫
W

Bε(x, vε)∇ψp(ϱ̃(vε)) = γ
∫
W

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s−1
T 1

ε
(vε)

|x|p + ε
ψp(ϱ̃(vε)) +

∫
W

f εψp(ϱ̃(vε)).
(3.15)

Using the assumptions (2.7) and (2.10), we obtain

α

∫
W

|∇ϱ̃(vε)|p

(β
1

p−1
ε + |ϱ̃(vε)|)p

dx ≤
∫
W

c0(x)
|vε|λ

(β
1

p−1
ε + |ϱ̃(vε)|)p−1

|∇ϱ̃(vε)|

(β
1

p−1
ε + |ϱ̃(vε)|)

dx +
1

βε(p − 1)
Mε,

where

Mε = γ

∫
W

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s dx

|x|p + ε
+

∥∥∥ f ε
∥∥∥

L1(W)
.

Thanks to (1.7), for any λ < (1 − θ)(p − 1), we have

|vε|λ

(β
1

p−1
ε + |ϱ̃(vε)|)p−1

≤ C̃.

Thus, applying Young’s inequality, we obtain∫
W

|∇ϱ̃(vε)|p

(β
1

p−1
ε + |ϱ̃(vε)|)p

dx ≤ C1 +
p′

αβε(p − 1)
Mε.

Now, if we choose βε = 1 +
p′

α(p − 1)
Mε, we deduce that

∫
W

|∇ϱ̃(vε)|p

(β
1

p−1
ε + |ϱ̃(vε)|)p

dx ≤ C1 + 1,

which implies, applying Poincaré’s inequality and for any h > 0, that

meas
{
|ϱ̃(vε)| > hβ

1
p−1
ε

}
=

1
[ln(1 + h)]p

∫|ϱ̃(vε)|>hβ
1

p−1
ε

 [ln(1 + h)]p dx,

≤
1

[ln(1 + h)]p

∫|ϱ̃(vε)|>hβ
1

p−1
ε


ln

1 +
|ϱ̃(vε)|

β
1

p−1
ε




p

dx,

≤
1

[ln(1 + h)]p

∫
W

ln
1 +

|ϱ̃(vε)|

β
1

p−1
ε




p

dx,

≤
A

[ln(1 + h)]p ,
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where

A = c(N, p) (1 + C1) .

Then, for any η > 0, we have

meas
{
|ϱ̃(vε)| > ση(ε)

}
≤

1
ηp , (3.16)

where

ση(ε) =
(
exp

(
ηA

1
p
)
− 1

)
β

1
p−1
ε . (3.17)

Remark 3.3. Notice that, from (3.17) and recalling the definition of βε, we can express ση as follows

ση(ε) =
(
exp

(
ηA

1
p
)
− 1

) (
1 +

p′

α(p − 1)
Mε

) 1
p−1

.

Therefore, it is crucial to emphasize the need to establish the boundedness of the term Mε uniformly with respect to
ε to prove that ϱ̃(vε) is finite almost everywhere in W. Referring back to the definition of Mε, we can deduce the
following inequality

Mε ≤ γ

∥∥∥∥∥∥∥∥∥
∣∣∣∣T 1

ε
(vε)

∣∣∣∣s
|x|p

∥∥∥∥∥∥∥∥∥
L1(W)

+
∥∥∥ f ε

∥∥∥
L1(W)

.

To derive the desired estimate, our task is to prove the boundedness of the Hardy potential term in L1(W). To this
aim, we adopt the approach outlined in [25].

For any given k ≥ 0, let Tk(ϱ̃(vε)) be chosen as a test function in (3.9). This yields∫
W

bε(x, vε,∇vε)∇Tk(ϱ̃(vε)) dx +
∫
W

Bε(x, vε)∇Tk(ϱ̃(vε)) dx

= γ

∫
W

|T 1
ε
(vε)|s−1

T 1
ε
(vε)

|x|p + ε
Tk(ϱ̃(vε)) dx +

∫
W

f εTk(ϱ̃(vε)) dx.

Using (2.7) and (2.10), we get

α

∫
W

∣∣∣∇Tk(ϱ̃(vε))
∣∣∣p dx ≤

∫
W

c0(x)|vε|λ|∇Tk(ϱ̃(vε))| dx + kMε,

≤

∫
W

c0(x)
|vε|λ|∇Tk(ϱ̃(vε))|(

1 + |ϱ̃(vε)|
)p−1

(
1 + |ϱ̃(vε)|

)p−1 dx + kMε,

Therefore, through (1.7) and employing Hölder’s, Young’s and Sobolev’s inequalities, we obtain

α

∫
W

∣∣∣∇Tk(ϱ̃(vε))
∣∣∣p dx ≤ C̃

∫
W

c0(x)|ϱ̃(vε)|p−1
|∇Tk(ϱ̃(vε))| dx + C̃

∫
W

c0(x)|∇Tk(ϱ̃(vε))| dx + kMε,

≤ C̃
∫

Zc
η,ε

c0(x)|ϱ̃(vε)|p−1
|∇Tk(ϱ̃(vε))| dx + C̃

∫
Zη,ε

c0(x)|ϱ̃(vε)|p−1
|Tk(ϱ̃(vε))| dx

+ C2 +
α
2p

∫
W

|∇Tk(ϱ̃(vε))|p dx + kMε,

≤ C̃Sp−1
∥∥∥c0(x)

