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Abstract. This work discusses some classic generalizations of points with countable character, namely W,
w, W̃ and q-points, under the framework of selection principles introduced by Scheepers [12]. The influence
of Gδ points is also analysed.

Introduction

First countable spaces and their many generalizations have a long history in General Topology. Among
the many properties introduced to extend these spaces, some of them can be regarded as selective properties
related to limit points or convergent sequences. In this work we will explore some of these properties within
the framework of selection principles, as defined by Scheepers [12], which we briefly recall below.

Given families A and B of subsets of a fixed infinite set, we use the notation S1(A,B) to express that
for every sequence (An)n∈ω of members of A, there exists a set {bn : n ∈ ω} ∈ B where bn ∈ An for all n.
The game associated with S1(A,B) is denoted by G1(A,B), which consists of a two-person infinite game,
played as follows: at the first inning Player I begins by choosing an element A0 ∈ A and Player II answers
with an element b0 ∈ A0; at the next inning Player I chooses an element A1 ∈ A and Player II answers with
an element b1 ∈ A1, and so on; Player II wins a play of this game if the set {bn : n ∈ ω} belongs to B.

A strategy for a player is a function that determines how that player shall answer to her opponent based
on all their previous choices. We say a strategy for a player is winning if there is no way for the opponent
to defeat it in any legal play according to the strategy. We use the notation I ↑ G1(A,B) to abbreviate the
assertion “Player I has a winning strategy”, and its negation is denoted by I ̸↑ G1(A,B). Similar notations
are adopted regarding Player II. In general, the following implications hold:

¬S1(A,B)⇒ I ↑ G1(A,B)⇒ II ̸↑ G1(A,B). (1)

The reader interested in a more comprehensive discussion about selection principles can refer to [2].
Here, we will use the notions mentioned above, as well as some natural variations, to analyze q-spaces,
W-spaces, W̃-spaces, and w̃-spaces under the unifying framework of selection principles.
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This work is organized as follows. In the first section, we recall the definitions of the aforementioned
spaces and discuss them in the context of selection principles. Sections 2 and 3 deal with the natural
variations of q-points and W̃-points, respectively, while in the last section we discuss related problems and
possible directions of further investigation.

Remark 0.1. Along this work, (X, τ) stands for an infinite T1 space. Also:

τ∗ = τ \ {∅},

τx = {A ∈ τ : x ∈ A},

Ωx =
{
A ⊆ X : x ∈ A \ {x}

}
,

Γx = {A ∈ Ωx : ∀V ∈ τx |A \ V| < ℵ0}, and
¬A = {A ⊆ X : A < A} for every familyA of subsets of X.

It is straightforward to check that a sequence (xn)n∈ω with infinite image converges to x if and only if its image
{xn : n ∈ ω} belongs to Γx. This will be important later.

1. S1/G1 variations

1.1. W and w-points
In [5], Gruenhage introduced the notions of W-spaces and w-spaces as a way to generalize first countable

spaces while maintaining connections with other common generalizations, such as Fréchet-Urysohn spaces
and bisequential spaces. Using the terminology presented in the Introduction, Gruenhage’s definitions can
be translated as follows.

Definition 1.1. A point x of a topological space is a W-point if I ↑ G1(τx,¬Γx). A point x is a w-point if
II ̸ ↑G1(τx,¬Γx). The space is called a W-space if each of its points is a W-point. w-spaces are defined similarly.

A typical advantage of the selection principle framework is that, when we place a property within the
sequence of implications

¬S1(A,B)⇒ I ↑ G1(A,B)⇒ II ̸↑ G1(A,B),

it naturally suggests variations corresponding to the other principles in the chain, creating a comprehensive
exploration of related properties.

In the present case, the remaining spot corresponds to the negation of the selection principle S1(A,B),
which suggests one to take points satisfying ¬S1(τx,¬Γx) as a stronger version of W-points. Such a point
could be referred as strong W-point. However, in this particular case, they happen to be precisely the first
countable points. We emphasize this in the next proposition for ease of future references.

Proposition 1.2. A point x has a countable local basis if and only if S1(τx,¬Γx) does not hold.

Proof. Left to the reader.

