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Abstract. In [6] Chō and Tanahashi showed new spectral mapping theorem of the Taylor spectrum for
doubly commuting pairs of p-hyponormal operators and log-hyponormal operators. In this paper, we will
show that same spectral mapping theorem holds for commuting n-tuples.

1. Introduction and preparation

Let H be a complex Hilbert space and B(H) be the set of all bounded linear operators on H . For
T ∈ B(H), let σ(T), σp(T) and σa(T) denote the spectrum, the point spectrum and the approximate point
spectrum of T, respectively. Let λ ∈ C belong to the residual spectrum σr(T) of T if there exists c > 0
such that ∥(T − λ)x∥ ≥ c∥x∥ for all x ∈ H and (T − λ)H , H . It is easy to see that if λ ∈ σr(T), then
0 ∈ σp((T − λ)∗). It is well known that σ(T) = σa(T) ∪ σr(T). For an Hermitian operator A ∈ B(H), we denote
A ≥ 0 if (Ax, x) ≥ 0 for every x ∈ H and A ≥ B if A − B ≥ 0. When (Ax, x) > 0 for every non-zero x ∈ H ,
then we denote T > 0. For a given p > 0, T ∈ B(H) is said to be p-hyponormal if (T∗T)p

≥ (TT∗)p. When
p = 1/2, T is said to be semi-hyponormal. It means that T is semi-hyponormal if and only if |T| ≥ |T∗|. T
is said to be log-hyponormal if T is invertible and log |T| ≥ log |T∗|. It is well known that if T is invertible
p-hyponormal for some p > 0, then T is log-hyponormal. IfM is a reducing subspace for a p-hyponormal
or log-hyponormal operator T, then so is T|M, respectively.

For a commuting n-tuple T = (T1, ...,Tn) ∈ B(H)n, we explain the Taylor spectrum σ(T) of T shortly. Let
En be the exterior algebra on n generators, that is, En is the complex algebra with identity e generated by
indeterminates e1, ..., en. Let En

k (H) = H ⊗ En
k . Define Dn

k : En
k (H) −→ En

k−1(H) by

Dn
k (x ⊗ e j1 ∧ · · · ∧ e jk ) :=

k∑
i=1

(−1)i−1T ji x ⊗ e j1 ∧ · · · ∧ ě ji ∧ · · · ∧ e jk ,

where ě ji means deletion. We denote Dn
k by Dk simply. We think Koszul complex E(T) of T as follows:
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tanahasi@tohoku-mpu.ac.jp (Kôtarô Tanahashi)
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E(T) : 0 −→ En
n(H)

Dn
−→ En

n−1(H)
Dn−1
−→ · · ·

D2
−→ En

1(H)
D1
−→ En

0(H) −→ 0.

Since En
k (H) �

(n
k)= n!

(n−k)! k!︷         ︸︸         ︷
H ⊕ · · · ⊕ H (k = 1, ...,n),we set En

k (H) =

(n
k)︷         ︸︸         ︷

H ⊕ · · · ⊕ H (k = 1, ...,n).

Definition 1.1. A commuting n-tuple T = (T1, ...,Tn) ∈ B(H)n is said to be singular if and only if the Koszul
complex E(T) of T is not exact.

Definition 1.2. For a commuting n-tuple T = (T1, ...,Tn) ∈ B(H)n, z = (z1, ..., zn) ∈ Cn belongs to the Taylor
spectrum σT(T) of T if T − z = (T1 − z1, ...,Tn − zn) is singular.

About the definition of the Taylor spectrum, see details J. L. Taylor [9] and [10]. In [7], Curto proved the
following proposition.

Proposition 1.3. (Proposition 3.4, Curto [7]) For a commuting n-tuple T = (T1, ...,Tn) ∈ B(H)n, 0 = (0, ..., 0) <
σT(T) if and only if D∗kDk +Dk+1D∗k+1 is invertible for all k.

