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On estimation of Hankel determinants for certain class of starlike
functions

S. Sivaprasad Kumar?, Neha Verma®*

?Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India

Abstract. In the present study, we consider two subclasses of starlike and convex functions, denoted
by S;; and Cg respectively, associated with a bean-shaped domain. Further, we estimate certain sharp
initial coefficients, as well as second, third and fourth-order Hankel determinants for functions belonging

to the class S7,. Additionally, we compute sharp second and third-order Hankel determinants for functions
belonging to the class Cg.

1. Introduction

Let A denote the class of normalized analytic functions defined on the open unit disk D := {z € C: |z| < 1},
having the form

f@)=z+ Z a,z" (1)
n=2

and suppose S be a subclass of A comprising univalent functions. Consider ¥ to be the class of analytic
functions defined on D with a positive real part, expressed as p(z) = 1 + ), puz". Suppose h and g are
two analytic functions, we say & is subordinate to g, symbolically i < g, if there exists a Schwarz function
w with w(0) = 0 and |w(z)| < |z] such that h(z) = g(w(z)). A substantial body of literature exists on coefficient
problems, ranging from the seminal Bieberbach’s conjecture of 1916 to contemporary research (see [4]).
There are two prominent subclasses of S consisting of starlike and convex functions, respectively denoted

by & and C. Further, in 1992, Ma and Minda [13] unified various subclasses of S* and C by introducing the
following two classes:

S(p) = {f eA: 2@ < qj(z)}
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and

Zf”(Z)

/(@)
where ¢ is analytic and univalent, known as Ma-Minda function satisfying the conditions Re ¢(z) > 0,
¢@(ID) symmetric about the real axis and starlike with respect to ¢(0) = 1 with ¢’(0) > 0. Recently, many
Ma-Minda classes are introduced and studied by several authors by appropriately choosing ¢(z) in (2). See
the various Ma-Minda subclasses of starlike functions listed in the first column with the corresponding
choice of ¢(z) in the second column of Table 1.

C(qo):{feﬂ:1+ <<p(z)} 3)

Table 1: List of sharp third-order Hankel determinants

Class P(2) Sharp [H3(1)| | Reference
S 1+2)/(1-2) 4/9 [2, 6]
S, 1+ zé* 1/9 [20]

S, Vi+z 1/36 [3]

S; e 1/9 [19]
S, | 1+sinh™(2) 1/9 [9]
S 1+ arctanz 1/9 [8]

The concept of Hankel determinants, introduced in 1966 (see [16]), continues to be a topic of significant
interest for researchers today. The definition of the gth Hankel determinant H,(n) of analytic functions
f € A, under the assumption that a; := 1, is as follows:

y Apsl - an+q—l
An+1 Gpe2 - An+q
Hy(m)=| . . .|, nmgelN. 4)
an+q—1 an+q .. an+2q—2

The expressions for the second and third-order Hankel determinants for specific values of 4 and n, are
denoted by H,(3) and H3(1), respectively, given by

H2(3) ‘= asds — Lli (5)

and

H3(1) := 2a5a3a4 — ag - ai - a%a_r, + asas. (6)
Deriving a sharp bound for Hankel determinants is a formidable challenge, prompting numerous re-
searchers to endeavor to do so for various subclasses of starlike functions, see [1, 3, 5, 14, 15] and some
are listed in the third column of Table 1. Recently, Kumar and Yadav [10], by choosing ¢(z) = V1 + tanhz,
introduced and studied the Ma-Minda subclass of starlike functions Sj; associated with a bean-shaped
domain, given by

z2f'(2)
S’“z{ eEA: < 1+tanhz}.
A
Motivated by it, we introduce the following convex counterpart of the above class:
Cg = {feﬂ: 1+ 2f"e) < V1 +tanhz}.
f@

The authors in [10] have investigated the geometric properties of the univalent function V1 + tanh z, along
with some inclusion and sharp radius results involving S, as well as implications of first-order differential
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subordination. This class can be further studied to know more about the behavior of the coefficients of
functions belonging to this class, second and third-order differential subordination, etc. Thus, studying
such subclasses of starlike and convex functions open new avenues in the field of research. Taking this
aspect in account, in our current investigation, we focus on coefficient-related problems concerning the
aforementioned classes S7; and Cg, which are yet not addressed in the literature. In fact, we are finding the
sharp bounds of the initial coefficients, second and third-order Hankel determinants, as well as possible
bound of the fourth-order Hankel determinant for functions belonging to the class Sj,. Additionally, we
establish sharp bounds of the second and third-order Hankel determinants for functions belonging to the

class Cg.

2. Coefficient related problems for S*B

In this section, we start by determining the sharp bounds of the initial coefficients a; for (i = 2,3,4,5)
followed by establishing the sharp bounds of the second and third-order Hankel determinants for functions
f € S Subsequently, we derive the bounds for as and 47 to deduce a possible bound of the fourth-order
Hankel determinant for functions f € Si,.

2.1. Sharp initial coefficient bounds
Let f € S*B, then there exists a Schwarz function w(z) such that

Z]]:(S) - 1+ tanh (). @)

Suppose that p(z) = 1+ p1z + paz> + - - - € P and consider w(z) = (p(z) — 1)/(p(z) + 1). Further, by substituting
the expansions of w(z), p(z) and f(z) in (7) and then comparing the coefficients, we obtain the expressions
ofa; (i=2,3,..,7)interms of p; (j = 1,2,...,5), given as

1 1 1
0 = %, a5 = 6—4(sz - 3p§), a5 = m(%pf — 168p1p2 + 192p3), ®)
as = m( — 11p} + 528p3p, — 576p5 — 1056p1p3 + 1152p4), )
1
g = m(mssompg —2367p3 — 8560p3p2 + 46080p3p3 — 96000p2p3 — 86400p1ps + 92160p5) (10)
and
1
a; = m(mmzlpf — 2365320p1p> — 4818240p7p3 + 47232003 + 261504001 p2ps — 2648640p; ps

— 11980800p3 + 11577600p3ps — 23500800p,p4 — 21012480;71;75). (11)
The results stated below are necessary for proving our main result.
Lemma 2.1. [12] Let p € P be of the form 1 + Y"1 pnz". Then

lp1 — 3pTp2 +p5 + 2paps — pal <2 (12)

and

|P3 - 2p1p2 + pi’l <2 (13)
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Lemma 2.2. [13] Let p € P be of the form 1 + ¥, ppz". Then

2_4‘8/ .BSO/
Ip2 — Bpil <32, 0<B<1;
46-2, p>1

when B < 0 or B > 1, the equality holds if and only if p(z) = (1 + z)/(1 — z) or one of its rotations. If 0 < p < 1, then
the inequality holds if and only if p(z) = (1 + z2)/(1 — 22) or one of its rotations. If B = 0, the equality holds if and
only if p(z) = 1+ )1 +2)/(2Q = 2)) + (1 = (1 - 2)/2(1 + 2))(0 < n < 1) or one of its rotations. If p = 1, the
equality holds if and only if p is the reciprocal of one of the functions such that the equality holds in case of p = 0.
Though the above upper bound is sharp for 0 < § < 1, still it can be improved as follows:

b2 = BP2l+ BlpP <2 (0<p<1/2) (14)

and

p2 = B2+ (1 -PlpiP <2 (1/2<p<1).

Also, we recall that

C B<0,A<3E;
-B -B.
max(At2+Bt+C) 16A +4B + C, BZO,AZ? or BSO,AZT, (15)
Ost<d 4AC - B? B
T, B>O,AS 3 -

Theorem 2.3. If f € S}, then (i) laz| < 1/2, (ii) |as| < 1/4, (ifi) las| < 1/6 and (iv) las| < 847/3216 ~ 0.263371 - -
These bounds are sharp.

Proof. (i) Since |p,| < 2 for n > 1, therefore, from (8), |az| < 1/2.

(ii) For a3, we use the inequality |p, — up?| < 2max{1,[2u — 1|} given by Ma and Minda [13], which yields
las| < 1/4.