∥∥∥
L

N
p−1 (Zc

η,ε)

∫
W

|∇Tk(ϱ̃(vε))|p dx +
α
p

∫
W

|∇Tk(ϱ̃(vε))|p dx + Cε + kMε,



F. Achhoud et al. / Filomat 39:12 (2025), 4137–4159 4147

where

Zη,ε = {x ∈ W, |ϱ̃(vε(x))| ≤ ση(ε)},

and

Cε = C2 +

(
2p
α

) p′

p

(
C̃σp−1

η (ε)
)p′

p′

∫
W

|c0(x)|p
′

dx,

i.e.,

α
p′

∫
W

∣∣∣∇Tk(ϱ̃(vε))
∣∣∣p dx ≤ C̃Sp−1

∥∥∥c0(x)
∥∥∥

L
N

p−1 (Zc
η,ε)

∫
W

|∇Tk(ϱ̃(vε))|p dx + Cε + kMε.

Note that, for every ε > 0, we can select η = η̄, in (3.17), such that

p′

α
C̃Sp−1

∥c0(x)∥
L

N
p−1

(
Zc
η̄,ε

) ≤ 1
2
.

As a result, we derive that∫
W

∣∣∣∇Tk(ϱ̃(vε))
∣∣∣p dx ≤ Lε +M′

εk,

where

Lε =
2p′

α
Cε and M′

ε =
2p′

α
Mε.

By lemma 2.4, we get∥∥∥∥∣∣∣ϱ̃(vε)
∣∣∣p−1

∥∥∥∥
L

N
N−p ,∞(W)

≤ C(N, p)
[
M′

ε +meas(W)
1
p L

1
p′

ε

]
.

Moreover, using the fact that ϱ̃(vε) exhibits behavior similar to |vε|1−θ for any θ < 1, we conclude that∥∥∥|vε|(1−θ)(p−1)
∥∥∥

L
N

N−p ,∞(W)
≤ C(N, p)

[
M′

ε +meas(W)
1
p L

1
p′

ε

]
.

Given s < p(1−θ)(p−1)
p∗ , and utilizing (2.2) along with the application of Hölder’s inequality (with exponents

ρ =
(1−θ)(p−1)

s and ρ′ = ρ
ρ−1 ), we obtain∥∥∥∥∥∥∥∥∥

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s
|x|p

∥∥∥∥∥∥∥∥∥
L1(W)

≤

(∫
W

|vε|(1−θ)(p−1) dx
) 1
ρ
(∫
W

dx
|x|pρ′

) 1
ρ′

,

≤ C3

∥∥∥|vε|(1−θ)(p−1)
∥∥∥ 1
ρ

L1(W)
,

≤ C3

∥∥∥|vε|(1−θ)(p−1)
∥∥∥ 1
ρ

L
N

N−p ,∞(W)
,

≤ C3

[
C(N, p)

[
M′

ε +meas(W)
1
p L

1
p′
ε

]] s
p−1

,

≤ C4M
s

p−1
ε + C5L

s
p
ε .
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Remark 3.4. Let us emphasize that we don’t know if the value p(p−1)(1−θ)
p∗ is optimal in order to obtain the above

estimate. Thus, it would be very interesting to know what happen in the lacking set p(p−1)(1−θ)
p∗ ≤ s < (p − 1)(1 − θ).

This delicate case, will be dealt with in an upcoming paper, wherein the focus lies on exploring renormalized solutionss
with a new approach.

After easy calculations, we prove that

Lε =
2p′

α

C2 +

(
2p
α

) p′

p

(
C̃σp−1

η (ε)
)p′

p′

∫
W

|c0(x)|p
′

dx

 ≤ C6 + C7Mp′
ε .

Which implies, by applying Young’s inequality, that∥∥∥∥∥∥∥∥∥
∣∣∣∣T 1

ε
(vε)

∣∣∣∣s
|x|p

∥∥∥∥∥∥∥∥∥
L1(W)

≤ C9 + C8M
s

p−1
ε ,

≤ C10 +
1

2γ
Mε,

thus, we deduce that∥∥∥∥∥∥∥∥∥
∣∣∣∣T 1

ε
(vε)

∣∣∣∣s
|x|p

∥∥∥∥∥∥∥∥∥
L1(W)

≤ C11. (3.18)

So that there exists a positive constant σ̄η, independent of ε, such that

ση(ε) ≤
(
exp

(
ηA

1
p
)
− 1

) (
1 +

p′

α(p − 1)

(
γC11 + ∥ f ∥L1(W)

)) 1
p−1

= σ̄η.

Observe that, by the definition of σ̄η, it results

lim
η→+∞

σ̄η = +∞.

Moreover, since meas
{
|ϱ̃(vε)| > σ̄η

}
≤ meas

{
|ϱ̃(vε)| > ση(ε)

}
, and recalling (3.16), we affirm that ϱ̃(vε) is finite

a.e. inW. Therefore, since ϱ̃ is C1 non decreasing function, there exists kη > 0 such that

meas
{
|vε| > kη

}
≤

1
ηp .