For a commuting pair T = (T1, ...,Tn) ∈ B(H)n, it is well known that, for polynomials f1, ..., fm of
n-variables, if f (z1, ..., zn) = ( f1(z1, ..., zn), ..., fm(z1, ..., zn)), then it holds

σT( f (T1, ...,Tn)) = f (σT(T1, ...,Tn)),

where σT(T1, ...,Tn) is the Taylor spectrum of T = (T1, ...,Tn). See Theorem 4.7 in [10].

In the paper [6], Chō and Tanahashi showed another spectral mapping theorem under the following
assumption.

Let T = U|T| ∈ B(H) be the polar decomposition of T with unitary U and f be a continuous function on the
non-negative real line which contains σ(|T|). Let K be Berberian extension of H and ◦ : B(H) ∋ T → T◦ ∈
B(K ) be a faithful ∗-representation. We set the following conditions (1) and (2):

For a sequence {xn} of unit vectors, if (T − z)xn → 0, then (T − z)∗xn → 0. (1)

If a closed subspace M of K reduces T◦ and reiθ
∈ σ(T◦|M), (2)

then M reduces U◦, |T|◦ and e−iθ f (r) ∈ σp
(
(U◦|M f (|T|◦)|M)∗

)
.

Theorem 1.4. Let T = (T1,T2) be a doubly commuting pair of operators and T j = U j|T j| ( j = 1, 2) be the
polar decomposition. Let f (t) be a continuous function on a open interval in the non-negative real line which
contains σ(|T1|) ∪ σ(|T2|). Let S j = U j f (|T j|) ( j = 1, 2) and S = (S1,S2). Let T1,T2 and f satisfy (1) and (2). If
(r1eiθ1 , r2eiθ2 ) ∈ σT(T), then (eiθ1 f (r1), eiθ2 f (r2)) ∈ σT(S).

See the details of Berberian extension [1]. That proof depends on the following Vasilescu’s result.

Let T = (T1,T2) be a commuting pair of operators onH , z = (z1, z2) ∈ C2 and let

α(T − z) :=
(

T1 − z1 T2 − z2
−(T2 − z2)∗ (T1 − z1)∗

)
on H ⊕H .

Then Vasilescu proved the following result.
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Proposition 1.5. (Theorem 1.1, Vasilescu [11]) Let T = (T1,T2) ∈ B(H)2 be a commuting pair. Then

z = (z1, z2) ∈ σT(T) if and only if α(T − z) is not invertible.

Therefore, we have z = (z1, z2) ∈ σT(T) if and only if 0 ∈ σ(α(T − z)).

For an n-tuple T = (T1, ...,Tn), the joint point spectrum σ jp(T) is the set of all numbers z = (z1, ..., zn) ∈ Cn such
that there exists a non-zero vector x ∈ H which satisfies T jx = z jx (∀ j = 1, ...,n) and the joint approximate
point spectrum σ ja(T) is the set of all numbers z = (z1, ..., zn) ∈ Cn such that there exists a sequence {xk} of
unit vectors ofH which satisfies

(T j − z j)xk → 0 as k→∞ (∀ j = 1, ...,n).

Following proposition is due to Berberian [1] for a single operator case. It is easy to see a proof for n-tuples.
See Berberian [1] and Chō [2].

Proposition 1.6. Let B(H) be the set of all bounded linear operators onH . Then there exist an extension spaceK of
H and a faithful ∗-representation of B(H) into B(K ) : T → T◦ such that

σ ja(T) = σ ja(T◦) = σ jp(T◦),

where T = (T1, ...,Tn) ∈ B(H)n and T◦ = (T◦1 , ...,T
◦
n).

Following results are well known.

Proposition 1.7. Let T = U|T| be the polar decomposition of T and f be a continuous function on the non-negative
real line which contains σ(|T|). For a sequence {xn} of unit vectors, if (T − reiθ)xn → 0 and (T − reiθ)∗xn → 0, then
(U − eiθ)xn → 0, (|T| − r)xn → 0 and ( f (|T|) − f (r))xn → 0.

See Lemma 1.2.4 in [13].

Proposition 1.8. Let T be semi-hyponormal. Then σ(T) = {z : z ∈ σa(T∗)}.

