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Abstract. In this paper, by implanting the classical Gauss-Seidel method into the Fast ADMM method, we
propose the faster accelerated alternating direction method of multipliers (F-AADMM) to solve the convex
optimization problem, and discuss the convergence property and convergence rate of the F-AADMM
method. Numerical experiments are provided to show the performance of the F-AADMM method.

1. Introduction

In this paper, we consider the following convex optimization problem with linear equality constraints:

min f (x) + h
(
y
)

s.t. x + ATy = b,
(1)

where f : Rn
→ R ∪ {∞} and h : Rl

→ R ∪ {∞} are closed convex functions and differentiable with Lipschitz
continuous gradient on their effective domains, A ∈ Rl×n is a given matrix, and b ∈ Rn is a given vector.

For such a separable convex minimization model, ADMM in [8] turns out to be a benchmark solver, which
has been widely used for many applications [3, 7]. The study of the ADMM algorithm and its variants has
been well developed [1, 4, 10, 19], in particular, the convergence property and convergence rate of ADMM
have been provided [6, 7, 11, 12, 15]. ADMM usually gets a low precision solution very quickly, but requires
more iterations to converge to a high precision solution. In some engineering applications, the requirement
for precision is very high, which prompts researchers to think about acceleration methods for ADMM.
With the emergence of Nesterov’s accelerated gradient descent [16], many scholars have successively
improved the convergence speed of the ADMM method. For example, Zhang et al. [20] proposed its
accelerated version on the base of the general minimum residual method (GMRES), Ouyang et al. [18]
investigated an accelerated alternating direction method of multipliers (AADMM) for the acceleration of
the linearized ADMM method, Goldstein et al. [9] studied the Fast ADMM method when the divisible
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objective function are strongly convex, and others. In addition, based on the block symmetric Gauss-Seidel
(sGS) decomposition theorem, Li et al. [13] extended the classical block sGS method to solve the convex
composite quadratic programming (CCQP).

In this paper, to develop the Fast ADMM method, by coupling the Fast ADMM method with the Gauss-
Seidel method, we propose the F-AADMM method for solving the problem (1), and discuss the convergence
property and convergence rate of the F-AADMM method. Numerical examples are provided to illustrate
the performance of the F-AADMM method.

2. Preliminaries

In this section, we will recall some definitions, notations and lemmas. In the whole paper, ∥·∥ denotes
the Euclidean norm.

Definition 2.1. [17] (Conjugate Function) Given a function f : C ⊆ Rn
→ R, its conjugate function is defined as

f ∗(y) = sup
x∈dom f

{〈
x, y
〉
− f (x)

}
.

In particular, f ∗∗ = f when the function f is a closed convex function.

Lemma 2.2. [17] (Fenchel-Young inequality) Let f ∗ be the conjugate function of the function f . Then〈
x, y
〉
≤ f (x) + f ∗(y).

In particular, when the function f is a closed convex function, the following statements hold:
1) if f is differentiable, then

y = ∇ f (x)⇒ x = ∇ f ∗(y);

2) if f is not differentiable, then

y = ∂ f (x)⇒ x = ∂ f ∗(y).

Lemma 2.3. [17] Let f : C ⊆ Rn
→ R be a continuous differentiable function. Then

(
∥∥∥∇ f (x) − ∇ f (y)

∥∥∥ ≤ L f

∥∥∥y − x
∥∥∥)

and

f (y) ≤ f (x) +
〈
∇ f (x), y − x

〉
+

L f

2
||y − x||2, ∀x, y ∈ C.

Definition 2.4. [17] (Proximity operator) Let the function f : C ⊆ Rn
→ R be a closed normal convex function.

Then the proximity operator of the function f is defined as

proxµ f (x) = argmin
y

{
f (y) +

1
2µ
||y − x||2

}
, ∀x ∈ C.