This implies, since ϱ̃(±∞) = ±∞, that vε is also finite a.e. inW. Which is equivalent to (3.14).
• Step 2: Tk(ϱ̃(vε)) and Tk(vε) are bounded in W1,p

0 (W).
Choosing Tk(ϱ̃(vε)) as test function in (3.9), and following the same reasoning as before, we obtain∫

W

∣∣∣∇Tk(ϱ̃(vε))
∣∣∣p dx ≤ L +Mk ∀k > 0, (3.19)

where

L = C6 + C8

(
γC11 + ∥ f ∥L1(W)

)
and M =

2p′

α

(
γC11 + ∥ f ∥L1(W)

)
.
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Remark 3.5. We note that, in this step, we have employed the measurable set

Z̄η,ε = {x ∈ W, |ϱ̃(vε(x))| ≤ σ̄η}, (3.20)

instead of the set Zη,ε.

The estimate (3.19), together with the lemma 2.4, enables us to deduce (3.10) and (3.11).
Taking Tk(vε) as test function in (3.9), we obtain∫

W

bε(x, vε,∇vε)∇Tk(vε) dx +
∫
W

Bε(x, vε)∇Tk(vε) dx

= λ

∫
W

|T 1
ε
(vε)|s−1

T 1
ε
(vε)

|x|p + ε
Tk(vε) dx +

∫
W

f εTk(vε) dx.

By (2.7), (2.10), and utilizing Hölder’s, Young’s, and Sobolev’s inequalities, we get

α

∫
W

|∇Tk(vε)|p dx ≤ (1 + k)θ(p−1)
|W|

p−1−λ
p∗ ∥c0(x)∥

L
N

p−1 (W)

(∫
W

|∇Tk(vε)|p dx
) λ+1

p

+ k(k + 1)θ(p−1)
(
γC11 + ∥ f ∥L1(W)

)
.

αIk ≤

∫
Eη,ε

c0(x)|Tk(vε))|λ|∇Tk(vε))| dx +
∫
Ec
η,ε

c0(x)|Tk(vε)|λ|∇Tk(vε)| dx + kR,

≤

∫
Eη,ε

c0(x) (1 + |Tk(vε)|)p−1 |Tk(vε)|λ

(1 + |Tk(vε))|)p−1 |∇Tk(vε))| dx +
∫
Ec
η,ε

c0(x)|Tk(vε))|λ|∇Tk(vε)| dx + kR,

≤

∫
Eη,ε

c0(x) (1 + |Tk(vε)|)p−1
|∇Tk(vε)| dx +

∫
Ec
η,ε

c0(x)|Tk(vε)|λ|∇Tk(vε)| dx + kR,

≤ (1 + kλη )
∫
W

c0(x)|∇Tk(vε)| dx +
∫
Eη,ε

c0(x)|Tk(vε)|p−1
|∇Tk(vε)| dx + kR

≤
(1 + kη)p′

∥c0(x)∥Lp′ (W)

p′α
p′
p

(1 + k)θ +
α
p

Ik + (1 + k)θ(p−1)
∥c0(x)∥

L
N

p−1 (Eη,ε)
Ik + kR,

where, for every kη > 0,

Ik =

∫
W

|∇Tk(vε)|p

(1 + |Tk(vε)|)θ(p−1)
dx, and Eη,ε = {x ∈ W, |vε(x)| > kη}.

Now, we choose kη (for fixed η = η̄) such that

p′

α
C12∥c0(x)∥

L
N

p−1 (Eη̄,ε)
(1 + k)θ(p−1)

≤
1
2
.

Thus, for every k > 0, we obtain

Ik ≤ Cη(1 + k)θ + C12k,

with

Cη =
2(1 + kη)α∥c0(x)∥Lp′ (W)

αp′ .
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which implies that∫
W

|∇Tk(vε)|p dx ≤ (1 + k)θ(p−1)Ik,

≤ Cη(1 + k)θp + C12k(1 + k)θ(p−1).

Noting that, for a suitable constant C depending on p and θ, we have

k(1 + k)θ(p−1)
≤ C

(
1 + kθ(p−1)+1

)
∀ k > 0.

This implies that∫
W

|∇Tk(vε)|p dx ≤ C13 + Cη(1 + k)θp + C14kθ(p−1)+1,

using Young inequality with the exponents

κ =
θ(p − 1) + 1

θp
and κ′ =

κ
κ − 1

,

we obtain∫
W

|∇Tk(vε)|p dx ≤ L + kθ(p−1)+1, ∀k > 0, (3.21)

where

Ł = Cη + C12C +
Cκ′η
κ′

and M = C12C +
1
κ
.

Bearing in mind that θ < 1 and the estimate (3.21), we can apply Lemma 2.4 to extrapolate that the
estimates (3.12) and (3.13) are hold. So, the proof of the proposition 3.2 is now complete.