(iii) For ay, (7) is re-written as:

zf'(z) = 1 + tanh(w(z))f(z). (16)

On substituting f(z) = z + Y., a,2" and w(z) = Y10, wxzk in (16) and comparing the coefficients of z*, we
get
1 13 5
6ay = (w3+ 02 = pw )

Now using [17, Lemma 2, p.128], we deduce that [6a4] < 1 and hence the result follows.
(iv) From (9), we get the expression of as as

1( no, 1, p; 11

as = Te\ ™ @Pl 4P1P2 - 2 —2P1P3 +P4)

1/ 1
_E(_E zplQ 2p4)

which further gives

1
las| |P| + —IP1||Q| +3 IP1|2IRI + Elml),

<5503

where P = pt = 3p2p, + p3 + 2p1ps — ps, Q = p3 — 2p1p2 + p5 and R = p, — (67/144)p2. Moreover, using the
bounds of |P| < 2 from (12), |Q| < 2 from (13) and |R| < 2 from (14), respectively, we obtain

1 (7 7 469 |4)
=16 115271 )

2
las| < |P1|
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Now, we obtain |7|p1|2/4 - 469|p1|4/1152| < 126/67 using (15) by taking A = —469/1152, B=7/4and C = 0,
which leads to the desired estimate for |as|. The sharpness of the result can be witnessed when p; = ps =2,
p2 = (737 + V963326)/402 and p3 = —2. The function

£12) = zexp ( foz 1+ tanh(t"1) - 1dt)

t
acts as the extremal function for the initial coefficients a,, forn = 2,3 and 4. [

The formula for p; (j = 2,3,4), which is included in the Lemma 2.4 below, plays a vital role in establishing
the sharp bounds for Hankel determinants and forms the foundation for our main results.

Lemma 2.4. [11,12] Let p € P has the form 1 + Y, pnz". Then for some y, n and p such that [y| <1, |n| < 1 and
lpl <1, we have

2p2 = pi +y(d-p),
dps =p3 +2p1(4 - pl)y —p1d = pD)y* + 24 - pD (1 - yP)n,
and
8p, = p _ 2 20,2 A — 2N 12 _ 2 12
ps=p1 + @ =p)y(pr(y° =3y +3) +4y) =44 —p)A = y)pr(y = D+ yn~ = (L= nl9)p).

2.2. Sharp Hankel determinants for Sg

The following theorem presents the sharp bound for |H3(1)| for functions belonging to the class S*B.
Theorem 2.5. Let f € S;g, then
|H3(1)| < 1/36. (17)
This result is sharp.

Proof. Since the class % is invariant under rotation, we can take p; =: p belongs to the interval [0,2].
Substitute the values of 4; (i = 2,3,4,5) in (6) from (8) and (9). We get

H;(1) = m( — 3511p° — 5160p*p, — 14400p*p3 — 124416p3 + 56256p°p3 + 216576ppaps — 147456p3

— 145152p°py + 165888p2p4).

After simplifying the calculations using Lemma 2.4, we obtain

1
Hs(1) = m(lﬁ(p, Y) + Bap, Y)n + Bs(p, V)N + Balp, y, n)p),
fory,n,p € D. Here

Bi(p,y) : = —1099p° — 1872)°p*(4 — p*)* — 20736)°(4 — p*)* — 5760y°p*(4 — p*)* + 1152y*p*(4 — p*)?
+3084yp*(4 — p?) + 624p*y*(4 — p?) — 7776p"y* (4 — p?) - 31104)°p* (4 — p?),
Ba(p,y) - = 96(1 = [yP)(4 — p*)(149p° + 324yp° + 228py (4 - p*) — 48p)*(4 - p?)),
Bap,y) : = 1152(1 = [yP)(4 - p*)(=32(4 — p*) — 4y (4 - p*) + 27p%p),
Ba(p,y,m) : = 10368(1 — [y)(4 - p)(1 = InP)(4 - p*)y = 3p?).
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By choosing x = |y|, ¥ = || and utilizing the fact that |p| < 1, the above expression reduces to the following:

1
|Hs(1)| < m(lﬁl(nwl +1B2(p, My + 1B MY + 1Ba(p, 7, n)l) < Alp,x,y),

where

(A1 9 + Aalp, 20y + As(p, 07 + Astp, 01 = 1)), (18)

1
Al Y) = 51333664

with

Aq(p,x) : = 1099p° + 1872x%p*(4 — p*)* + 20736x°(4 — p*)* + 5760x°p*(4 — p*)? + 1152x*p*(4 — p*)*
+3084xp* (4 — p?) + 624p*x* (4 — p?) + 7776p x> (4 — p?) + 31104x°p* (4 — p?),

Ax(p,x) : = 96(1 — x*)(4 — p?)(149p° + 324xp® + 228px(4 — p) + 48px*(4 — p?)),

As(p,x) 1 = 1152(1 — x%)(4 — p?)(32(4 — p?) + 4x°(4 — p*) + 27p*x),

Ag(p,x) : = 10368(1 — x%)(4 — p?)(4x(4 — p*) + 3p°).

In the closed cuboid Q : [0,2] x [0, 1] X [0, 1], we now maximize A(p, x, y), by locating the maximum values
in the interior of the six faces, on the twelve edges, and in the interior of Q.

1. We start by taking into account every internal point of Q. Assume that (p, x,v) € (0,2) x (0,1) x (0, 1).
We calculate dA/dy, partially differentiate (18) with respect to y to identify the points of maxima in
the interior of Q. We get

A _ (A-pP)1-2) : > 2
a_y = W(Zélpx@ +2x) + p°(17 + 24x — 12x°) + 96(8 — 9x + x°)y

—12p%(25 - 27x + 2x2)y).
Now dA/dy = 0 gives

_ 48px(19 + 4x) + p°(149 + 96x — 48x%)
T Tl - 016G —8) + 259 —4x))

The existence of critical points requires that vy belong to (0, 1), which is only possible when
300p? + 864x + 24p*x* > 17p° + 120px + 24p°x + 48px* — 12p°x* + 768 + 864x + 24p°x°. (19)

Now, we find the solution satisfying the inequality (19) for the existence of critical points using the
hit and trial method. If we assume p tends to 0, then there does not exist any x € (0, 1) satisfying (19).
But, when p tends to 2, (19) holds for all x < 175/648. We also observe that there does not exist any
p € (0,2) when x € (174/648,1). Similarly, if we assume x tends to 0, then for all p > 1.61687, (19)
holds. After calculations, we observe that there does not exist any x € (0,1) when p € (0,1.61687).
Thus, the domain for the solution of the equation is (1.61687,2) x (0, 175/648). Now, we examine that
‘;—‘;Iy:yo # 0in (1.61687,2) x (0,175/648). So, we conclude that the function A has no critical point in
0,2)x(0,1) x(0,1).
2. The interior of each of the cuboid Q’s six faces is now being considered.

On the face p = 0: We have x, y € (0, 1) and

1612 — 14x%y? — 2x*y? — 9x3(1 — 2y%) + 18x(1 — »?)

A, x,y) = 576

= ki(x, v). (20)
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Since

ki (1-x*)(x+1)8-x)y 40

dy 144 ’

x,y€(,1),

indicates that k; has no critical points in (0, 1) x (0, 1).
On the face p = 2: We have x, y € (0,1) and

1099
= . 21
AQx ) = 331776 @
On the face x = 0: We have p € (0,2), y € (0,1) and
1099p° + (4 — p?)(14304p°y + 3686412(4 — p2) + 31104p%(1 — 12)
Alp,0,y) = ——==F Ly e f P Lchpy. @

21233664

To determine the points of maxima, we solve dk;/dp = 0 and dk,/dy = 0. After solving dk,/dy = 0, we
get

149p°

I N 2
Y= oa(op2 —128) @3

In order to have y, € (0,1) for the given range of y, p > 1.61687 is required. Based on calculations,
dky/dp = 0 gives

p(41472 — 20736p* + 1099p* + 28608py — 11920p°y — 139776y + 45312p*y?) = 0. (24)
After substituting (23) in (24), we have

75497472p — 107347968p° + 50314752p° — 8246384p’ + 133989p° = 0. (25)

A numerical calculation suggests that p ~ 1.24748 € (0, 2) is the solution of (25). So, we conclude that
k> does not have any critical point in (0, 2) % (0, 1).
On the face x = 1: We have p € (0,2) and

331776 + 99072p* — 34704p* — 1601p°
21233664

Alp,1,y) = =: ks(p). (26)
While computing dks/dp = 0, p =~ 1.14405 =: py comes out to be the critical point. Undergoing simple
calculations, ks achieves its maximum value ~ 0.0187629 at py.