To design the F-AADMM method, we briefly review the Gauss-Seidel method [5, 14].
Let Ax = b, where A ∈ Rn×n is non-singular with its diagonal elements aii , 0 (i = 1, 2, . . . ,n), b ∈ Rn, x is

unknown. Dividing A into the sum of three matrices A = L +D +U, where D is the diagonal matrix, L and
U in order are the lower and upper triangular matrices of A, the Gauss-Seidel method can be designed as

xk+1 = −(D + L)−1Uxk + (D + L)−1b.
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3. The F-AADMM method

In this section, firstly, we propose the F-AADMM method by combing the Gauss-Seidel method and
the Fast ADMM method. Secondly, we discuss the convergence property and convergence rate of the
F-AADMM method.

3.1. Algorithm description

For the problem (1), introducing the lagrange multiplier λ for the constraint x + ATy = b yields the
Lagrangian function

L
(
x, y, λ

)
= f (x) + h

(
y
)
− λT

(
x + ATy − b

)
=
(

f (x) − λTx
)
+
(
h
(
y
)
− λTATy

)
+ λTb,

and the augmented Lagrangian function (ALF) of (1) is given by

L̂
(
x, y, λ

)
= f (x) + h

(
y
)
− λT

(
x + ATy − b

)
+
β

2

∥∥∥x + ATy − b
∥∥∥2 ,

where β > 0 is a penalty parameter. Using the definition of conjugate function, along with the duality
theory, it is easy to know that the dual problem of (1) is

max
λ

ϕ (λ) = − f ∗ (λ) − h∗ (Aλ) + λTb. (2)

Here, we recall the Fast ADMM for problem (1), see Algorithm 3.1.

Algorithm 3.1. Fast ADMM for solving the problem (1)

Input: y−1 = ŷ0 ∈ Rl, λ−1 = λ̂0 ∈ Rn, β > 0, α1 = 1

1. for k = 0, 1, 2, 3, · · · do

2. xk = argmin
x∈Rn

{
f (x) − λ̂T

k x + β2 ||x + AT ŷk − b||2
}
;

3. yk = argmin
y∈Rl

{
h(y) − λ̂T

k (ATy) + β2 ||xk + ATy − b||2
}
;

4. λk = λ̂k − β(xk + ATyk − b);

5. αk+1 =
1+
√

4α2
k+1

2 ;

6. ŷk+1 = yk +
αk−1
αk+1

(yk − yk−1);

7. λ̂k+1 = λk +
αk−1
αk+1

(λk − λk−1);

8. end

To improve the Fast ADMM for solving the problem (1), we consider the following two aspects:
(i) the objective functions are not always strongly convex functions;
(ii) use the Gauss-Seidel method to further accelerate the existing Fast ADMM algorithm.

Based on this, the F-AADMM method can be designed, see Algorithm 3.2.
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Algorithm 3.2. F-AADMM for solving the problem (1)

Input: y−1 = ŷ0 ∈ Rl, λ−1 = λ̂0 ∈ Rn, β > 0, α1 = 1

1. for k = 0, 1, 2, 3, · · · do

2. xk = argmin
x∈Rn

{
f (x) − λ̂T

k x + β2 ||x + AT ŷk − b||2
}
;

3. yk = argmin
y∈Rl

{
h(y) − λ̂T

k (ATy) + β2 ||xk + ATy − b||2
}
;

4. λk = λ̂k − β(xk + ATyk − b);

5. αk+1 =
1+
√

4α2
k+1

2 ;

6. y+k = −(D + L)−1Uyk + (D + L)−1xk;

7. ŷk+1 = y+k +
αk−1
αk+1

(y+k − yk−1);

8. λ̂k+1 = λk +
αk−1
αk+1

(λk − λk−1);

9. end

Comparing the Fast ADMM method for solving the problem (1), the step 6 of F-AADMM algorithm
(i.e., Algorithm 3.2) is critical, which uses the Gauss-Seidel method to further accelerate the above Fast
ADMM algorithm. Unlike [13], we incorporate the Gauss-Seidel iteration into the Fast ADMM algorithm,
and achieve a faster convergence speed, compared with the Fast ADMM method.