1.2. W̃-points and their variations
In the more recent work of Doležal and Moors [3], W-spaces are generalized with an adaptation of

the previous game, denoted by G̃(x): first, instead of choosing open sets containing x, Player I may pick
any nonempty open set, while Player II follows the previous rules; the second difference is the winning
condition for Player I, which in this game just asks for the sequence of points selected by Player II to have x
as an accumulation point. Then, the point x is said to be a W̃-point if Player I has a winning strategy in this
game, and X is a W̃-space if every point is a W̃-point.

The game G̃(x) can be replaced by G1(τ∗,¬Ωx) if x is non-isolated, but this does not hold in general.
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Example 1.3. Isolated points are clearly W̃-points. However, if X is a discrete space (therefore, a W̃-space), then
¬Ωp = ℘(X) for every p ∈ X, thus implying that Player I does not have a winning strategy in the game G1(τ∗,¬Ωp).

A simple way to overcome this technical limitation is to adapt Scheepers’ definitions. Instead of S1(A,B)
and G1(A,B), we consider the following:

• (S1)(A,B) express that for every sequence (An)n∈ω of members ofA, there exists a sequence (bn)n∈ω in
B such that bn ∈ An for every n ∈ ω;

• the game (G1)(A,B) is played like G1(A,B), except for the winning condition, which asks for the
sequence of answers of Player II to be a member of the set B.

As before, it follows easily that

¬(S1)(A,B)⇒ I ↑ (G1)(A,B)⇒ II ̸↑ (G1)(A,B). (2)

Under this adapted setting, let Lx be the collection of all sequences accumulating at the point x. Now, by
taking¬Lx to be the set of all other sequences in X, it follows that x is a W̃-point if and only if I ↑ (G1)(τ∗,¬Lx).
The corresponding position of the W̃ property in the above chain of implications suggests the following.

Definition 1.4. Let x be a point of a topological space.

(i) We say x is a w̃-point if II ̸↑ (G1)(τ∗,¬Lx).
(ii) We say x is a strong W̃-point if (S1)(τ∗,¬Lx) does not hold.

w̃-spaces and strong W̃-spaces are defined accordingly.

So, strong W̃-points are W̃-points, which are w̃-points. Since τx ⊆ τ∗ and every sequence converging to
x belongs to Lx, it follows that

¬S1(τx,¬Γx)⇒¬(S1)(τ∗,¬Lx) (3)
I ↑ G1(τx,¬Γx)⇒ I ↑ (G1)(τ∗,¬Lx) (4)

II ̸ ↑ G1(τx,¬Γx)⇒ II ̸ ↑ (G1)(τ∗,¬Lx) (5)

where (4) and (5) can be respectively interpreted as “every W-point is a W̃-point”1) and “every w-point is
a w̃-point”. Finally, (3) simply states that points with countable character are strong W̃-points. This is no
coincidence, as W̃-points are precisely the points with countable π-character, just as in Proposition 1.2.

In the article [3], the authors establish that βω is a W̃-space by providing a countable dense set D of
W̃-points, namely, D = ω, which is sufficient because then every point in D = βω is a W̃-point (cf. [3,
Lemma 3]). By the previous discussion, it would be enough to observe that βω has countable π-character.
It happens that βω also works as counterexample to another implication.

Example 1.5. There are w̃-points which are not w-points.

Proof. Indeed, no point x in βω \ ω can be a w-point, as Player II has a winning strategy in the game
G1(τx,¬Γx). To verify this claim, take a choice function f : {A ∈ τ∗ : x < A} → X and define the following
strategy: if An is the open set picked by Player I at the n-th inning of play in G1(τx,¬Γx), let the answer
of Player II be f (An \ {x, a0, . . . , an−1}), where a0, . . . , an−1 are the previous choices of Player II. In this way,
Player II selects an injective sequence (an)n, which in turns cannot converge in βω.

1)As already indicated in [3].
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In [5], Gruenhage poses the question whether every w-space is a W-space. Similarly, we do not know
whether every w̃-point is a W̃-space. Certainly, a possible counterexample cannot be a W-space, what
suggests one to check for known spaces lacking this property but verifying the w̃-condition. In this task,
the following proposition could be helpful.

Proposition 1.6. If σ is a winning strategy for Player I in the game (G1)(τ∗,¬Lx), then the image of σ is a π-base for
the point x.