Based on the arguments in [11, 18], it can be inferred from estimates (3.19) and (3.21) that, for a subsequence
which is still indexed by ε, the following convergences hold:

vε → v a.e. inW, (3.22)
ϱ̃(vε)→ ϱ̃(v) a.e. inW, (3.23)

Tk (vε) ⇀ Tk(v) weakly in W1,p
0 (W), (3.24)

Tk
(
ϱ̃(vε)

)
⇀ Tk(ϱ̃(v)) weakly in W1,p

0 (W), (3.25)

bε (x, vε,∇vε)χ{|uε |≤k} ⇀ σk weakly in (Lp′ (W))N, (3.26)

• Third step: Energy formula
Now we look for the following energy estimate of the approximating solutions vε

lim
n→+∞

lim sup
ε→0

1
n

∫
{|ϱ̃(vε)|≤n}

ϱ(vε)bε(x, vε,∇vε)∇vε dx = 0. (3.27)

Taking v =
1
n
Tn(ϱ̃(vε)) as test function in (3.9) yields that

1
n

∫
W

(bε(x, vε,∇vε) +Bε(x, vε))∇Tn(ϱ̃(vε)) dx =
γ

n

∫
W

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s−1
T 1

ε
(vε)

|x|p + ε
Tn(ϱ̃(vε)) dx +

1
n

∫
W

f εTn(ϱ̃(vε)) dx.
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Utilizing (1.7), (2.7), (2.10), as well as Hölder’s, Young’s, and Sobolev’s inequalities, we obtain

α
n

∫
W

|∇Tn(ϱ̃(vε))|p dx ≤
1
n

∫
W

c0(x)|vε|λ|∇Tn(ϱ̃(vε))| dx +
γ

n

∫
W

|vε|s

|x|p
Tn(ϱ̃(vε)) dx +

1
n

∫
W

f εTn(ϱ̃(vε)) dx

≤
1
n

∫
W

c0(x)
|vε|λ(

1 + |ϱ̃(vε)|
)p−1

(
1 + |ϱ̃(vε)|

)p−1
|∇ϱ̃(vε)| dx +

γ

n

∫
W

|vε|s

|x|p
Tn(ϱ̃(vε)) dx +

1
n

∫
W

f εTn(ϱ̃(vε)) dx

≤
C17

n
+
α
np

∫
W

|∇Tn(ϱ̃(vε))|p dx +
1
n

2p−2C̃Sp−1
∥∥∥c0(x)

∥∥∥
L

N
p−1 (Z̄c

η,ε)

∫
W

|∇Tk(ϱ̃(vε))|p dx

+
γ

n

∫
W

|vε|s

|x|p
Tn(ϱ̃(vε)) dx +

1
n

∫
W

f εTn(ϱ̃(vε)) dx.

with Z̄η,ε is the measurable set defined by (3.20).
By choosing η = η (since ϱ̃(vε) is finite a.e. inW), such that

2p−2p′

α
C̃Sp−1

∥c0(x)∥
L

N
p−1 (Z̄c

η̄,ε)
≤

1
2
,

we obtain

1
n

∫
W

|∇Tn(ϱ̃(vε))|p dx ≤
p′C17

nα
+
γp′

nα

∫
W

|vε|s

|x|p
Tn(ϱ̃(vε)) dx +

p′

nα

∫
W

f εTn(ϱ̃(vε)) dx.

Now, we claim that

lim
n→+∞

lim sup
ε→0

p′

nα

∫
W

f εTn(ϱ̃(vε)) dx = 0, (3.28)

and

lim
n→+∞

lim sup
ε→0

γp′

nα

∫
W

|vε|s

|x|p
Tn(ϱ̃(vε)) dx = 0. (3.29)

Once this claim is proved and by using (2.7) , it follows that (3.27) is hold.
For any n ∈N∗ and in view of (3.22) we have

Tn(vε) ⇀ Tn(v), weak-* in L∞(W), (3.30)

which implies, combining with (3.4), that

lim sup
ε→0

1
n

∫
W

f εTn(ϱ̃(vε)) dx =
1
n

∫
W

fTn(ϱ̃(v)) dx.

Moreover, due to (3.16), (3.23) and Fatou Lemma, we can easily get that

meas
{
|ϱ̃(v)| > σ̄η

}
≤ lim inf

ε→0
meas

{
|ϱ̃(vε)| > σ̄η

}
≤

1
ηp ,

thus, it follows that ϱ̃(v) is finite a.e. inW. In addition, the sequence
{
Tn(ϱ̃(v))

n

}
converges to 0 a.e. inW

and bounded by 1. Hence, applying Lebesgue’s dominated convergence theorem leads to (3.28).
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Defining E as a measurable subset ofW containing 0 and such that the meas(E) is small enough, and
according to (3.13) it yields that

∫
E

|vε|s

|x|p
dx ≤

(∫
W

|vε|(1−θ)(p−1) dx
) s

(1−θ)(p−1)
∫

E

dx

|x|
p(1−θ)(p−1)

(1−θ)(p−1)−s


(1−θ)(p−1)−s

(1−θ)(p−1)

,

≤

∥∥∥|vε|(1−θ)(p−1)
∥∥∥ s

(1−θ)(p−1)

L1(W)

∫
E

dx

|x|
p(1−θ)(p−1)

(1−θ)(p−1)−s


(1−θ)(p−1)−s

(1−θ)(p−1)

,

≤ C18

∫
E

dx

|x|
p(1−θ)(p−1)

(1−θ)(p−1)−s


(1−θ)(p−1)−s

(1−θ)(p−1)

.