For the problem (1), its optimal solutions [2] can be described below

x∗ + ATy∗ − b = 0, (3)
∇ f (x∗) − λ∗ = 0, (4)
∇h(y∗) − Aλ∗ = 0, (5)

where (3) represents the feasibility of the original variable (x∗, y∗), the dual variable λ∗ satisfies the dual
feasibility condition (4) and (5).

For solving the sub-problem about x in the F-AADMM algorithm (i.e., step 2 of Algorithm 3.2) and the
subproblem of y (i.e., step 3 of Algorithm 3.2), together with the optimality conditions, we have

∇ f (xk) − λ̂k + β(xk + AT ŷk − b) = 0, (6)

∇h(yk) − A
[
λ̂k − β(xk + ATyk − b)

]
= 0. (7)

Substituting the step 4 of Algorithm 3.2 into Eqs. (6) and (7), we can get

∇ f (xk) − λk + βAT(ŷk − yk) = 0, (8)
∇h(yk) − Aλk = 0. (9)

One common way to measure how well the iterates of Algorithm 3.2 satisfy the optimality conditions
are to define the primal and dual residuals:

rk = xk + ATyk − b,

dk = βAT(ŷk − yk),

where the primal residual rk and dual residual dk indicate how far the iterates are from a solution.
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Looking carefully at Eqs. (8)-(9) and the optimality conditions (3)-(5) for the problem (1), it is not difficult
to find that there is (xk, yk, λk) satisfying the optimality conditions, when rk = 0 and dk = 0.

In addition, for the classical ADMM, if (x, y, λ) is given in the domain of definition, then the correspond-
ing new iteration point (x′, y′, λ′) can be obtained, i.e.,

x′ = argmin
x∈Rn

{
f (x) − λTx +

β

2

∥∥∥x + ATy − b
∥∥∥2} , (10)

y′ = argmin
y∈Rl

{
h(y) − λT(ATy) +

β

2

∥∥∥x′ + ATy − b
∥∥∥2} , (11)

λ′ = λ − β(x′ + ATy′ − b). (12)

3.2. Convergence analysis

In this subsection, we will discuss the convergence property of the F-AADMM method. In the conver-
gence analysis, we always assume that the conjugate functions f and h are differentiable.

To obtain the convergence property of the F-AADMM method, we require some lemmas.

Lemma 3.3. For any y ∈ Rl, λ ∈ Rn, we have

x′ = ∇ f ∗(λ̄),

ATy′ = AT
∇h∗(Aλ′),

where λ̄ = λ − β(x′ + ATy − b).
Proof. According to the optimality condition of x′ in (10), we have

∇ f (x′) − λ + β(x′ + ATy − b) = ∇ f (x′) − λ̄ = 0,

from which we can get

λ̄ = ∇ f (x′). (13)

By using the differentiability of conjugate functions, Eq. (13) is equivalent to x′ = ∇ f ∗(λ̄).
Similarly, according to the optimality condition of y′ in (11), we can get

∇h(y′) − Aλ + βA(x′ + ATy′ − b) = ∇h(y′) − Aλ′ = 0. (14)

By using the differentiability of conjugate functions again, Eq. (14) is equivalent to ATy′ = AT
∇h∗(Aλ′). ■

Lemma 3.4. Assume that ATy = Φ(λ), L(Φ) is Lipschitz constant. The iterative sequences {λk} and {λ̂k} produced
of Algorithm 3.2 satisfy

ATyk = Φ(λk); AT ŷk = Φ(λ̂k),

and

ϕ(λ′) − ϕ(κ) ≥
1
β
⟨κ − λ, λ − λ′⟩ +

1
2β
∥λ − λ′∥2 , ∀κ ∈ Rn. (15)

Proof. From Lemma 3.3, we have ATyk = Φ(λk) and AT ŷk = Φ(λ̂k).
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Combining the first-order properties of the convex function and Lemma 3.3 yields

ϕ(λ′) − ϕ(κ) = f ∗(κ) − f ∗(λ̄) + f ∗(λ̄) − f ∗(λ′) + h∗(Aκ) − h∗(Aλ′) − ⟨b, κ − λ′⟩