On the face y = 0: We have p € (0,2), x € (0,1) and

A(p,x,0) = —1601p° — 331776(—1 — 2x + 2x%) + 2304p?(97 — 144x — 54x% + 144x%)
p p P

1
21233664
— 144p* (457 — 288x — 216x° + 288x3)) =: ky(p, x).

After further calculations such as,

9k4_(4_772)( 2, .2 2)
S = 1024 8 —24x° + p“(—2 = 3x + 6x7)
and

Jky 1

i m( —1601p° + 768p(97 — 144x — 54x* + 144x>) — 96p>(457 — 288x — 216x* + 288x3)),
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we observe that only real solutions (p, x) of the system of equations dks/dx = 0 and Jdks/dp = 0 are
(2,1.74724); (2, —1.74724); (—1.36584, —0.835809); (1.36584, —0.835809); (2, —1.74724) and (~0.854598, 0.524203).
Thus, no solution exists in (0, 2) X (0, 1), resulting in no critical points.

On the face y = 1: We have p € (0,2), x € (0,1) and

_ 1 6 200 _ .2 4og 2 _2\2 204 2\2
A(p,x,l)—21233664(1099p +31104p%(4 — p?) + 11484p*(4 — p?) + 20736(4 — p*)* + 8784p>(4 — p?)

— 11524 — p*)(1 — x*)(=16(8 + x*) + p*(32 — 27x + 4x?))

+96(4 — p*)(1 — x*)(48px(19 + 4x) + p>(149 + 96x — 48x2))) =: ks(p, x).

Simple calculations leads to

oks _ (4-p%)

dx ~ 110592

( —192x(7 + 2x?) + 6p*(27 + 56x — 81x* + 16x°) + 24p(19 + 8x — 57x* — 16x°)
+p°(48 — 197x — 144x* + 96x3))

and

_8k5 1 5 2 3 2 3 4
= ———( = 1601p° — 3072x(—19 — 4x + 19x* + 4x) + 768p(=85 + 54x + 112x> — 54x° + 16

Ip 3538944( P X X+ 1922 + 4x%) + 768p(=85 + 54x + 11227 — 542° + 162
+96p°(15 — 216x — 224x* + 216x° — 32x*) — 80p*(149 + 96x — 197x* — 961> + 48x*)

+192p%(149 — 132x — 245x* + 132x° + 96x4)).

We note that the only real solutions (p,x) of the system of equations dks/dx = 0 and Jks/dp =
0 are (—5.5858,2.7083); (2,—2.2645); (-2,0.357662); (—1.98983,0.350993); (0.932759, -1.56488) and
(—1.03049, —0.27789). Thus, no solution exists in (0,2) X (0, 1), resulting in no critical points.

. We next examine the maxima attained by A(p, x, y) on the edges of the cuboid Q.

From (22), we have A(p,0,0) = (124416p* — 31104p* + 1099p°)/21233664 =: e1(p). It is easy to observe
thate](p) = 0 whenever p = 0and p = 1.50801 € [0, 2] as its points of minima and maxima, respectively.
Hence,

A(p,0,0) <0.00635802, p€]0,2].
Now considering (22) at y = 1, we get A(p,0,1) = (589824 — 294912p? + 57216p° + 36864p* — 14304p° +

1099p°)/21233664 =: e,(p). It is easy to observe that ¢,(p) < 0 in [0,2] and hence p = 0 serves as the
point of maxima. So,

1
A(p,0,1) < 5 ~ 00277778, p€[0,2].
Through computations, (22) shows that A(0, 0, y) attains its maxima at y = 1. This implies that
AO0,0,)) < —, yel01]
7 /]/ = 36/ y 7 .
Since, (26) does not involve x, we have A(p,1,1) = A(p,1,0) = (331776 + 99072p* — 34704p* —

1601p°)/21233664 =: e3(p). Now, ¢;(p) = 33024p — 23136p° — 1601p° = 0 when p = 0 and p = 1.14405 in
the interval [0, 2], acting as the points of minima and maxima, respectively. Hence

A(p,1,1) = A(p,1,0) < 0.0187629, p € [0,2].



S. S. Kumar, N. Verma / Filomat 39:12 (2025), 3907-3930 3915

After considering p = 0 in (26), we get, A(0,1,y) = 1/64. The equation (21) has no variables. So, on
the edges, the maximum value of M(p, x, ) is

1099
~ 331776’

Using (20), we obtain A(0,x,1) = (16 — 14x? + 9x> — 2x*)/576 =: eq(x). After calculations, we see that
e4(x) is a decreasing function in [0, 1] and attains its maxima at x = 0. Thus

A2, 1,y) = A2,0,y) = A(2,x,0) = A(2,x,1) x,y €[0,1].

1
A(0,x,1) < 36 x €[0,1].
Again utilizing (20), we get A(0, x,0) = x(2 — x?)/64 =: e5(x). On further calculations, we get ex(x) =0
when x = v2/3, as the point of maxima. Thus
A(0,x,0) <0.0170103, x <[0,1].

Given all the cases, the inequality (17) holds. Let the function f; € Sy, be defined as

4 3 _ 4 7
Qf_XZEE§E§_EW)22+E--EL~w~, @7)
0

folz) = zexp 6 144

with fo(0) = 0 and f;(0) = 1, acts as an extremal function for the bound of |[H3(1)| for a; = a3 = a5 = 0 and
ag = 1 / 6. O
Next, we find the sharp bound of |H,(3)| for functions belonging to the class S;,, given by

Theorem 2.6. Let f € S%, then

1
H < —. 2
H23)] < 3¢ 28)
This bound is sharp.

Proof. We proceed on the similar lines as in the proof of Theorem 2.5. Assuming p; =: p € [0,2], we
substitute the values of g; (i = 3,4, 5) from (8) and (9) into (5), we obtain

H,(3) = — 761p° + 408p*p, — 2880p°p3 — 41472p3 + 10848p°p5 + 52992ppaps

1
10616832(

— 73728p3 — 31104p°ps + 82944p2p4).
Using Lemma 2.4, we arrive at

1
H>(3) = m(ﬁe)(p/ Y) + Be(p, ) + Br(p, V)N + Bs(p, v, n)p)/

where y,n,p € D,

Bs(p,y) : = —437p° — 5904)2p*(4 — p*)* + 1440)°p*(4 — p*)* + 576y p*(4 — p*)?
+5184)2p?(4 — p?) — 852yp*(4 — p?) — 4008p*y*(4 — p?) + 1296p*)° (4 — p?),
Bo(p,y) : = (1= |yP)(4 — p*)(5424p° — 5184p°y — 2880py (4 — p*) — 2304p)° (4 — p°)),

Br(p,y) : = 576(1 — lyP)(4 — p*)(-32(4 — p*) — 9p*7 — 4lyP(4 - p?))
Bs(p, y,m) : = 5184(1 — [yP)(4 — p*)(1 — InP)(p* + 4y(4 — p?)).
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Additionally, by using the fact that |p| < 1 and taking x = [y|, v = |5)], we obtain

1
IH2(O)| < oz (185 11+ e, My + IBo(p, V)7 + Bs(p, 7,0 ) < B, ),

where

Bulp, %) + Balp, )y + Ba(p, )37 + Ba(p, (1 - 1)), (29)

1
Blp,x,y) = 10616832(

with
Bi(p, x) : = 437p° + 5904p°x* (4 — p?)* + 1440p°x> (4 — p*)* + 576p°x* (4 — p?)?
+ 5184p%x*(4 — p*) + 852p*x(4 — p*) + 4008p*x* (4 — p?) + 1296p*x> (4 — p?),
Ba(p,x) : = (4 — p*)(1 — x*)(5424p° + 5184p°x + 2880px(4 — p?) + 2304px*(4 — p?)),
B3(p, x) : = 576(4 — p*)(1 — x?)(32(4 — p*) + 9p°x + 4x*(4 — p?)),
Ba(p, x) : = 5184(4 — p*)(1 — x*)(p? + 4x(4 — p?)).