Then, for every δ > 0 and since s <
p(1 − θ)(p − 1)

p∗
, the absolute continuity of the Lebesgue integral allow

us to conclude that∫
E

dx

|x|
p(1−θ)(p−1)

(1−θ)(p−1)−s


(1−θ)(p−1)−s

(1−θ)(p−1)

≤ δ,

therefore, we get∫
E

|vε|s

|x|p
dx ≤ C18δ,

then, the sequence
{
|vε|s

|x|p

}
is equi-integrable.

This implies, by applying Vitali’s theorem, that

|vε|s

|x|p
→
|v|s

|x|p
strongly in L1(W), (3.31)

and thus (3.29) holds, since the sequence
{
Tn(ϱ̃(v))

n

}
converges to 0 weak-* in L∞(W). As a conclusion the

energy formula (3.27) is proved.
• Fourth step: The a.e. convergence of the sequence ∇vε
The main point of this step is proving the a.e. convergence of ∇vε inW and this is will be done by using

an arguments similar to these used in [8]. Note that, here we use a slightly different techniques due to the

existence of the convection term −div(B(x, v)) and the term of Hardy potential γ
|v|s−1v
|x|p

in our operator.

Lemma 3.6. Assuming vε is a sequence of solutions to the problems (3.8) with f ε strongly converging to some f in
L1(W). Suppose that:

(i) Tk (vε) belongs to W1,p
0 (W) for every k > 0,

(ii) vε converges almost everywhere inW to some measurable function v which is finite almost everywhere and
Tk(v) belongs to W1,p

0 (W) for every k > 0,

(iii) |vε|(1−θ)(p−1) is bounded in L
N

N−p ,∞(W), and |v|(1−θ)(p−1) belongs to L
N

N−p ,∞(W), and
(iv) |∇vε|(1−θ)(p−1) is bounded in L

N
N−1−θ(p−1) ,∞(W), and |∇v|(1−θ)(p−1) belongs to L

N
N−1−θ(p−1) ,∞(W).

Then, up to a subsequence, ∇vε converges almost everywhere inW to ∇v, the weak gradient of v.
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Proof. Let σ > 1 and τ > 1 such that

0 < στ <
N(1 − θ)(p − 1)

p(N − 1 − θ(p − 1))
. (3.32)

Let us consider for any 0 < j < k the sets

Ck = {x ∈ W : |v(x)| ≤ k}, Dε,k, j = {x ∈ W : |vε(x) − Tk(v(x))| ≤ j}.

And we define

I(ε) =
∫
W

{[bε (x, vε,∇vε) − bε(x, vε,∇v)]∇ (vε − v)}σ ,

=

∫
Cc

k

{[bε (x, vε,∇vε) − bε(x, vε,∇v)]∇ (vε − v)}σ +
∫

Ck

{[bε (x, vε,∇vε) − bε(x, vε,∇v)]∇ (vε − v)}σ ,

= I1(ε, k) + I2(ε, k).

By Hölder’s inequality and the growth condition (2.8) we get

I1(ε, k) ≤ C8

∫
Cc

k

1 + |∇vε|σpτ + |∇v|σpτ dx


1
τ

meas{Cc
k}

1− 1
τ ,

We now choose σ and r such that (3.32) is hold, therefore putting together (iv) and the inclusion (2.2) (with
r = N(1−θ)(p−1)

N−1−θ(p−1) and q = σpτ), we deduce that

I1(ε, k) ≤ C8meas{Cc
k}

1− 1
τ .

By (iii), and by the choice of σ , we thus have

lim
k→+∞

lim sup
ε→0

I1(ε, k) = 0. (3.33)

For j fixed, we have

I2(ε, k) ≤
∫
W

{[bε (x, vε,∇vε) − bε(x, vε,∇Tk(v))]∇ (vε − Tk(v))}σ ,

≤

∫
Dc
ε,k, j

{[bε (x, vε,∇vε) − bε(x, vε,∇Tk(v))]∇ (vε − Tk(v))}σ

+

∫
Dε,k, j

{[bε (x, vε,∇vε) − bε(x, vε,∇Tk(v))]∇ (vε − Tk(v))}σ + I3(ε, k) + I4(ε, k),

thanks to (iii), we can affirm that

lim
k→+∞

lim sup
ε→0

meas{Dc
ε,k, j} ≤ lim

k→+∞
meas{|v − Tk(v)| > j} = 0,

thus, reasoning as for I1(ε, k), one has

lim
k→+∞

lim sup
ε→0

I3(ε, k) = 0. (3.34)

For I4(ε, k), one can rewrite it as

I4(ε, k) =
∫
W

{
[bε (x, vε,∇vε) − bε(x, vε,∇Tk(v))]∇T j (vε − Tk(v))

}σ
.
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By the Hölder’s inequality (with exponents 1
σ and 1

1−σ ), we have

I4(ε, k) ≤
(∫
W

[bε (x, vε,∇vε) − bε(x, vε,∇Tk(v))]∇T j (vε − Tk(v)) dx
)σ

meas(W)1−σ.