See Theorem 1.2.6 in [13].

Remark. If T is p-hyponormal and f (t) = t2p, then (2) holds by Theorem 4 of [3]. If T is log-hyponormal
and f (t) = log t, then (2) holds by Lemma 3 of [8]. About (3), since the mapping ◦ of Berberian method is a
faithful ∗-representation, so is T◦ if T is p-hyponormal or log-hyponormal, respectively. LetM be a reducing
subspace for T. It is clear that if T is p-hyponormal or log-hyponormal, then so is T|M, respectively.
(i) Let T be p-hyponormal and T = U|T| be the polar decomposition of T and f (t) = t2p. Then S = U|T|2p is
semi-hyponormal and σ(U|T|2p) = {r2peiθ : reiθ

∈ σ(T) } by Theorem 3 of [4]. Hence (3) holds by Proposition
1.8.
(ii) Let T = U|T| be log-hyponormal and f (t) = log t. Then S = U log |T| is semi-hyponormal and
σ(U log |T|) = {eiθ log r : reiθ

∈ σ(T) } by Lemma 8 of [8]. Hence (3) holds by Proposition 1.8.
Therefore, if T is p-hyponormal or log-hyponormal and f (t) = t2p or f (t) = log t, respectively, then T satisfies
(2) and (3) for this f .

In this paper, we would like to prove the following theorem.

Theorem 1.9. Let T = (T1, ...,Tn) be a doubly commuting n-tuple of operators and T j = U j|T j| ( j = 1, ...,n) be
the polar decompositions. Let f (t) be a continuous function on a open interval in the non-negative real line which
contains σ(|T1|) ∪ · · · ∪ σ(|Tn|). Let S j = U j f (|T j|) ( j = 1, ...,n) and S = (S1, ...,Sn). Let T1, ...,Tn and f satisfy (1)
and (2). If (r1eiθ1 , ..., rneiθn ) ∈ σT(T), then (eiθ1 f (r1), ..., eiθn f (rn)) ∈ σT(S).
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2. Proof of the theorem

First we need the following lemma.

Lemma 2.1. Let T = (T1, ...,Tn) be a doubly commuting n-tuple of operators and T j has property (1) for j = 1, ...,n.
Let {Dk} be the chain complex of n-tuple T = (T1, ...,Tn). If there exists some k ∈ {1, 2, · · · ,n − 1} and unit vectors
xm = ⊕

r
j=1x j

m ∈ En
k (H) where r =

(n
k
)
, such that (D∗kDk + Dk+1D∗k+1)xm → 0 as m → ∞, then there exists

s ∈ {1, 2, · · · , r} such that {xs
m} is a bounded below sequence of non-zero vectors ofH satisfying T∗jx

s
m → 0 as m→∞

for j = 1, · · · ,n. Thus, by taking unit vector ym =
xs

m

∥xs
m∥
∈ H , we have T∗j ym → 0 as m→∞ for j = 1, · · · ,n.

Proof. We show it by the mathematical induction.
(1) Let n = 2. Then the chain complex of doubly commuting pair T = (T1,T2) is

0 −→ H
D2
−→ H ⊕H

D1
−→ H −→ 0.

By the definition of the Koszul complex we have

D2 =

(
−T2
T1

)
and D1 =

(
T1 T2

)
.

Since T1,T2 are doubly commuting, we have

D∗1D1 +D2D∗2 =
(

T∗1T1 + T2T∗2 0
0 T1T∗1 + T∗2T2

)
.

Let xm = x1
m ⊕ x2

m ∈ E2
1(H) � H ⊕H be unit vectors and

(D∗1D1 +D2D∗2)xm =

(
T∗1T1 + T2T∗2 0

0 T1T∗1 + T∗2T2

) (
x1

m
x2

m

)
=

(
(T∗1T1 + T2T∗2)x1

m
(T1T∗1 + T∗2T2)x2

m

)
→ 0 as m→∞.