At this point, we must maximize B(p, x, y) in the closed cuboid R : [0,2] x [0, 1] x [0,1]. By identifying the
maximum values on the twelve edges, the interior of R, and the interiors of the six faces, we can prove this.

1. We start by taking into account, every interior point of R. Assume that (p, x,y) € (0,2) x (0,1) x (0, 1).
On differentiating (29) with respect to y, to locate the points of maxima in the interior of R, we obtain

0B (1-x*)(4-p? 3 2 2
07_y = W(élpr(S + 4x) + p°(113 + 48x — 48x°) + 384(8 — 9x + x*)y

— 24p*(41 — 45x + 4x2)y).
Now dB/dy = 0 gives

_ 48px(5 +4x) + p>(113 + 48x — 48x%)
T 241 -n16(x-8) + Al —4x)) ¢

Since y; must be a member of (0, 1) for critical points to exist, this is only possible if
48px(5 + 4x) + p3(113 + 48x — 48x%) < 24(1 — x)(16(x — 8) + p*(41 — 4x)). (30)

Now, we find the solutions satisfying the inequality (30) for the existence of critical points using hit
and trial method. If p tends to 0 and 2, then no x € (0,1) exists satisfying (30). Similarly, if take x
tending to 0 and 1, then there does not exist any p € (0, 2) such that (30) holds. So, we conclude that
the function B has no critical point in (0,2) x (0, 1) x (0, 1).

2. Now, we study the interior of six faces of the cuboid R.
On the face p = 0: We have x, y € (0, 1) and

1 = x2)(812 + 2212 + 9x(1 — 12
( x)(y -}—)2(8:2 + x( ]/)) =:l1(X,y)- (31)

B(0,x,y) =

We note that, in (0, 1) X (0, 1), /1 does not have any critical point. As

ol y(1—x?)(x—1)(x - 8)
Er 144

#£0 x,y€(0,1).
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On the face p = 2: We have x, y € (0, 1) and

437
165888

On the face x = 0: We have p € (0,2), y € (0,1) and

B2,x,y) = (32)

437p° + (4 - P2)(5424p3}/ +18432(4 — p2)y2 + 5184p2(1 — ]/2))
10616832
We solve dl,/dp and dl,/dy to locate the points of maxima. On solving dl,/dy = 0, we obtain

B(p,0,y) = =:L(p,y). (33)

113p3

Y= 2aa? —128) W 34

For the given range of y, we should have y, € (0,1) but no such p € (0, 2) exists.
On the face x = 1: We have p € (0,2) and

(147456p* — 43920p* + 2201p°)
10616832
When we compute dl3/dp = 0, p = 1.40378 =: py turns out to be the critical point. According to

elementary calculations, /3 reaches its maximum value ~ 0.0128915 at py.
On the face y = 0: We have p € (0,2), x € (0,1) and

B(p,1,y) = =: I3(p). (35)

B(p,x,0) = (331776x(1 — x%) + 2304p*(9 — 72x + 41x% + 82x° + 4x?)

1
10616832
— 48p*(108 — 503x + 650x* + 564x> + 96x*)

+ p®(437 — 852x + 1896x° + 144x° + 576x4)) =: L(p, x).

On computations, we obtain

oy (4-p?) 2 2 2 3y 4 2 3

% = I3 (6912(1 — 3%%) + 96p* (=18 + 41x + 69x% + 8x%) — p*(—71 + 316x + 36x> + 192x ))
and

o _ ;(768;7(9 — 72x + 41x% + 82x° + 4x*) — 32p°(108 — 503x + 650x°

dp ~ 1769472

+564x> + 96x*) + p°(437 — 852x + 1896x* + 144x° + 576x4)).

The common real solutions (p, x) of the system of equations, dl4/dx = 0and dly/dp = O are (-2, —2.86143);
(—2.6516,—0.571214); (-2, —0.247504); (-2, —2.86143); (2, 0.0163426); (—2,0.0163426); (2.6516, —0.571214);
(2,-0.247504); (0,0.57735); (0, —0.57735) and (—0.914024,0.721238). Thus, no solution exists in (0,2) X
(0, 1), resulting in no critical points.

On the face y = 1: We have p € (0,2), x € (0,1) and

B(p,x,1) = (9216px(5 +4x — 5% — 4x°) + 36864(8 — 7x* — x*) — 2304p? (64 — 9x — 106x°

1

10616832
—x% — 12x%) — 48p° (113 + 48x — 161x* — 481> + 48x*) + 192p3(113 — 12«
—209x% + 12x% + 96x*) + 48p*(384 — 37x — 1094x* — 24x° — 144x*)

+ p®(437 — 852x + 1896x* + 144x° + 576x4)) = Is(p, x).
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On computations, we get

ds _(4-p)
Jdx 884736

( — 1536x(7 + 2x%) + 192p(5 + 8x — 15x* — 16x°) + 48p*(9 + 156x + 3x* + 32x°)
+8p%(24 — 161x — 72x* + 96x°) + p*(71 — 316x — 36x* — 192x3))

and

dls _ 1 2 3 2_ .3 4
o —1769472(1536x(5+4x 5x° — 4x°) — 768p(64 — 9x — 106x° — x° — 12x%)

— 40p* (113 + 48x — 161x% — 48x> + 48x*) + 96p*(113 — 12x — 209x*
+12x° + 96x*) + 32p°(384 — 37x — 1094x? — 24x° — 144x*)

+ p°(437 — 852x + 1896x% + 144x° + 576x4)).

The common real solutions (p, x) of the system of equations, dl5/dx = 0and dl5/dp = Oare (10.3578,0.237179);
(2.61706,3.83978); (-2, —-2.97479); (2,2.03127); (—2.52708, —1.62061); (-2, —0.783621); (—1.37805, —1.02453);
(—1.77448,0.0488452); (2.00019, —0.515602); (0, 0) and (1.35192, —1.00909). Thus, no solution exists in
(0,2) x (0, 1), resulting in no critical points.

3. Now, we calculate the maximum values achieved by B(p, x, y) on the edges of the cuboid R.
From (33), we have B(p,0,0) = (20736p* — 5184p* + 437p°) /10616832 =: fi(p). It is easy to observe that
f{(p) = 0 when p = 0in the interval [0, 2]. Thus, the maximum value of f;(p) is 0.
Now considering (33) at y = 1, we get B(p,0, 1) = (294912 — 147456p + 21696p° + 18432p* — 5424p° +
437p°)/10616832 =: fo(p). It is easy to observe that f;(p) is a decreasing function in [0, 2] and hence
p = 0 acts as its point of maxima. Thus

1
B(p,0,1) < 3 P €[0,2].

Through computations, (33) shows that B(0,0, y) = y2/36, attains its maximum value at y = 1. This
implies that

B(0,0,y) < —

% Y€ [0,1].

Since, (35) isindependent of x, we have B(p, 1,1) = B(p, 1,0) = (147456p*—43920p*+2201p°) /10616832 =:
f3(p). Now, f;(p) = 294912p — 175680p° + 13206p> = 0 when p = 0 and p = 1.40378 in the interval [0, 2],
acting as points of minima and maxima, respectively. Hence

B(p,1,1) = B(p,1,0) < 0.0128915, p € [0,2].

On substituting p = 0 in (35), we get, B(0,1, y) = 0. The equation (32) is independent of the all the
variables namely p, x and y. Thus the maximum value of B(p, x,y) ontheedgesp =2, x =1,p=2,x =
0;p=2,y=0and p =2,y = 1, respectively, is given by

437

B2,1,y) = B(2,0,y) = B2,x,0) = B2 x,1) = {=ccc,

x,y€[0,1].
From (33), we obtain B(0,0, y) = y?/36. A simple calculation shows that

1
B(O/ O/ y) < %/ ]/ € [0/ 1]
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Using (31), we obtain B(0,x,1) = (8 — 7x* — x*)/288 =: fi(x). After calculations, we see that f; is a
decreasing function in [0, 1] and hence attains its maximum value at x = 0. Thus

B(0,x,1) < %, x €[0,1].
On again using (31), we get B(0, x, 0) = 9x(1—x?)/288 =: f5(x). On further calculations, we get fix)=0
when x =1/ /3, acting as its point of maxima. Thus

B(0,x,0) <0.0120281, «x €<[0,1].