Proof. The argument is similar to the proof of Theorem 3.3 in [5]. Let Im(σ) denote the image of σ, and
suppose that it does not form a π-base for the point x. In such a case, there exists an open set U ∈ τx such
that every V ∈ Im(σ) satisfies V ⊈ U, which gives a way for Player II to win a play. Indeed, Player II can
simply choose points not belonging to U. If (yn)n∈ω is the sequence of the choices made by Player II in this
manner, then x is not an accumulation point of (yn)n∈ω, since yn < U for every n ∈ ω. This defines a winning
strategy for Player II.

II ̸ ↑G1(τx,¬Γx) w-point w̃-point II ̸ ↑ (G1)(τ∗,¬Lx)

I ↑ G1(τx,¬Γx) W-point W̃-point I ↑ (G1)(τ∗,¬Lx)

¬S1(τx,¬Γx) strong W-point strong W̃-point ¬(S1)(τ∗,¬Lx)

χ = ω πχ = ω

βω (Ex. 1.5)
p

?

βω [3]
p

Figure 1: A summary of the relations between W-w and W̃-w̃ points

1.3. q-points and their variations

According to Michael [8, 9], a point x of a topological space X is a q-point if it has a sequence of
neighborhoods (Vn)n∈ω such that any sequence (xn)n∈ω satisfying xn ∈ Vn for all n accumulates at some point
of X, possibly distinct from x. The space is referred to as a q-space if every point in the space is a q-point.

By calling AS the collection of sequences of X having accumulation points, it follows that x is a q-point
if and only if (S1)(τx,¬AS) does not hold. Therefore, the chain of implications (2) suggests two natural
weakenings of q-points, defined below.

Definition 1.7. Let x be a point of a topological space.

(i) We say x is a weak q-point if I ↑ (G1)(τx,¬AS).
(ii) We say x is a soft q-point if II ̸ ↑ (G1)(τx,¬AS).

Weak q-spaces and soft q-spaces are defined accordingly.

Clearly, first countable spaces and (locally) countably compact spaces are q-spaces and therefore also
satisfy both the conditions above.

Problem 1.8. Are there weak q-points which are not q-points?
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In the next section we shall see how another weakening of first countability, namely the Gδ-point
condition2), can be used to relate q-points with W̃-points and their selective variations.

2. The influence of Gδ-points

We begin this section by drawing attention to the following: the open sets played by Player I in the
game (G1)(τx,¬AS) satisfy the conditions of the game (G1)(τ∗,¬Lx). However, the winning condition for
Player I in the first game requires that the points chosen by Player II accumulates at some point, while the
winning conditions for Player I in the second game explicitly imposes x to be the accumulation point. We
shall see that if x is a Gδ-point, then we may force the choices of Player II to accumulate at x.

Remark 2.1. If the answer to Problem 1.8 turns out to be “no”, then the next result would follow from the fact the
Gδ-q-points have countable basis. However, in the absence of answers, this is the best we got so far.

Theorem 2.2. Let X be a regular space such that x ∈ X is a Gδ-point. If I ↑ (G1)(τx,¬AS), then I ↑ (G1)(τ∗,¬Lx),
i.e., Gδ weak q-points are W̃-points.

Proof. First of all, note that we may assume x is not isolated; otherwise, x is a W̃-point regardless of the
hypotheses. Let σ be a winning strategy for Player I in (G1)(τx,¬AS) and let {Un}n∈ω be a countable family of
open sets such that

⋂
n∈ωUn = {x}. We shall obtain a winning strategy for Player I in the game (G1)(τ∗,¬Lx)

in the following way.
Player I starts with V0 = σ(∅) ∩ U0, to which Player II responds by picking a point x0 ∈ V0. Since X is

regular, there is an open set A1 ∈ τx such that x ∈ A1 ⊂ A1 ⊂ V0 with x0 < A1. At the next inning, Player
I chooses V1 = σ(x0) ∩ A1 ∩ U1, to which Player II replies with a point x1 ∈ V1, and again we may take an
open set A2 ∈ τx with x ∈ A2 ⊂ A2 ⊂ V1 and x1 < A2.