Since ∥x1
m∥

2 + ∥x2
m∥

2 = 1 for all m, we may assume (i) x1
m ↛ 0 or (ii) x2

m ↛ 0.
We assume (i). By taking subsequence, we may asume that there exists 0 < c that that 0 < c < ∥x1

m∥ ≤ 1
for all m, i.e., bounded below. Then (T∗1T1 +T2T∗2)x1

m → 0 implies T1x1
m,T∗2x1

m → 0 and T∗1x1
m → 0 by (1). Case

(ii) is similar. Hence the statement holds for n = 2.

(2) We assume that the statement holds for (n − 1)-tuples of doubly commuting operators. Asuume
(D∗kDk +Dk+1D∗k+1)xm → 0 as m→∞ for unit vectors xm ∈ En

k (H).
Let {Fk} be the chain complex of (n − 1)-tuple T′ = (T1, ...,Tn−1) and xm = ym ⊕ zm ∈ En−1

k (H) ⊕ En−1
k−1 (H) =

En
k (H). By Curto’s characterization (see p.132, Curto [7]) it holds Dk =

(
Fk (−1)k+1diag(Tn)
0 Fk−1

)
. Hence

(D∗kDk +Dk+1D∗k+1)xm =


(
F∗kFk + Fk+1F∗k+1 + diag(TnT∗n)

)
ym(

F∗k−1Fk−1 + FkF∗k + diag(T∗nTn)
)

zm

→ 0.

Since ∥ym∥
2 + ∥zm∥

2 = 1 for all m, we may assume (i) ym ↛ 0 or (ii) zm ↛ 0.
We assume (i).
Then

(
F∗kFk + Fk+1F∗k+1 + diag(TnT∗n)

)
ym → 0 implies

(
F∗kFk + Fk+1F∗k+1

)
ym → 0 and

(
diag(TnT∗n)

)
ym → 0.

By taking subsequence, we may asume that there exists 0 < c that that 0 < c < ∥ym∥ ≤ 1 for all m.
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Let vm =
ym

∥ym∥
. Then vm are unit vectors and

(
F∗kFk + Fk+1F∗k+1

)
vm → 0 and

(
diag(TnT∗n)

)
vm → 0. Let

vm = ⊕
(n−1

k )
s=1 vs

m ∈ En−1
k (H). Then there exist s ∈

{
1, 2, · · · ,

(n−1
k
)}

such that vs
m ∈ H is a bounded below sequence

of non-zero vectors and T∗jv
s
m → 0 for j = 1, 2, · · · ,n − 1 and T∗nvs

m → 0 as m→∞.
Case (ii) is similar. Hence the statement holds for n. It completes the proof.

Theorem 2.2. Let T = (T1, ...,Tn) be a doubly commuting n-tuple of operators which satisfy that every T j ( j = 1, ...,n)
has property (1). If z = (z1, ..., zn) ∈ σT(T), then there exists unit vectors ym ∈ H such that (T j − z j)∗ym → 0 as
m→∞, that is, z = (z1, ..., zn) ∈ σ ja(T∗), where T∗ = (T∗1, ...,T

∗
n).

Proof. Since z = (z1, ..., zn) ∈ σT(T), by the spectral mapping theorem of the Taylor spectrum, it holds

0 = (0, ..., 0) ∈ σT(T − z),

where T − z = (T1 − z1, ...,Tn − zn). Since T − z is a doubly commuting n-tuple of operators which satisfy
that every T j − z j ( j = 1, ...,n) has property (1) and the Koszul complex E(T − z) of n-tuple T − z =
(T1 − z1, ...,Tn − zn) is not exact. Hence there exists k such that (D∗kDk + Dk+1D∗k+1) is not invertible. Since
the operator D∗kDk +Dk+1D∗k+1 is positive on the space En

k (H), there exists a sequence {xm} of unit vectors of
En

k (H) such that
(
D∗kDk + Dk+1D∗k+1

)
xm → 0 as m → ∞. Hence, by Lemma 2.1 there exists a sequence {ym}

of unit vectors ofH such that

(T j − z j)∗ym → 0 as m → ∞ for all j = 1, ...,n.

It’s completes the proof.