≥
〈
∇ f ∗(λ̄), κ − λ̄

〉
−
〈
∇ f ∗(λ̄), λ′ − λ̄

〉
+
〈
AT
∇h∗(Aλ′), κ − λ′

〉
− ⟨b, κ − λ′⟩

≥
〈
∇ f ∗(λ̄), κ − λ′

〉
−

1
2β
∥λ − λ′∥2 +

〈
AT
∇h∗(Aλ′), κ − λ′

〉
− ⟨b, κ − λ′⟩

=
〈
∇ f ∗(λ̄) + AT

∇h∗(Aλ′), κ − λ′
〉
−

1
2β
∥λ − λ′∥2 − ⟨b, κ − λ′⟩

=
〈
x′ + ATy′ − b, κ − λ′

〉
−

1
2β
∥λ − λ′∥2

=
1
β
⟨λ − λ′, κ − λ′⟩ +

1
2β
∥λ − λ′∥2 , (16)

which completes the proof. ■
For the convenience of the following discussion, let

mk = αkλk − (αk − 1)λk−1 − λ
∗. (17)

Lemma 3.5. Based on (17) and Algorithm 3.2, we have

mk+1 = mk + αk+1(λk+1 − λ̂k+1). (18)

Proof. Combining the definition of mk and the step 8 of Algorithm 3.2, we have that

mk+1 = αk+1λk+1 − (αk+1 − 1)λk − λ
∗

= λk − λ
∗ + αk+1(λk+1 − λk)

= λk − (αk − 1)λk−1 − λ
∗ + αk+1(λk+1 − λk) + (αk − 1)λk−1

= αkλk − (αk − 1)λk−1 − λ
∗ + αk+1(λk+1 − λk) − (αk − 1)(λk − λk−1)

= mk + αk+1(λk+1 − λk) − (αk − 1)(λk − λk−1)

= mk + αk+1(λk+1 − λk) − αk+1(λ̂k+1 − λk)

= mk + αk+1(λk+1 − λ̂k+1),

which completes the proof. ■

Lemma 3.6. The iterative sequence {(αk, λk, λ̂k)} generated by Algorithm 3.2 satisfies

∥mk+1∥
2
− ∥mk∥

2
≤ 2βα2

k

[
ϕ(λ∗) − ϕ(λk)

]
− 2βα2

k+1

[
ϕ(λ∗) − ϕ(λk+1)

]
. (19)

Proof. According to the definition of mk and Lemma 3.5, we can get

∥mk+1∥
2
− ∥mk∥

2

= 2αk+1

〈
mk, λk+1 − λ̂k+1

〉
+ α2

k+1||λk+1 − λ̂k+1||
2

= 2αk+1

〈
αkλk − (αk − 1)λk−1 − λ

∗, λk+1 − λ̂k+1

〉
+ α2

k+1||λk+1 − λ̂k+1||
2

= 2αk+1

〈
(αk − 1)(λk − λk−1) + λk − λ

∗, λk+1 − λ̂k+1

〉
+ α2

k+1||λk+1 − λ̂k+1||
2

(20)
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= 2αk+1

〈
αk+1λ̂k+1 + (1 − αk+1)λk − λ

∗, λk+1 − λ̂k+1

〉
+ α2

k+1||λk+1 − λ̂k+1||
2

= 2αk+1

〈
(αk+1 − 1)(λ̂k+1 − λk) + λ̂k+1 − λ

∗, λk+1 − λ̂k+1

〉
+ α2

k+1||λk+1 − λ̂k+1||
2

= 2αk+1

〈
(αk+1 − 1)(λ̂k+1 − λk) + λ̂k+1 − λ

∗, λk+1 − λ̂k+1

〉
+ [αk+1(αk+1 − 1) + αk+1] ||λk+1 − λ̂k+1||

2

= 2αk+1(αk+1 − 1)
(〈
λ̂k+1 − λk, λk+1 − λ̂k+1

〉
+

1
2
||λk+1 − λ̂k+1||

2
)