At the n-th inning, the regularity of X allows us to take an open set An such that x ∈ An ⊂ An ⊂ Vn−1 with
xn−1 < An. So, following the previous pattern, Player I chooses Vn = σ(x0, ..., xn−1) ∩ An ∩Un. This describe
a strategy for Player I in the game (G1)(τ∗,¬Lx).

Now, let P = (V0, x0,V1, x1, . . . ) be a play in this game accordingly to the strategy described above.
Notice that:

•
⋂

n∈ω Vn = {x} and for every n ∈ ω we have Vn+1 ⊂ Vn, since Vn+1 = σ(x0, . . . , xn) ∩ An+1 ∩ Un+1 ⊂

An+1 ⊂ Vn;

• for every n ∈ ω we have xn ∈ Vn \ An with xk < Vn \ An for all k > n; since X is a T1 space, it follows
that xn is not an accumulation point of the sequence.

By the way Player I chooses their open sets, the points selected by Player II are pairwise distinct, so the
sequence ((Vn, xn))n∈ω is a valid play in the game (G1)(τx,¬AS). Since σ is a winning strategy for Player I in
the later game, it follows that (xn)n∈ω accumulates in X, and the remarks above guarantee that the point has
to be x. Indeed, for y ∈ X such that y < {xn : n ∈ ω} ∪ {x}, there exists k ∈ ω such that y < Vk, implying that
X \Vk is an open set containing y but only finitely many points of the sequence. Thus the sequence (xn)n∈ω
can only accumulate at x.

With a similar reasoning, it is not hard to see that Gδ q-points have countable character, in which case
they are trivially W̃-points. Thus, the previous proposition suggests one to ask for Gδ weak q-points without
countable character.

2)Recall that a point x in X is a Gδ-point if there is a countable family G of open sets such that {x} =
⋂
G.
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Example 2.3. Without the Gδ-point assumption, the previous proposition may fail in general. For instance, in
X = [0, ω1] with the order topology, ω1 is a q-point. On the other hand, Player II does have a winning strategy in the
game (G1)(τ∗,¬Lω1 ): just set Player II to pick points distinct from ω1, say αn in the n-th turn, since in this way the
sequence (αn)n cannot accumulate at ω1.

The pattern becomes complete once we show that with the Gδ-point assumption, II ̸ ↑ (G1)(τx,¬AS) also
implies II ̸ ↑ (G1)(τ∗,¬Lx).

Proposition 2.4. Let X be a regular space with a Gδ-point x. If II ̸ ↑ (G1)(τx,¬AS), then II ̸ ↑ (G1)(τ∗,¬Lx), i.e.,
every soft q-point is a w̃-point.

Proof. Let µ be a strategy for Player II in the game (G1)(τ∗,¬Lx). Since µ knows how to answer to every
nonempty open set of X, we can use it to define a strategy for Player II in the game (G1)(τx,¬AS), where
the hypothesis shall give a play in which Player II loses, meaning that the points selected along the innings
accumulate at some point. The Gδ condition will guarantee that this point is x. Let {Un}n∈ω be a countable
family of open sets such that {x} =

⋂
n∈ωUn.

If Player I starts with V0 ∈ τx, let Player II responds with x0 = µ(V0 ∩ U0). In the next inning, if Player
I chooses an open set V1 ∈ τx, the regularity of X gives an open set A0 ∈ τx such that A0 ⊆ V0 and x0 < A0,
which we use to define x1 as µ(V0 ∩U0,V1 ∩A0 ∩U1). Proceeding like this, we obtain a strategy for Player
II in the game (G1)(τx,¬AS). Similarly as in the previous propositions, a play in this game lost by Player II
induces a sequence which accumulates at x, since Player I can play Vn+1 ∩ An ∩ Un+1, showing that µ is a
not a winning strategy.

3. Duality and countable strong fan tightness

Recall that a topological space has countable strong fan tightness at a point x ∈ X [11] if S1(Ωx,Ωx)
holds. Since every point with a countable local basis fulfills S1(Ωx,Ωx), this property can be viewed as an
intermediate property between first countability and countable tightness.

Following the terminology of [1] we say that two games G and G′ are dual if

• Player I has a winning strategy in G if and only if Player II has a winning strategy in G′; and

• Player II has a winning strategy in G if and only if Player I has a winning strategy in G′.