To control the integral on the right-hand side of the previous inequality, we employ T j(vε −Tk(v)) as the test
function in (3.9). This leads to∫

W

bε(x, vε,∇vε)∇T j(vε − Tk(v)) dx +
∫
W

Bε(x, vε)∇T j(vε − Tk(v)) dx

= γ

∫
W

|T 1
ε
(v)|s−1

T 1
ε
(v)

|x|p + ε
T j(vε − Tk(v)) dx +

∫
W

f εT j(vε − Tk(v)) dx.

After some simple calculations, we derive that∫
W

(bε(x, vε,∇vε) − bε(x, vε,∇Tk(v)))∇T j(Tk(vε) − Tk(v)) dx ≤ jγ
∫
W

|vε|s

|x|p
dx + j

∫
W

| f ε| dx −
∫
W

Bε(x, vε)∇T j(vε − Tk(v)) dx

−

∫
W

aε(x, vε,∇Tk(v))∇T j(Tk(vε) − Tk(v)) dx.

Let us pass to the limit, as j and ε tend to 0, in all the term of the right hand side of the above inequality.
First of all, thanks to the properties of f ε we have

lim
j→0

lim
ε→0

j
∫
W

| f ε| dx = lim
j→0

j
∫
W

| f | dx = 0.

From (3.31), we conclude that

lim
j→0

lim
ε→0

jγ
∫
W

|vε|s

|x|p
dx = lim

j→0
jγ

∫
W

|v|s

|x|p
dx = 0.

Noting that∫
W

Bε(x, vε)∇T j(vε − Tk(v)) dx =
∫
W

Bε(x,T j+k(vε))∇T j(T j+k(vε) − Tk(v)) dx,

therefore, by the growth condition (2.10), we obtain that

|Bε(x,T j+k(vε))| ≤ ( j + k)λc0(x),

moreover, by Lebesgue’s convergence theorem, we get

Bε(x,T j+k(vε))→ B(x,T j+k(v)) strongly in (Lp′ (W))N,

thus, for
1
ε
> j + k, we have

lim
ε→0

∫
W

Bε(x, vε)∇T j(vε − Tk(v)) dx =
∫
W

B(x,T j+k(v))∇T j(T j+k(v) − Tk(v)) dx,

since, for any j ≤ 1, we have∇T j(Tk+ j(v) − Tk(v))→ 0 a.e. as j→ 0
|∇T j(Tk+ j(v) − Tk(v))| ≤ |∇T1(Tk+1(v) − Tk(v))| ∈ Lp(W)
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then, by Lebesgue’s convergence theorem it follows that

lim
j→0

lim
ε→0

∫
W

Bε(x, vε)∇T j(vε − Tk(v)) dx = 0.

Using (2.8) and (3.22), we prove that

bε(x,Tk(vε),∇Tk(v))→ b(x,Tk(v),∇Tk(v)) strongly in (Lp′ (W))N,

putting together the last convergence, (i) and (ii) we arrive that

lim
j→0

lim
ε→0

∫
W

bε(x, vε,∇Tk(v))∇T j(Tk(vε) − Tk(v)) dx = 0.

Hence, we obtain

lim
k→+∞

lim sup
ε→0

I4(ε, k) = 0. (3.35)

Combining (3.33), (3.34) and (3.35), we deduce

lim
ε→0

I(ε) ≤ 0.

Therefore, by (2.9), we deduce that∫
W

{[bε (x, vε,∇vε) − bε(x, vε,∇v)]∇ (vε − v)}σ → 0

that is

∇vε(x)→ ∇v(x) a.e. inW. (3.36)

• Fifth Step : Passing to the limit
In this step we prove that v is a renormalized solutions of (2.6). Observe that, due to (3.14), (3.23) and

Fatou Lemma, we can easily get that

meas
{
|v| > kη

}
≤ lim inf

ε→0
meas

{
|vε| > kη

}
≤

1
ηp ,

thus, v is finite a.e. inW and (2.12) is proved. Moreover, thanks to (3.25), we infer that (2.13) is hold.
Combining proposition 3.2 and lemma 3.6, we get

bε(x, vε,∇vε)→ b(x, v,∇v) a.e. inW,

and under the growth assumption (2.8), we deduce that

bε(x, vε,∇vε) ⇀ b(x, v,∇v) weakly in (Lp′ (W))N,

and for any k > 0, we have

bε(x,Tk(vε),∇Tk(vε)) ⇀ b(x,Tk(v),∇Tk(v)) weakly in (Lp′ (W))N.

Moreover, for any kn ∈ (0, 1
ε )(as in the remark 2.6), we can write

1
n

∫
{|ϱ̃(vε)|≤n}

ϱ(vε)bε(x, vε,∇vε)∇vε dx =
1
n

∫
W

bε(x, vε,∇vε)∇Tn(ϱ̃ (vε)) dx,

=
1
n

∫
W

bε(x,Tkn (vε),∇Tkn (vε))∇Tn(ϱ̃ (vε)) dx,
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thus, from (3.19) and (3.27), it follows that

lim
n→+∞

1
n

∫
W

b(x,Tkn (v),∇Tkn (v))∇Tn(ϱ̃ (v) dx = 0,

which gives (2.14).
Given k > 0 and ∀n ∈N∗, denote by hn, the truncation function defined as

hn(t) = 1 −
|T2n(t) − Tn(t)|

n
, ∀t ∈ R.