In view of all the cases, the inequality (28) holds. The function specified in (27) acts as an extremal function
for the bounds of |H,(3)| having values az = a5 = 0and ay = 1/6. O

2.3. Fourth Hankel determinant

Given that sharp bounds for third-order Hankel determinants have been attained for various subclasses
of starlike functions, as shown in Table 1, determining bounds for fourth-order Hankel determinants
proves to be considerably challenging, necessitating extensive computations. Consequently, there have
been relatively few efforts in this direction in the existing literature, for recent advancements, we refer
[7,9,19, 20]. Subsequently, we introduce a lemma which is required in forthcoming results.

Lemma 2.7. [7,18] Letp =1+ Y., puz" € P. Then

pnl <2, nx1,

2, 0<v<l;
—v <
Pk = vupil {va —1|, otherwise,

and

2lv -4, v<4/3;

Ip} — vpsl < -
2v P 4/3 <.

Now, we try to estimate possible bounds of sixth and seventh coefficient of function f € S; as follows:
Lemma 2.8. Let f € Sy, then |ag| < 0.611233 and |az| < 0.690994.
Proof. From (10), we have

1843200, = —2367p; — 8560p3p2 + 50880p1p5 — 86400p1p4 + 92160ps — 96000p,p3 + 46080p7ps
or

1843200as| < [p3(—2367p7 — 8560p2)| + |p1(50880p5 — 86400p4)| + [92160ps — 96000p2p3| + [46080p7ps|.
Using Lemma 2.7 and the triangle inequality, we arrive at

35207
< 2227 £ 0.611233.
|aé|_57600 0.611233 (36)

Similarly,

530841600a; = 601421p — 2365320pp, + 4723200p; — 4818240p7p; — 2648640p°p; — 11980800p3
+ 261504001 p2ps — 23500800p2p4 + 11577600p%ps — 21012480p1ps
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or

530841600Ja7| < [p7(601421p7 — 2365320p,)| + |p3(4723200p, — 4818240p7)| + |p3(2648640p; — 11980800p3)|
+ [p2(26150400p1p3 — 23500800p4)| + |p1(11577600p>ps — 21012480ps)|.

By employing Lemma 2.7 and the triangle inequality, we obtain

ol < 31841
7= 46080

~ 0.690994. 37)

O

We derive the expression of the fourth Hankel determinant, upon substituting ¢ =4 and n = 1 in (4) as
follows:

Hy(1) = a7H3(1) — a¢By + asBa — a4Bs, (38)
where

By := ag(as — a3) + a3(a2as — azas) — as(as — aray), (39)

By := a3(asas — a3) — as(as — axas) + ae(as — a2a3), (40)
and

Bs 1= a4(azas — a3) — as(azas — azay) + a¢(as — ara3). (41)

Next, we determine the bound of these B; for i = 1, 2, 3. By substituting the values from (8)-(10) in (39), we
get

707788800B; = 110689p] — 299496p>p, — 855360p1p3 + 269760p3p; + 944640p1p3 — 1128960p7paps
— 3686400p3p3 + 4608000p1p3 + 2668800p3p4 + 460800p1p2ps — 3686400p3p4
— 3870720p2ps + 4423680p,p5

or

707788800|B1| < [p](110689p] — 855360p3)| + |p3(269760p° — 3686400p5)| + [4608000p1 p3|
+ [p1p2(944640p3 + 460800py4)| + [pTp2(—299496p; — 1128960p5)|
+ [p4(2668800p3 — 3686400p3)| + |p5(4423680p, — 3870720p2)|

Using Lemma 2.7 and the triangle inequality, we get

1 [ 165 [ 15 [3
Byl < ——— (110590464 + 255027456 + 471859200 4/ —— + 117964800 | —
IBal < 707788800( 744671 3559 53)

~ 0.244544. (42)

Similarly,

56623104008, = 927648p>ps — 149225p° + 785840pSp, + 3939840p3paps — 20736007 p; — 8294400p,
+23316480p1p5ps — 2025600p;1p5 — 11704320p7p3 — 29491200p,p3 + 25804800p1 p3pa
— 3676800p1ps — 3225600p7p2ps — 29491200p1 paps + 27648000p5ps — 22118400p3
+6144000p3ps + 23592960p3p5
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or

5662310400|B,| < |p;(927648p5 — 149225p3)| + [p]p2(785840p; + 3939840p3)|
+ |p3(—2073600p7 — 8294400p,)| + |p1p5(23316480p; — 2025600p7)|
+ [p3(—11704320p3 — 29491200p,)| + |p1p4(25804800p; — 3676800p3))|
+ [p1p2(=3225600p1ps — 29491200ps)| + [p4(27648000p3 — 22118400ps)|
+ |p5(6144000p3 + 23592960p3|.

With the aid of Lemma 2.7 and the triangle inequality, we obtain

1 22263552 | 6442 43008 42 97152 | 759
By| £ ——————(198237184
1Bl < 5662310400( 982371840 + 149225 778423 " 383 2305 " 1055 11089)

~ 0.350099. (43)

and

305764761600B; = 133166592p;p5 — 85212008 + 126489600p1p2ps — 621000p]p, + 331084800p;p5
+2362245120p1p3p3 + 6566400p3p3 — 199065600p5p5 + 99532800p1p;
— 49766400p1 p3ps — 1260195840p5pops — 1327104000p,p3 — 103680000p5p5p3
— 20260800p3p3 — 177638400p3p3 — 176947200p3 + 398131200p2psp4
— 12182400p3p4 + 331776000p3 ps + 1274019840p3p5 + 398131200p,p3p4
— 311040000p}ps — 11943936001 p3pa + 1492992000p%pops — 1592524800p1p2ps
+637009920p7p3 — 160625p] — 879206400p7p; + 99532800p1p2p5 — 298598400p1p;

or

305764761600|Bs| < [p3(133166592p; — 8521200p3)| + |p]p2(126489600p; — 621000p7)|
+ [p1p5(331084800p3 + 2362245120p3)| + |p3 (6566400p; — 199065600p5)]
+ [p1p5(99532800p5 — 49766400p4)| + [pops(—1260195840p3 — 1327104000p3)|
+ [p?p3(~103680000p; — 20260800p7)| + |[p5(—177638400p3 — 176947200p3)|
+ [p3pa(398131200p; — 12182400p3)| + |p5(331776000p; + 1274019840p5)|
+ [p2pa(398131200p; — 95385600p3)| + [p1p4(—311040000p7 — 1194393600p5)|
+ [p1p2(1492992000p: ps — 1592524800ps)| + 637009920p5p5| + [160625p7|
+1879206400p7p3] + 99532800p1 p2p3| + 1298598400p: 13-

Through Lemma 2.7 and the triangle inequality, we have

1 114 [ 6
< ————(210371822 1477261 2 1019215872 —
1Bl < 305764761600( 0371822080 + 613939 32059 + 101921587200 1489
+ 64762675200 366 + 12740198400 4 L + M)
23309 73 /557
~ 0.787068. (44)

Upon substituting values from (36), (37), (2.5), (42)-(44), and Theorem 2.3 in (38), we obtain the following
result, given by

Theorem 2.9. Let f € S}, then |Hy(1)| < 0.169251.
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3. Sharp Hankel Determinants for Cg

In this section, we determine the sharp bounds for the second and third-order Hankel determinants for
functions f € Cg. Below, we provide the expressions for the initial coefficients of functions f € Cg in terms
of Carathéodory coefficients, serving as a foundation for subsequent calculations.

Let f € Cg, then there exists a Schwarz function w(z) such that

z II(Z)
’

[0 = /1 + tanh w(z). (45)

Suppose that p(z) = 1 +p1z + paz® + - - - € P and consider w(z) = (p(z) — 1)/(p(z) + 1). Further, by substituting
the expansions of w(z), p(z) and f(z) in (45) and then comparing the coefficients, we obtain the expressions
ofa; (i=2,3,..,7)interms of p; (j = 1,2,...,5), given by

1+

1 1 1
m=opr, a3 = @(8;72 - 3p§), ay = %(23;73 —168p1pa + 192p3) (46)
and
1
as = m( — 11p} + 528p3p, — 576p3 — 1056p1p3 + 1152p4). (47)

The following theorem presents the sharp bound for |H3(1)| for functions belonging to the class Cg.
Theorem 3.1. Let f € Cg, then
IH3(1)| < 1/576. (48)
This result is sharp.