Proof of Theorem 1.9.
(1) If n = 2, theorem holds by Theorem 2.3 of [6].
(2) We assume that the statment holds for (n− 1)-tuple. Since (r1eiθ1 , ..., rneiθn ) ∈ σT(T), by Theorem 2.2 there
exists a sequence {xm} of unit vectors of H such that (T j − r jeiθ j )∗xm → 0 as m → ∞ for all j = 1, ...,n.
Consider the Berberian extensionK ofH . Then there exists 0 , x◦ ∈ K such that

(T◦j − r jeiθ j )∗x◦ = 0 for all j = 1, ...,n.

Let M = ker(T◦n − rneiθn )∗. Then M(, {0}) is a reducing subspace for T◦1 , ...,T
◦

n−1 and (r1eiθ1 , ..., rn−1eiθn−1 ) ∈
σT(T◦′

|M
), where T◦′

|M
= (T◦1|M, ...,T

◦

n−1|M). By the induction there exists a non-zero vector y◦ ∈ M such that

(S◦j − eiθ j f (r j))∗y◦ = 0 for all j = 1, ...,n − 1.

Let N =
n−1⋂
j=1

ker(S◦j − eiθ j f (r j))∗. Then N is a reducing subspace for T◦n. Let R = M
⋂
N , {0}. Hence

rneiθn ∈ σ(T◦n|R). By property (2) there exists a non-zero vector z◦ ∈ R such that (S◦n|R − eiθn f (rn))∗z◦ = 0. Since
this z◦ satisfies (S◦j|R − eiθ j f (r j))∗z◦ = 0 for all j = 1, ...,n − 1, we have (eiθ1 f (r1), ..., eiθn f (rn)) ∈ σT(S). This
completes the proof.

□

Corollary 2.3. Let T = (T1, ...,Tn) be a doubly commuting n-tuple of p-hyponormal operators (0 < p < 1). Let U j

be unitary for the polar decomposition of T j = U j|T j| ( j = 1, ...,n) and S =
(
U1|T1|

2p, ...,Un|Tn|
2p
)
. Then

σT(S) = {(r2p
1 eiθ1 , ..., r2p

n eiθn ) : (r1eiθ1 , ..., rneiθn ) ∈ σT(T) }.
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Proof. Let f (t) = t2p on the non-negative real line. Since T is a doubly commuting n-tuple of p-hyponormal
operators and f (t) = t2p, T1, ...,Tn and f satisfy (2) and (3). Hence, by Theorem 1.9 we have

σT(S) ⊃ {(r2p
1 eiθ1 , ..., r2p

n eiθn ) : (r1eiθ1 , ..., rneiθn ) ∈ σT(T) }.

Conversely, put 1(t) = t
1
2p on the non-negative real line. Since S is a doubly commuting pair of semi-

hyponormal operators, S1,S2 and 1 satisfy (2) and (3). Then we have the converse inclusion by Theorem
1.9 and similar argument.

Corollary 2.4. Let T = (T1, ...,Tn) be a doubly commuting n-tuple of log-hyponormal operators with log |T j| > 0.
Let U j be unitary for the polar decomposition of T j = U j|T j| ( j = 1, ...,n) and S =

(
U1 log |T1|, ...,Un log |Tn|

)
. Then

σT(S) = {eiθ1 log r1, ..., eiθn log rn) : (r1eiθ1 , ..., rneiθn ) ∈ σT(T) }.

Proof. Let f (t) = log t on (0,∞). Since T is a doubly commuting n-tuple of log-hyponormal operators and
f (t) = log t, T1, ...,Tn and f satisfy (2) and (3). So by Theorem 1.9 we have

σT(S) ⊃ {eiθ1 log r1, ..., eiθn log rn) : (r1eiθ1 , ..., rneiθn ) ∈ σT(T) }.

Conversely, let 1(t) = et on the non-negative real line. Since S is a doubly commuting n-tuple of semi-
hyponormal operators, S1, ...,Sn and 1 satisfy (2) and (3). Hence, we have the converse inclusion by similar
argument.
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