Now we claim that (3.9) holds true. Let h ∈ W1,∞(R) such that supp(h) is compact and let φ ∈ D(W). For
any n ∈ N∗ the function hn

(
ϱ̃ (vε)

)
h(ϱ̃(v))φ belongs to W1,p

0 (W) ∩ L∞(W), and then it is an admissible test
function in (3.9). It yields that∫

W

h′n(ϱ̃ (vε))h(ϱ̃(v))φϱ (vε) bε(x, vε,∇vε)∇vε dx +
∫
W

hn
(
ϱ̃ (vε)

)
aε(x, vε,∇vε)∇[h(ϱ̃(v))φ] dx

+

∫
W

Bε(x, vε)ϱ (vε)∇vεh′n(ϱ̃ (vε))h(ϱ̃(v))φ dx +
∫
W

Bε(x, vε)hn
(
ϱ̃ (vε)

)
∇[h(ϱ̃(v))φ] dx

= γ

∫
W

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s−1
T 1

ε
(vε)

|x|p + ε
hn

(
ϱ̃ (vε)

)
h(ϱ̃(v))φ dx +

∫
W

f εhn
(
ϱ̃ (vε)

)
h(ϱ̃(v))φ dx

(3.37)

Let us pass to limit in (3.37) as ε goes to zero and as n goes to +∞.
Recalling the definition of function hn, we have∫

W

h′n(ϱ̃ (vε))h(ϱ̃(v))φϱ (vε) bε(x, vε,∇vε)∇vε dx =
1
n

∫
{n<|ϱ̃(vε)|<2n}

si1n(ϱ̃ (vε))h(ϱ̃(v))φϱ (vε) bε(x, vε,∇vε)∇vε dx,

≤
1
n

∫
{n<|ϱ̃(vε)|<2n}

h(ϱ̃(v))φϱ (vε) bε(x, vε,∇vε)∇vε dx,

the bounded character of the term h(ϱ̃(v))φ and (3.27), allow us to conclude that

lim
n→+∞

lim sup
ε→0

∫
W

h′n(ϱ̃ (vε))h(ϱ̃(v))φϱ (vε) bε(x, vε,∇vε)∇vε dx = 0. (3.38)

Under the growth assumption (2.8) and according to the lemma 3.6, we have

hn
(
ϱ̃ (vε)

)
bε(x, vε,∇vε) ⇀ hn

(
ϱ̃ (v)

)
b(x, v,∇v) weakly in (Lp′ (W))N,

In addition of the fact that the function h(ϱ̃(v))φ is in W1,p
0 (W), we get

lim sup
ε→0

∫
W

hn
(
ϱ̃ (vε)

)
bε(x, vε,∇vε)∇[h(ϱ̃(v))φ] dx =

∫
W

hn
(
ϱ̃ (v)

)
b(x, v,∇v)∇[h(ϱ̃(v))φ] dx,

moreover, we have that

hn
(
ϱ̃ (v)

)
→ 1 a.e. inW,

b(x, v,∇v)∇[h(ϱ̃(v))φ] ∈ L1(W),
∇[h(ϱ̃(v))φ] = φϱ(v)h′(ϱ̃(v))∇v + h(ϱ̃(v))∇φ,

so that, Lebesgue’s convergence theorem allows us to derive that

lim
n→+∞

lim sup
ε→0

∫
W

hn
(
ϱ̃ (vε)

)
bε(x, vε,∇vε)∇[h(ϱ̃(v))φ] dx =

∫
W

b(x, v,∇v)φϱ(v)h′(ϱ̃(v))∇v dx

+

∫
W

b(x, v,∇v)h(ϱ̃(v))∇φ dx,
(3.39)
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by means of the definition of hn, the growth assumption (2.10), Hölder’s, Sobolev’s inequalities and bounded
character of h(ϱ̃(v))φ, we deduce that∫

W

Bε(x, vε)ϱ (vε)∇vεh′n(ϱ̃ (vε))h(ϱ̃(v))φ dx ≤
1
n
∥h∥L∞(R)∥φ∥L∞(W)

∫
{n<|ϱ̃(vε)|<2n}

|Bε(x, vε)||ϱ (vε) ||∇vε| dx,

≤
Cϱ̃
n
∥h∥L∞(R)∥φ∥L∞(W)∥c0(x)∥Lp′ (W)∥∇T2n(ϱ̃(vε))∥Lp(W)

+
Cϱ̃Sp−1

n
∥h∥L∞(R)∥φ∥L∞(W)∥c0(x)∥

L
N

p−1 (W)

∥∥∥∇T2n(ϱ̃(vε))
∥∥∥p

Lp(W)
,

where Cϱ̃ is a positive constant which does not depends on ε.
From the energy formula (3.27), we prove that

lim
n→+∞

lim sup
ε→0

∫
W

Bε(x, vε)ϱ (vε)∇vεh′n(ϱ̃ (vε))h(ϱ̃(v))φ dx = 0. (3.40)

Since supp(hn) = [−2n, 2n], then there exists k2n ∈ (0, 1
ε ) such that∫

W

Bε(x, vε)hn
(
ϱ̃ (vε)

)
∇[h(ϱ̃(v))φ]dx =

∫
W

Bε(x,Tk2n (vε))hn
(
ϱ̃ (vε)

)
∇[h(ϱ̃(v))φ]dx.