Theorem 3.1. The games G1(Ωx,
⋃

p∈XΩp) and (G1)(τx,¬AS) are dual.

Proof. Let us first analyze how a winning strategy for Player I in one of the games yields a winning strategy
for Player II in the other game.

(i) I ↑ (G1)(τx,¬AS)⇒ II ↑ G1(Ωx,
⋃

p∈XΩp).

Let σ be a winning strategy for Player I in the game (G1)(τx,¬AS). Since the choices of Player I in the
game G1(Ωx,

⋃
p∈XΩp) intercept every open set in τx, one can readily define a winning strategy for Player II

in this game by choosing points in the open sets selected by σ. The details are left to the reader.

(ii) I ↑ G1(Ωx,
⋃

p∈XΩp)⇒ II ↑ (G1)(τx,¬AS).

Let ρ be a winning strategy for Player I in the game G1(Ωx,
⋃

p∈XΩp). If A0 ∈ τx is the first move of Player
I in the game (G1)(τx,¬AS), then Player II may select a point x0 belonging to ρ(∅) ∩ A0 \ {x} since ρ(∅) ∈ Ωx.
If Player I responds with A1 ∈ τx, then again Player II may select x1 ∈ ρ(x0) ∩ (A1 \ {x, x0}), and so on. Since
the strategy ρ is winning, it follows that by the end of a play (A0, x0,A1, x1, . . . ) we have {xn : n ∈ ω} < Ωp
for all p ∈ X with all xn being different, implying (xn)n ∈ ¬AS.

Now we shall see how winning strategies for Player II in one of the games give winning strategies for
Player I in the other game.
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(iii) II ↑ (G1)(τx,¬AS)⇒ I ↑ G1(Ωx,
⋃

p∈XΩp).

Let σ be a winning strategy for the Player II in the game (G1)(τx,¬AS). Since x is not isolated, there is
no loss of generality in assuming x < Im(σ). We first show that {σ(V) : V ∈ τx} ∈ Ωx. If this is not the case,
then there is U ∈ τx such that U ∩ {σ(V) : V ∈ τx} = ∅, which is absurd since σ(U) ∈ U. A similar argument
shows that {σ(V0, ...,Vn,V) : V ∈ τx} ∈ Ωx for every V0, ...,Vn ∈ τx. Thus Player I may use the strategy σ to
choose subsets in Ωx while keeping track of a valid play in the game G1(Ωx,

⋃
p∈XΩp): Player I starts with

A0 = {σ(V) : V ∈ τx}, then responds to a Player II’s choice, say σ(V0), with A1 = {σ(V0,V) : V ∈ τx} and so
on. It is clear that Player I wins every play of G1(Ωx,

⋃
p∈XΩp) with this strategy.

(iv) II ↑ G1(Ωx,
⋃

p∈XΩp)⇒ I ↑ (G1)(τx,¬AS).

Let ρ be a winning strategy for Player II in the game G1(Ωx,
⋃

x∈XΩx). Once again, as x is not isolated,
we may assume x < Im(ρ). Now, we note that there is an open set V0 ∈ τx such that each point y ∈ V0
is the first movement of Player II with respect to ρ, i.e., there is an A ∈ Ωx such that y = ρ(A). If this is
not the case, then we may obtain a subset C ∈ Ωx such that ρ(C) < C, which is absurd. As in the previous
paragraph, Player I may use this neighborhood V0 as her first movement, to which Player II responds with
a point x0 = ρ(A0) for some A0 ∈ Ωx. Proceeding like this, it is easy to see that Player I obtains a winning
strategy in the game (G1)(τx,¬AS), as desired.

Since Ωx ⊆
⋃

p∈XΩp, both the implications II ↑ G1(Ωx,Ωx)⇒ I ↑ (G1)(τx,¬AS) and II ↑ (G1)(τx,¬AS)⇒ I
↑ G1(Ωx,Ωx) hold, and none of these are reversible, as the space X = [0, ω1] shows: as we already showed
in Example 2.3, X satisfies I ↑ (G1)(τx,¬AS), and Player I can win every play of the game G1(Ωω1 ,Ωω1 ) by
choosing the subset [0, ω1) at every inning. Once again, the Gδ-condition gives one of the converses.