Proof. Since the class P is invariant under rotation, the value of p; belongs to the interval [0,2]. Let p; =: p
and then substitute the values of 4; (i = 2, 3,4, 5) in (6) from (46) and (47). We get

— 1 6 4 2.2 3 3
H(1) = 57 673280( 3581p° — 11184p*p, — 2880p%p2 — 141312p3 + 73344p°ps + 211968ppps

— 184320p3 — 165888p°ps + 221184;72;74).

After simplifying the calculations through Lemma 2.4, we obtain

Hs(1) = m(/ﬁ(n )+ B, Y+ Bup, )’ + Bua(p, v, n)p)/
for y,n,p € D. Here
Bo(p,y) : = —1157p° — 5328y?p*(4 — p*)* — 15360y°(4 — p*)? — 42241°p*(4 — p*)* + 2304)*p*(4 — p*)?
+ 3144yp*(4 — p*) — 1056p*)* (4 — p?) — 6912p*y3(4 — p*) — 27648y p*(4 — p?),
Bro(p.y) + = 192(1 = [yP)(4 — p*)(83p® + 144yp® + 84py (4 - p*) — 48p)*(4 - p?),
Bulp,y) : = 9216(1 — [yP) (4 ~ pP)(=5(4 ~ p*) — Iy P4 - ) + 3p7P),
Bra(p, v, 1) : = 27648(1 — [yP)(4 — p)(1 — InP) 24 — p*)y = p).

By choosing x = |y|, ¥ = In| and utilizing the fact that |p| < 1, the above expression reduces to the following:

1
|[H3(1)| < m(%(r’, Y+ 1B, My + B, IV + B2, 7, 77)|) <C,x,y),
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where

Clp,x,y) = (c1 (p, %) + Cap, )y + Ca(p, ¥)y* + Ca(p, x)(1 — yz)), (49)

1
424673280
with

Ci(p,x) : = 1157p° + 5328x*p*(4 — p*)* + 15360x° (4 — p*)* + 4224x°p*(4 — p?)* + 2304x*p? (4 — p?)?
+ 3144xp* (4 — p?) + 1056p*x*(4 — p?) + 6912p* > (4 — p?) + 27648x*p*(4 — p?),
Ca(p,x) : = 192(1 — x*)(4 — p*)(83p® + 144xp® + 84px(4 — p?) + 48px*(4 — p?)),
Cs(p,x) : = 9216(1 — x%)(4 — p*)(5(4 — p*) + X*(4 — p°) + 3p°x),
Ca(p, x) : = 27648(1 — x*)(4 — p*)2x(4 — p*) + p°).
In the closed cuboid S : [0,2] x [0,1] X [0,1], we now maximize C(p, x, y), by locating the maximum
values in the interior of the six faces, on the twelve edges, and in the interior of S.

1. We start by taking into account every internal point of S. Assume that (p, x, y) € (0,2) X (0,1) X (0, 1).
We calculate dC/dy, partially differentiate (49) with respect to y to identify the points of maxima in
the interior of U. We get

JaC _ (4-pH(1-x) 3 2 2 2 2
@ = W(%pxﬁ + 4x) + p°(83 + 60x — 48x7) — 96p~(8 — 9x + x”)y + 384(5 — 6x + x )y).
Now dC/dy = 0 gives

_ 48px(7 + 4x) + p>(83 + 60x — 48x%)
T Tl pAE v -4G-n)

The existence of critical points require that yy belong to (0, 1), which is only possible when
83p° + 336px + 60p°x + 192px? — 48p°x* < 96(—1 + x)(20 — 8p” — 4x + p*x). (50)

Now, we find the solution satisfying the inequality (50) for the existence of critical points using the
hit and trial method. If we assume p tends to 0, then there does not exist any x € (0, 1) satisfying (50).
But, when p tends to 2, (50) holds only when x < 61/288. Similarly, if we assume x tends to 0, then
for all p > 1.75665, (50) holds. After calculations, we observe that there does not exist any x € (0, 1)
when p € (0,1.75665). Thus, the domain for the solution is (1.75665, 2) x (0, 61/288). Now, we examine
that g—gly:yu # 01in (1.75665,2) x (0,61/288). So, we conclude that the function M has no critical point
in (0,2) X (0,1) x (0, 1).
2. The interior of each of the cuboid S’s six faces is now being considered.
On the face p = 0: We have x,y € (0,1) and

2023 + 12(1 = x2)(5 + x2)y? + 72x(1 — x*)(1 — y?)
COxy) = e 22 =, y). 61)

Since

omy _ (1- x)?(x + 1)(5 — x)y
dy 1440

#0, xye(01),

indicates that 71 has no critical points in (0, 1) x (0, 1).
On the face p = 2: We get

1157

€2 xY) = ge35520

~ 0.000174365, x,y € (0,1). (52)
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On the face x = 0: We have p € (0,2), y € (0,1) and

1157p° + (4 — p?)(15936p°y + 46080(4 — p?)y? + 27648p*(1 — 12))

Cp. 0, y) = 424673280

=: ma(p, y)- (53)

To determine the points of maxima, we solve dm;/dp = 0 and dm,/dy = 0. After solving dm,/dy =0,
we get

83p3

Y= 3sapr -5 W (54)

In order to have y, € (0,1) for the given range of y, p > 1.75665 is required. Based on calculations,
dmy/dp = 0 gives

36864p — 18432p° + 1157p° + 31872py — 13280p*y — 159744py* + 49152p°y* = 0. (55)
On substituting (54) into (55), we have

1843200p — 2396160p° + 1021152p° — 152402p + 2367p° = 0. (56)
A numerical calculation suggests that p ~ 1.28894 € (0, 2) is the solution of (56). So, we conclude that

my does not have any critical point in (0, 2) x (0, 1).
On the face x = 1: We have p € (0,2) and

245760 + 177408p* — 62688p* + 19015
424673280 = m3(p, ).

Clp,1,y) = (57)
While computing dmsz/dp = 0, p = 1.23293 =: py comes out to be the critical point. After simple
calculations, m3 achieves its maximum value ~ 0.000888358 at py.

On the face y = 0: We have p € (0,2), x € (0,1) and

C(p,x,0) = 49152x(18 — 13x?) + 2304p°(48 — 192x + 37x* + 168x°

1
424673280(
+ 16x%) — 96p* (288 — 707x + 400x* + 480x° + 192x*)

+ p®(1157 — 3144x + 4272x> — 2688x° + 23o4x4)) =: my(p, x).

After further calculations such as

omy  (4- )

—_— = — 13x?) — 48p?(48 — _ 2 _ 29,3 4 _ 2 3
ox 17694720(1536(6 13x7) — 48p~(48 — 37x — 148x” — 32x°) + p*(131 — 356x + 336x~ — 384x ))

and

8m4

- m(768p(48 —192x + 37x + 168x> + 16x*) — 64p>(288 — 707x + 400x*

+480x° +192x*) + p° (1157 — 3144x + 4272x% — 2688x° + 2304x4)),

we observe that only real solutions (p, x) of the system of equations dmys/dx = 0 and dmy/dp = 0
are (3.85748,0.257377); (3.76933, 0.0851082); (—3.76933, 0.0851082); (2, —0.644779); (—3.85748, 0.257377);
(-1.57205,-1.03976); (-2, —0.644779); (0, —0.679366); (0, 0.679366); (—1.12904, 0.941715) and
(1.57205,-1.03976). Thus, no solution exists in (0, 2) X (0, 1), resulting in no critical points.
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On the face y = 1: We have p € (0,2), x € (0,1) and

Cp,x,1) = 1157p° + 3144p* (4 — p*)x + 27648p% (4 — p*)x* + 1056p*(4 — p*)x*
p P p p p p p p

1

424673280(
+5328p%(4 — p*)*x* + 6912p* (4 — p*)x° + 15360(4 — p?)*x° + 4224p*(4 — p*)*x°
+2304p%(4 — pP)*xt = 9216(4 — p?)(1 — ) (—4(5 + x%) + p*(5 — 3x + x%))
+192(4 — p*)(1 — x*)(48px(7 + 4x) + p*(83 + 60x — 48x2))) =: ms(p, x).