+ 2αk+1

(〈
λ̂k+1 − λ

∗, λk+1 − λ̂k+1

〉
+

1
2
||λk+1 − λ̂k+1||

2
)
. (21)

Applying Lemma 3.4 with κ = λk, λ = λ̂k+1, λ′ = λk+1, we have

ϕ(λk+1) − ϕ(λk) ≥
1

2β
||λk+1 − λ̂k+1||

2 +
1
β

〈
λ̂k+1 − λk, λk+1 − λ̂k+1

〉
. (22)

Applying Lemma 3.4 with κ = λ∗, λ = λ̂k+1, λ′ = λk+1 again, we get

ϕ(λk+1) − ϕ(λ∗) ≥
1

2β
||λk+1 − λ̂k+1||

2 +
1
β

〈
λ̂k+1 − λ

∗, λk+1 − λ̂k+1

〉
. (23)

Substituting (22) and (23) into (21) yields

||mk+1||
2
− ||mk||

2

≤ 2αk+1(αk+1 − 1)β
[
ϕ(λk+1) − ϕ(λk)

]
+ 2αk+1β

[
ϕ(λk+1) − ϕ(λ∗)

]
= 2βα2

k+1ϕ(λk+1) − 2βα2
k+1ϕ(λk) + 2βαk+1ϕ(λk) − 2βαk+1ϕ(λ∗)

= 2βα2
k+1ϕ(λk+1) − 2β(α2

k+1 − αk+1)ϕ(λk) − 2β(α2
k+1 − α

2
k)ϕ(λ∗) (24)

= 2βα2
k+1ϕ(λk+1) − 2α2

kβϕ(λk) − 2(α2
k+1 − α

2
k)βϕ(λ∗) (25)

= 2βα2
k

[
ϕ(λ∗) − ϕ(λk)

]
+ 2βα2

k+1

[
ϕ(λk+1) − ϕ(λ∗)

]
,

where Eqs. (24) and (25) are obtained by step 5 in Algorithm 3.2, that is, αk+1 =
1+
√

4α2
k+1

2 or α2
k = α

2
k+1−αk+1.■

Based on Lemmas 3.3-3.6, the convergence of the F-AADMM method can be obtained. Firstly, we can
get the following result.
Theorem 3.5 The iterative sequence {λk} produced by Algorithm 3.2 satisfies

ϕ(λ∗) − ϕ(λk) ≤
2||λ̂1 − λ∗||2

β(k + 1)2 . (26)

Proof. From Lemma 3.6 we have

||mk+1||
2 + 2βα2

k+1

[
ϕ(λ∗) − ϕ(λk+1)

]
≤ ∥mk∥

2 + 2βα2
k

[
ϕ(λ∗) − ϕ(λk)

]
, (27)

which implies
{
∥mk∥

2 + 2βα2
k

[
ϕ(λ∗) − ϕ(λk)

]}
is decreasing. Further, we have

∥mk∥
2 + 2βα2

k

[
ϕ(λ∗) − ϕ(λk)

]
≤ ∥m1∥

2 + 2βα2
1

[
ϕ(λ∗) − ϕ(λ1)

]
.

Making k = 0 in Eq. (23), we have

ϕ(λ1) − ϕ(λ∗) ≥
1

2β
||λ1 − λ̂1||

2 +
1
β

〈
λ̂1 − λ

∗, λ1 − λ̂1

〉
=

1
2β

(
||λ1 − λ

∗
||

2
− ||λ̂1 − λ

∗
||

2
)
.
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Further, inequality (27) can be transformed into

2βα2
k+1

[
ϕ(λ∗) − ϕ(λk+1)

]
≤ ∥mk∥

2
− ∥mk+1∥

2 + 2βα2
k

[
ϕ(λ∗) − ϕ(λk)

]
≤ ∥mk∥

2 + 2βα2
k

[
ϕ(λ∗) − ϕ(λk)

]
≤ · · · · · ·

≤ ∥m1∥
2 + 2βα2

1

[
ϕ(λ∗) − ϕ(λ1)

]
(where α1 = 1)

≤ ∥λ1 − λ
∗
∥

2 + 2β
[
ϕ(λ∗) − ϕ(λ1)

]
≤ ||λ̂1 − λ

∗
||

2.