Proposition 3.2. Let X be a regular space and let x ∈ X be a Gδ-point. If I ↑ (G1)(τx,¬AS) then II ↑ G1(Ωx,Ωx).

Proof. As in the proof of Theorem 2.2, let us to take a winning strategy σ for Player I in the game (G1)(τ∗,¬Lx)
such that x ∈

⋂
Im(σ). Now, Player II may use σ to play in the game G1(Ωx,Ωx) as follows: if A0 ∈ Ωx is

the first move of Player I in the game G1(Ωx,Ωx), then Player II picks a point x0 ∈ σ(∅) ∩ A0, what can be
done since σ(∅) ∈ τx; at the next inning, Player I chooses A1 ∈ Ωx and Player II answers with x1 ∈ σ(x0)∩A1.
Proceeding like this and making sure that xn are always different to x, we obtain a winning strategy for Player
II in the game G1(Ωx,Ωx), since a play (A0, x0,A1, x1, . . . ) in this game, played according with the previous
strategy, corresponds to the play (σ(∅), x0, σ(x0), x1, σ(x0, x1), x2, . . . ) in the game (G1)(τ∗,¬Lx) according with
the winning strategy σ, from which it follows that x ∈ {xn : n ∈ ω}.

Problem 3.3. Let X be a regular space and let x ∈ X be a Gδ-point. Are the games (G1)(τx,¬AS) and G1(Ωx,Ωx)
dual?

Notice that by the previous proposition, the above problem depends on the converse of the implication
II ↑ (G1)(τx,¬AS)⇒ I ↑ G1(Ωx,Ωx).
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4. The big picture

S1(Ωx,Ωx)

w-point w̃-point soft q-point I ̸ ↑G1(Ωx,
⋃

p∈XΩp) I ̸ ↑G1(Ωx,Ωx)

W-point W̃-point weak q-point II↑ G1(Ωx,
⋃

p∈XΩp) II↑ G1(Ωx,Ωx)

strong W-point strong W̃-point q-point

χ = ω πχ = ω

βω (Ex. 1.5)
p

?

+Gδ

+Gδ
?

βω [3]
p

+Gδ

+Gδ
+Gδ

+Gδ

The diagram above summarizes the implications discussed along the text.
Once these local properties are established under the selection principles landscape, the typical combi-

natorial questions apply. For instance, considering the equivalence between the S1(A,B) principle with I
̸ ↑ G1(A,B) whenA andB are replaced by the family of all open coverings3), one can ask whether something
similar happens in the present context. This is the case for q-points under the presence of a countable local
π-basis.

There are natural connections with Cp-theory and covering properties as well. Indeed, for a Tychonoff
space Y, Theorem 4.4 in [7] establishes that the conditions

• Cp(Y) is first countable,

• Cp(Y) is a q-space, and

• Y is countable

are equivalent.

Example 4.1. Player II has a winning strategy at the game (G1)(τ0,¬AS) played on Cp(R), where 0 indicates the
constant zero function.

Proof. Since the open sets around a continuous function f have the form (F, ε)[ f ] = {1 ∈ Cp(R) : |1(x)− f (x)| <
ε for all x ∈ F} for finite subsets F ⊂ R and ε > 0, if Player I picks an open set (Fn, εn)[0] around 0 at the n-th
turn, Player II can choose an open set Un around Fn with length less than 1

2n , and then pick a function fn
such that fn|Fn ≡ 0 while fn ≡ n outside Un. Notice that in the end of a play according to this strategy, any
point x ∈ X \

⋃
n∈ωUn is such that ({x}, 1)[ f ] witnesses that f cannot be an accumulation point of ( fn)n, for

every f ∈ Cp(R).

Problem 4.2. Is there any uncountable space Y such that Cp(Y) is a weak q-space?

Since the pseudocharacter of Cp(Y) is the density of the space Y [6], an uncountable separable space
Y such that Cp(Y) satisfies II ↑ G1(Ω f ,Ω f ) could provide positive answers to some instances of the above
problem4).

3)Pawlikowski [10].
4)Thus, by a result of Scheepers [14], Y should be a space such that II ↑ G1(Ω(Y),Ω(Y)) holds, where Ω(Y) is the family of all

ω-coverings of Y [4].
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