After calculations,

o ___ 2 _ 48 2 3 4
- 7+ 4x — 74 — 4°) — 768p(160 — 48x — 213x* + 722 — 48
op 7780 O 147 + x =747 —4x) ~ T68p( x - 2132 + 724 — 48+%)

— 160p*(83 + 60x — 131x* — 60x° + 48x*) + 384p*(83 — 24x — 179x>
+24x7 + 96x*) + 64p>(480 — 157x — 1072x> + 384x> — 288x%)

+ p° (1157 — 3144x + 4272x* — 2688x° + 23o4x4))

and

Ims _ (4_—pz)(1536x(5x — 8 — 4x%) + 384p(7 + 8x — 21x — 16x°) + 48p2(24
ox 17694720
+ 149x — 68x + 64x%) + 16p*(30 — 131x — 90x? + 96x°)

+ (131 - 356x + 33622 - 384x3)),

we observe that only real solutions (p,x) of the system of equations dms/dx = 0 and dms/dp =
0 are (27.1136,0.413453); (—1.50007, —6.38485); (2.68178,5.28944); (2,1.39993);(2,—0.192442); (0,0);
(—4.98296,1.51367); (—2.89665, 3.0885); (—1.80124, —0.775344); (—1.74974, 0.159528); (-2,0.737618);
(—0.776187,0.905316); (1.6981, —0.807967); (2,—1.20749) and (1.5135,—-0.953552). Thus, no solution
exists in (0,2) x (0, 1), resulting in no critical points.

. We next examine the maxima attained by C(p, x, y) on the edges of the cuboid S.

From (53), we have M(p, 0,0) = (110592p? — 27648p* + 1157p°) /424673280 =: g1(p). It is easy to observe
that g} (p) = 0 wheneverp = 0and p = 1.53142 € [0, 2] as its points of minima and maxima, respectively.
Hence,

C(p,0,0) <0.0002878, pe<]l0,2].

Now consider (53) at y = 1, we get C(p,0,1) = (737280 — 368640p? + 63744p* + 46080p* — 15936p° +
1157p°) /424673280 =: g2(p). It is easy to observe that g}(p) < 0in [0,2] and hence p = 0 serves as the
point of maxima. So,

1
C(p,0,1) < =z ~ 0.00173611, p€[0,2]

Through computations, (53) shows that C(0,0,y) = y*/576 attains its maxima at y = 1. This implies
that

1
C(0,0,y) < 3 V€ [0,1].

Since, (57) does not involve x, we have C(p,1,1) = C(p,1,0) = (245760 + 177408p*> — 62688p* +
1901p°) /424673280 =: g3(p). Now, g5(p) = 354816p—250752p°+11406p° = Owhenp = Oand p = 1.23293
in the interval [0, 2] acting as the points of minima and maxima, respectively. Hence

C(p,1,1) = C(p,1,0) < 0.000888358, p €]0,2].
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After considering p = 0in (57), we get, C(0,1, y) = 1/1728 = 0.000578704.
The equation (52) has no variables. So, on the edges, the maximum value of C(p, x, y) is

1157
66355207

Using (51), we obtain C(0,x, 1) = (15 — 12x? + 5x° — 3x%)/8640 =: g4(x). After calculations, we see that
g4(x) is a decreasing function in [0, 1] and attains its maxima at x = 0. Hence

C2,1,y) =C(2,0,y) =C(2,x,0) = C(2,x,1) x,y €[0,1].

1
S — .
C(@0,x,1) < 57 x€[0,1]

Again utilizing (51), we get C(0,x,0) = x(18 — 13x%)/8640 =: g5(x). On further calculations, we get
g5(x) = 0 when x = V6/13, acting as its point of maxima. Thus

C(0,x,0) <0.000943564, «x <[0,1].

Given all the cases, the inequality (48) holds. Let the function f; € Cg, be defined as

* " V1 +tanhud -1 z4 7
fl(Z)—fo (eXp(L ” du))dt—z+ﬂ—m—---, (58)

with f1(0) = 0 and f{(0) = 1, acts as an extremal function for the bound of |[H3(1)| for a; = a3 = a5 = 0 and
ap=1/24. O

Theorem 3.2. Let f € Cg, then

1
< —.
H:3)] < 5 (59)
This bound is sharp.

Proof. We proceed on the similar lines as in the proof of Theorem 2.5. Assuming p; =: p € [0,2], we
substitute the values of a; (i = 3,4, 5) from (46) and (47) in (5), we obtain

— 1 6 4 2.2 3 3 2
H:0) = iemm 0( 1853p° — 1488p*p, + 1728p%p3 — 110592p3 + 31872p°ps + 119808pp,ps — 184320p%

— 82944p°py + 221184p2p4).

Using Lemma 2.4 for simplification, we arrive at

H>(3) = m(ﬁls(n )+ Bua(p, ) + Pus(p, VT + Prs(p, v, n)p)/
where y,n,p € D,
B13(p,y) : = —1109p° — 15696)*p*(4 — p*)* + 3456)°p*(4 — p*)* + 2304*p*(4 — p*)?
+13824)2p*(4 — p?) — 2376yp* (4 — p?) — 10272p*)2(4 — p*) + 3456p*y> (4 — p?),
Bualp,y) - =192(1 = [yP)(& = p*)(71p° = 72p°y — 36py (4 — p?) — 48py* (4 — pP)),
Brs(p, ) : = 4608(1 — |y} (4 — p*)(=104 — p*) = 3p*7 = 2y (4 ~ p*))
Buo(p, y,m) + = 13824(1 = [yP) (& = p)(A = InP)(p* + 4y (4 - p?)).
Additionally, by using the fact that |p| < 1, and taking x = [y|, y = |5j], we have

1
|[H>(3) < m(lﬁls(n Y+ 1B1a(p, My + 1B1s(p, Y)Y + 1B1s(p, n)l) <D(p,x,y),
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where

D(p,x,y) = (D19,%) + Datp, )y + Dalp, )97 + Dalp, (1 - 1)), (60)

1
424673280
with

Di(p,x) : = 1109p° + 15696p%x* (4 — p*)* + 3456p>x>(4 — p*)? + 2304p?x* (4 — p?)*

+13824p°x%(4 — p?) + 2376p*x(4 — p?) + 10272p*x* (4 — p?) + 3456p x> (4 — p?),

Da(p, x) : = 192(4 — p*)(1 — ¥*)(71p° + 72p°x + 36px(4 — p*) + 48px*(4 — p?)),

Ds(p, x) : = 4608(4 — p*)(1 — x*)(10(4 — p) + 3p°x + 2x*(4 — p?)),

D4(p, x) : = 13824(4 — p*)(1 — x*)(p* + 4x(4 — p?)).
Now, we must maximize D(p, x, y) in the closed cuboid T : [0,2] X [0, 1] X [0, 1]. By identifying the maximum
values on the twelve edges, the interior of T, and the interiors of the six faces, we can prove this.

1. We start by taking into account, every interior point of T. Assume that (p, x, ) € (0,2) x (0,1) x (0, 1).
We partially differentiate (60) with respect to y in order to locate the points of maxima in the interior
of T. We obtain

oD  (1-x)(4-p?) 3 2 2
8_y = W(%px(ﬁ% + 4x) + p°(71 4+ 36x — 48x7) + 384(5 — 6x + x°)y

—48p7(13 — 15x + 2x2)y).