Since αk > αk−1 +
1
2 > 1 + k

2 , we can easily obtain that

ϕ(λ∗) − ϕ(λk) ≤
2||λ̂1 − λ∗||2

β(k + 1)2 ,

which completes the proof. ■
Theorem 3.6 Algorithm 3.2 produces an iterative sequence, whose primal-dual difference satisfies

∥rk∥
2
≤ O(1/k2), ∥dk∥

2
≤ O(1/k2).

Proof. On the one hand, we apply Lemma 3.4 with λ′ = λ∗, κ = λ = λk, and get

ϕ(λ∗) − ϕ(λk) ≥
1

2β
||λk − λ

∗
||

2.

According to Theorem 3.5, we get

||λk − λ
∗
||

2
≤ 2β

[
ϕ(λ∗) − ϕ(λk)

]
≤

4||λ̂1 − λ∗||2

(k + 1)2 ,

this shows

||λk − λ
∗
||

2
≤ O(1/k2).

Further,

||λk+1 − λk||
2
≤ ||λk+1 − λ

∗
||

2 + ||λ∗ − λk||
2
≤ O(1/k2).

On the other hand, by the definition of ϕ (λ) = − f ∗ (λ) − h∗ (Aλ) − λTb, whose gradient has the Lipschitz
continuity property, we have

ϕ(λ̂k) ≥ ϕ(λ∗) +
〈
∇ϕ(λ∗), λ̂k − λ

∗
〉
−

L
2
||λ̂k − λ

∗
||

2

= ϕ(λ∗) −
L
2
||λ̂k − λ

∗
||

2, (28)

where L is the Lipschitz constant of ∇ϕ.
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From Eq. (28), we have

ϕ(λk+1) − ϕ(λ̂k+1) ≤ ϕ(λk+1) − ϕ(λ∗) +
L
2
||λ̂k+1 − λ

∗
||

2

≤
L
2
||λ̂k+1 − λ

∗
||

2

=
L
2
||λk − λ

∗ +
αk − 1
αk+1

(λk − λk−1)||2

≤
L
2

||λk − λ
∗
||

2 +
(αk − 1)2

α2
k+1

||(λk − λk−1)||2


≤ O(1/k2).

Applying Lemma 3.4 with κ = λ = λ̂k+1, λ′ = λk+1 again, we get

ϕ(λk+1) − ϕ(λ̂k+1) ≥
1

2β
||λk+1 − λ̂k+1||

2

=
1

2β
||β(xk+1 + ATyk+1 − b)||2

=
β

2
||rk+1||

2,

and

||rk+1||
2
≤ O(1/k2).

For the residual dk, using Lemma 3.4, one obtains

||dk||
2 = ||βAT(yk − ŷk)||2

= ||βAT
[
∇h∗(Aλk) − ∇h∗(Aλ̂k)

]
||

2

≤ β2ρ(ATA)L(Φ)||λk − λ̂k||
2

≤ O(1/k2),

which completes the proof. ■

4. Numerical results

In this section, we aim at showing the linear convergence rate of our proposed F-AADMM algorithm
for solving the quadratic program below

min
1
2

xTQx + qTx +
1
2

yTRy + rTy

s.t. Ax + By = b,
(29)

where Q and R are symmetric positive semidefinite matrices in Rn×n and Rm×m, respectively, A ∈ Rl×n and
B ∈ Rl×m are two given matrices, q ∈ Rn, r ∈ Rm, and b ∈ Rl are given vectors, x ∈ Rn and y ∈ Rm. All codes
were written in MATLAB R2021b, and run on a Lenovo PC (Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz)
with 16 GB RAM memory.