As a consequence of (3.16), (3.22) and (3.23) we obtain that

Bε(x,Tk2n (vε))hn(ϱ̃ (vε))→ B(x, v)hn(ϱ̃ (v)) a.e. inW,

and by the growth condition (2.10) we deduce that∣∣∣Bε(x,Tk2n (vε))hn(ϱ̃ (vε))
∣∣∣ ≤ (k2n)λc0(x)∥hn∥L∞(R) ∈ Lp′ (W),

therefore, Lebesgue’s convergence theorem allow us to conclude that

Bε(x,Tk2n (vε))hn(ϱ̃ (vε))→ B(x, v)hn(ϱ̃ (v)) strongly in Lp′ (W),

hence for n large enough such that k2n ≥ supp(h), we have

lim
n→+∞

lim sup
ε→0

∫
W

Bε(x,Tk2n (vε))hn
(
ϱ̃ (vε)

)
∇[h(ϱ̃(v))φ] dx = lim

n→+∞

∫
W

B(x,Tk2n (v))hn
(
ϱ̃ (v)

)
∇[h(ϱ̃(v))φ] dx,

=

∫
W

B(x, v)h(ϱ̃(v))∇φ dx +
∫
W

B(x, v)φϱ(v)h′(ϱ̃(v))∇v dx.

(3.41)

By combining (3.18), (3.22), (3.23) and the fact that hn is bounded by 1, we can apply Lebesgue convergence
theorem to establish that

lim
n→+∞

lim sup
ε→0

γ

∫
W

∣∣∣∣T 1
ε
(vε)

∣∣∣∣s−1
T 1

ε
(vε)

|x|p + ε
hn

(
ϱ̃ (vε)

)
h(ϱ̃(v))φ dx = γ

∫
W

|v|s−1v
|x|p

h(ϱ̃(v))φ dx. (3.42)

At last (3.4), (3.23) and the behavior of the sequence hn together with Lebesgue convergence theorem lead
to

lim
n→+∞

lim sup
ε→0

∫
W

f εhn
(
ϱ̃ (vε)

)
h(ϱ̃(v))φ dx =

∫
W

f h(ϱ̃(v))φ dx (3.43)
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Finally, thanks to (3.38)-(3.43), we deduce that for any h ∈W1,∞(R) with compact support in R, we have∫
W

b(x, v,∇v)ϱ(v)∇vh′(ϱ̃(v))v dx +
∫
W

b(x, v,∇v)∇vh(ϱ̃(v)) dx

+

∫
W

B(x, v)ϱ(v)∇vh′(ϱ̃(v))v dx +
∫
W

B(x, v)∇vh(ϱ̃(v)) dx

= γ

∫
W

|u|s−1u
|x|p

h(ϱ̃(v))v dx +
∫
W

f h(ϱ̃(v))v dx

for every v ∈W1,p
0 (W) ∩ L∞(W).

At least the limit v satisfies (2.12), (2.13), (2.14) and (2.15), which asserts that v is a renormalized solution
of the problem 2.6, then the proof of Theorem 3.1 is now complete.
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[12] Betta, M. F., Guibé, O., Mercaldo, A.: Neumann problems for nonlinear elliptic equations with L1 data. J. Differential Equations,

259(3), (2015), 898–924
[13] Betta, M. F., Mercaldo, A., Murat, F., & Porzio, M. M.: Existence of renormalized solutions to nonlinear elliptic equations with

lower-order terms and right-hand side measure. J. Math. Pures Appl. (9), 81(6), (2002), 533–566
[14] Blanchard, D., Desir, F., Guibe, O.: Quasi-linear degenerate elliptic problems with L1 data. Nonlinear Anal, 60(3), (2005), 557–587
[15] Boccardo, L.: Some Developments on Dirichlet Problems with Discontinuous Coefficients. Bollettino dell’Unione Matematica

Italiana. Serie 9, Vol. 2, n.1, p. (2009), 285–297
[16] Boccardo, L., Orsina, L., Peral, I.: A remark on existence and optimal summability of solutions of elliptic problems involving

Hardy potential. Discrete Contin. Dyn. Syst- A, 16(3), (2006), 513–523



F. Achhoud et al. / Filomat 39:12 (2025), 4137–4159 4159

[17] Boccardo, L., Dall’Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity.
Atti Semin. Mat. Fis. Univ. Modena 46, (1998), 51–81

[18] Boccardo, L., Giachetti, D., Diaz, J. I., Murat, F.: Existence and Regularity of renormalized solutions for Some Elliptic Problems
Involving Derivatives of Nonlinear Terms. J. Differential Equations, 106(2), (1993), 215–237

[19] Chong, K.L., Rice, N.M.: Equimeasurable rearrangements of functions. Queen’s University, 1971
[20] Della Pietra, F.: Existence results for non-uniformly elliptic equations with general growth in the gradient. Differential Integral

Equations. 21 , (2008), 821–836
[21] Garcı́a Azorero, J. P., Peral Alonso, I.: Hardy Inequalities and Some Critical Elliptic and Parabolic Problems. J. Differential

Equations, 144(2) (1998)
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