Now dD/dy = 0 gives

_ 48px(3 +4x) + p>(71 + 36x — 48x%)
T T48(1- 0B -5 +p(13-2v)) v

Since y; must be a member of (0, 1) for critical points to exist, this is only possible if
71p° + px(144 + 36p + 192x — 48p*x) < 48(—40 + 13p” + x(48 — 15p* — 8x + 2p*x)). (61)

Now, we find the solutions satisfying the inequality (61) for the existence of critical points using hit
and trial method. If p tends to 2, then (61) holds whenever x < 1/144. Also, no such x € (0,1),
satisfying (61) when p tends to 0. Similarly, if take x tending to 0, then (61) holds for p > 1.99513 only,
whereas there does not exist any p € (0,2) such that equation (61) holds when x tends to 1. Thus, the
domain for the solution of the equation is (1.99513,2) x (0, 1/144). Now, we examine that %—I;Iy:yo #0in
(1.99513,2) x(0,1/144). So, we conclude that the function M has no critical point in (0,2) % (0,1) X (0, 1).
2. Now, we study the interior of each of six face of the cuboid T.
On the face p = 0: We have x, y € (0, 1) and

(1 =2y +x%y* + 6x(1 - y?))
B 2880
We note that, in (0, 1) X (0, 1), n1(x, y) does not have any critical point. As

ony _ (1-2*)(x-D(x-5)y
E 1440

On the face p = 2: We have

D(,x,y) = m(x, y). (62)

#0 x,y€(0,1).

1109
D(2,%,) = zzzzz55 ~ 0.000167131, %,y € (0,1). (63)
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On the face x = 0: We have p € (0,2), y € (0,1) and

1109p° + (4 — p2)(13632p°y + 46080(4 — p?)y? + 13824p%(1 — 1))
42467328

D(p,0,y) = = m(p, ). (64)

We solve dn, /dp and dny/dy to locate the points of maxima. On solving dn,/dy = 0, we obtain

71p3

YT sz —a0) ¢ (65

For the given range of y, we should have € € (0, 1) which is possible only when p > 1.99513 exists. On
computations, dny /dp = 0 gives

18432p — 9216p° + 1109p° + 27264p>y — 11360p*y — 141312py* + 39936p°y> = 0. (66)
On substituting (65) in (66), we get,

88473600p — 101744640p° + 38582784p° — 5470944p” + 169065p° = 0. (67)
The solution of (67) in the interval (0,2) is p =~ 1.34821, according to a numerical calculation. In

(0,2) x (0,1), np does not have a critical point.
On the face x = 1 We have p € (0,2) and

398592p% — 121056p* + 6461p°

D(p,1,y) = 424673280

n3(p). (68)

And when computing dnz/dp = 0, p = 1.39681 =: py turns out to be the critical point. According to
elementary calculations, n13 reaches its maximum value ~ 0.000859123 at py.
On the face y = 0: We have p € (0,2), x € (0,1) and

D(p, x,0) = (884736x(1 — x) +2304p7 (24 — 192x + 109x% + 216x° + 16x%)

1
424673280
— 96p* (144 — 675x + 880x% + 720x° + 192x*)

+p®(1109 — 2376x + 5424x% + 2304x4)) =: n4(p, x).

On computations,

ony _ (4-p?)

= 7 - VAN 2 _ _ 2 3 4 _ _ 3
ox 17694720(9216(1 3x%) — 48p*(48 — 109x — 180x* — 32x°) + p*(99 — 452x — 384x ))

and

(9114 1

e _ - _ 2 3 4 _ 1.3 _ 2 3 4
op 70778880(768p(24 192x +109x~ + 216x° + 16x*) — 64p~ (144 — 675x + 880x” + 720x° + 192x%)

+ p° (1109 — 2376x + 5424x° + 2304x4)),

we observe that only real solutions (p, x) of the system of equations dns/dx = 0 and dny/dp = 0 are
(=2, —2.72495); (~2.64507, —0.503718); (~2.23927, —0.0103472); (=2, —0.163482); (2.23927, —0.0103472);
(~2.00568, —0.120347); (2, —2.72495); (-2, —0.0837889); (0, —0.57735); (2, —0.0837889); (2.00568, —0.120347);
(2,-0.163482); (2.64507, —0.503718) and (—0.91207,0.721981). Thus, no solution exists in (0,2) x (0, 1),
resulting in no critical points.
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On the face y =1 We have p € (0,2), x € (0,1) and

D(p,x,1) = 36864px(3 + 4x — 3x* — 4x°) + 147456(5 — 4x* — x*)

1

424673280(
—2304p*(160 — 24x — 261x* — 48x*) + 768p°(71 — 167x* + 96x*)
—192p°(71 + 36x — 119x* — 36x° + 48x*) — 96p*(—480 + 45x

+ 1408x + 288x*) + p®(1109 — 2376x + 5424x* + 2304x4)) =: ns(p, x).

On computations,

ons (- )

o _ A" Pl 2 _ 2 _ 3 2 3
= 17694720( 6144x(2 + 22) + 384p(3 + 8x — 9% — 16x°) + 48p*(12 + 197x + 64x%)

+16p>(18 — 119x — 54x% + 96x°) + p*(99 — 452x — 384x3))

and

81/15

W m(6144x(3 +4x — 3x% — 4x°) + 768p(=160 + 24x + 261x* + 48x*)

—160p*(71 + 36x — 119x* — 36x° + 48x*) + 384p?(71 — 167x + 96x*)

+ 64p°(480 — 45x — 1408x* — 288x*) + p°(1109 — 2376x + 5424x° + 2304x4)),

we observe that only real solutions (p,x) of the system of equations dns/dx = 0 and dns/dp = 0
are (10.6873,0.22889); (-2, —2.84595); (2.70664,2.22228); (2,2.03047); (-2,—0.783981); (2,—0.385354);
(-1.77349,0.0460014); (2,-0.64512); (1.98564, -0.516895); (0,0); (2.00568, —0.120347); (2,0.657704);
(—2.33662, —1.5235); (—1.03494,0.828224) and (1.36475,—1.03084). Thus, no solution exists in (0, 2) X
(0, 1), resulting in no critical points.
3. Now, we calculate the maximum values achieved by D(p, x, y) on the edges of the cuboid T.

From (64), we have D(p,0,0) = (55296p> — 13824p* + 1109p°)/424673280 =: h1(p). It is easy to observe
tlr;?t hi(p) = 0 when p = 0 and p = 1.83094, acting as the points of minima and maxima, respectively.
Thus

D(p,0,0) < 0.000169059.

Now considering (64) at y = 1, we get D(p, 0, 1) = (737280 — 368640p? + 54528p° + 46080p* — 13632p° +
1109p°)/424673280 =: hy(p). It is easy to observe that }(p) is a decreasing function in [0,2] and hence
p = 0 acts as its point of maxima. Thus

1
< —=0. .
D(p,0,1) < 576 0.00173611, p €][0,2]

Through computations, (64) shows that D(0,0, y) = /576, attains its maximum value at y = 1. This
implies that

1
D(Or 0/ ]/) < %/ ]/ € [0/ 1]

Since, (68) isindependent of x, wehave D(p, 1,1) = D(p, 1,0) = (398592p*—121056p*+6461p°) /424673280 =:
h3(p). Now, H,(p) = 294912p — 175680p° + 13206p> = 0 when p = 0 and p = 1.39681, acting as the points
of minima and maxima, respectively. Hence

D(p,1,1) = D(p,1,0) < 0.000859123, p €[0,2].
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On substituting p = 0 in (68), we get, D(0,1,y) = 0. The equation (63) is independent of the all the
variables namely p, x and y. Thus the maximum value of D(p, x, y) ontheedgesp =2,x = 1,p =2,x =
0;p=2,y=0and p =2,y = 1, respectively, is given by

1109
6635520

From (64), we obtain D(0,0, y) = y*/576. A simple calculation shows that

D(@2,1,y) = D@2,0,) = D2,%,0) = D2,x,1) = X,y €[0,1].

1
D(Or 0/ ]/) < %/ ]/ € [0/ 1]

Using (62), we obtain D(0,x,1) = (5 — 4x* — x%)/2880 =: h4(x). Upon calculations, we see that h4 is a
decreasing function in [0, 1] and hence attains its maximum value at x = 0. Thus
1
< —= .

D(0,x,1) < 576 x €[0,1]
On again using (62), we get D(0, x,0) = x(1 — x?)/480 =: hs(x). On further calculations, we get te(x) =0
when x = 1/ V3, the point of maxima. Thus

D(0,x,0) < 0.000801875, x € [0,1].

In view of all the cases, the inequality (59) holds. The function specified in (58) acts as an extremal function
for the bounds of |H»(3)| having values a3 = a5 = 0 and ay = 1/24. O
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