Now, we consider the following quadratic program (QP), see Example 4.1 and Example 4.2.
Example 4.1 Given matrix A ∈ Rn×n and vector b ∈ Rn. We consider the problem (1), where f (x) = ∥x∥2,

h(y) =
∥∥∥y∥∥∥2 and n = 1000, i.e.,

min ∥x∥2 +
∥∥∥y∥∥∥2

s.t. x + Ay = b,
(30)
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with

A =
[
ai j

]
=

 2, i = j,
-3,

∣∣∣i − j
∣∣∣ = 1,

and b = (1, 1, . . . , 1, 1)T,

and the ALF of (30) is given by

L̂
(
x, y, λ

)
= ∥x∥2 +

∥∥∥y∥∥∥2 − λT (x + Ay − b
)
+
β

2

∥∥∥x + Ay − b
∥∥∥2 .
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Figure 1: Numerical results of F-AADMM and Fast ADMM for Example 4.1.

In our computations, we set initial value x0 = (0, 0, . . . , 0, 0)T and y0 = (1, 1, . . . , 1, 1)T for L̂
(
x, y, λ

)
,

λ = (1, 0, . . . , 0, 0)T and β = 0.5. The relationship between the number of iterations and the error (the error
is defined as the relative error, i.e., ( f (xk) + h(yk) − ( f (x∗) + h(y∗)))/( f (x∗) + h(y∗)) is shown in Figure 1.

In Figure 1, we compare the performance of the F-AADMM method and the Fast ADMM method in
terms of error and the number of iteration. It is found that the error of the F-AADMM method is significantly
smaller than the Fast ADMM method in the first ten iterations. Further, we find that the error gradually
tends to a stable value with the increase of the number of iteration. In other words, the error of F-AADMM
is more sharper than Fast ADMM.

Example 4.2 Given matrix A ∈ Rn×n, vector e ∈ Rn and vector b ∈ Rn. We consider the problem (1), where

f (x) = ∥x − e∥2, h(y) =
∥∥∥y − 2e

∥∥∥2 and n = 1000, i.e.,

min ∥x − e∥2 +
∥∥∥y − 2e

∥∥∥2
s.t. x + Ay = b,

(31)

with

A =
[
ai j

]
=


2, i = j,
5, i − j = 1,
-1, j − i = 1,

e = (1, 1, . . . , 1, 1)T, b = (1, 1, . . . , 1, 1)T,

and the ALF of (31) is given by

L̂
(
x, y, λ

)
= ∥x − e∥2 +

∥∥∥y − 2e
∥∥∥2 − λT (x + Ay − b

)
+
β

2

∥∥∥x + Ay − b
∥∥∥2 .
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Figure 2: Numerical results of F-AADMM and Fast ADMM for Example 4.2.

In our computations, we set initial value x0 = (0, 0, . . . , 0, 0)T and y0 = (1, 1, . . . , 1, 1)T for L̂
(
x, y, λ

)
,

λ = (1, 0, . . . , 0, 0)T and β = 0.2. The relationship between the number of iterations and the error (the error
is defined as the relative error, i.e., ( f (xk) + h(yk) − ( f (x∗) + h(y∗)))/( f (x∗) + h(y∗)) is shown in Figure 2.

In Figure 2, similar to Example 4.1, we compare the performance of the F-AADMM method and the Fast
ADMM method in terms of error and the number of iteration. It is found that the error gradually tends to
a stable value with the increase of the number of iteration. Further, we find that the calculation error of
our algorithm is significantly smaller than Fast ADMM. In other words, the error of F-AADMM is more
sharper than Fast ADMM. This implies that for Example 4.2 the F-AADMM method achieves the higher
accuracy than the Fast ADMM method. This further shows that our algorithm (F-AADMM) overmatches
the Fast ADMM in a way.

5. Conclusions

In this paper, combining the Fast ADMM algorithm with the Gauss-Seidel method, we propose the
F-AADMM method for solving the problem (1) and discuss the convergence property and convergence
rate of the F-AADMM method. At the same time, the convergence conditions of the proposed method are
given. Numerical examples are provided to illustrate the performance of the F-AADMM method.
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