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Abstract. This research investigates a coupled wave system where the second equation is influenced by
viscoelastic damping and is subject to Dirichlet boundary conditions on the interval (0,1). For a broad
class of relaxation functions and within a general framework, we establish the global existence of solutions

using the Faedo-Galerkin method. In addition, we derive general decay estimates by applying Lyapunov’s
method and employing certain convexity arguments.

1. Introduction

In our study, we examine a coupled system of viscoelastic wave equations:

ug(x, 1) — {uy(x, t) + auy(x, t)}, + f(u,0) =0 (x,t) € (0,1) X (0, +00),

(X, £) = boge(x, £) + g(u,v) = =b j(;t Ot = s)oxx(x,8)ds  (x,t) € (0,1) X (0, +00),

u(0,t) =v(0,t) =0,u(l,t) =v(1,t) =0 VYt >0, (1)
u(x, 0) = u(x), ur(x, 0) = u1 (x) Vx € (0,1),

v(x,0) = vo(x), ve(x, 0) = v1(x) Vx e(0,1),

where the constants a and b are assumed to be positive, ¢ is a positive function, f and g represents source
terms and (uo, 11, vy, v1) denotes the initial data.

Wave equations are fundamental in modeling dynamic systems where oscillations propagate through
a medium. These oscillations, or vibrations, travel across various parts of the medium, resulting in wave
phenomena. One of the key challenges in these systems is suppressing excessive vibrations and ensuring
the stability of the model. To address these challenges, several types of internal damping are adopted,
including frictional damping (see [3, [7, 25| 28]]), Kelvin-Voigt damping (see [14} 16} [18]), and viscoelastic
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damping (see [5} 6] [10]), which is the most commonly used, although it is considered one of the weakest
forms of damping. In [23], Mustafa considers a coupled viscoelastic system

{uﬁ —Au+ fot g1t — D)Au(t)dt + fi(u,v) =0, @)

O = Ao+ [ ga(t = DAV(T) dT + fo(u,0) = 0,
They demonstrated that this system exhibits generalized stability under hypothesis on the the coupling
Ifi(u, v)| < d(JulP' + [0]7), d>0, pi,gi=1, i=1,2,
and
gi(t) < —d;gi'(t) a; €[1,3/2[, i=1,2.
Notably, Mustafa’s work [24] explored the asymptotic stability of the system (2) with
gi(t) < —&i(t)gi(t), fori=1,2.

Another closely related result was achieved by Messaoudi and Tatar [21]], as well as by Al-Gharabli and
Kafini [1], involving coupling functions

fi(w,0) = fo(v,u) = alu + 0P (1 + v) + blulPulolP*>.

For a Timoshenko system with nonlinear source terms, Feng [8//9] demonstrated the existence of exponential
attractors under specific hypotheses regarding the coupling functions. Gheraibia and Boumaza [11], as well
as Kamache et al. [13], demonstrated stability for a Kirchhoff equation with nonlinearity of the form [u["u.
Al-Mahdi et al. [2] demonstrated exponential energy decay for a plate system with source terms u In [ul.
Similarly, Yiiksekkaya [26] obtained a comparable result for the logarithmic Lamé system with source terms
[ulP~2uln [uf. Lekdim and Khemmoudj, in [15] [17], investigated the stability of an Euler-Bernoulli system
with coupling fi(u,0) = f2(v, u) = a{(U2 + V2)ity}y.
The authors in [22], considered a weakly dissipative plate equation

t
Uy + Azu + f g(t - S)uxx(s) ds =y =0,
0

with mild hypotheses on the kernels g, and showed that the energy exhibits a general decay behavior.
Motivated by previous studies, we analyze the interaction between the wave equation and viscoelastic
damping in the presence of nonlinear source terms. Our objective is to explore the existence, uniqueness,
and stability of solutions. This research contributes to a deeper understanding of the relationship between
the system’s behavior and the properties of the relaxation function.
The paper is structured as follows: Section 2 provides preliminary results, Section 3 addresses well-
posedness, and Section 4 establishes a general decay result.

2. Preliminaries

We assume that ¢ satisfies:

(H1) Let¢ € Cl(R,,R;) denote a decreasing function that satisfies
¢(0) >0, f O(s)ds = ¢ < 1.
0

(H2) We assume the existence of a positive upper C!-function ® : Ry — R, which is linear or a strictly
increasing and strictly convex C?-function on (0,!] such that I < ¢(0), with ®(0) = ®’(0) = 0, and a
positive non-increasing differentiable function C : R, — IR, so that

P'(H) < —C(OP(P(t)), forall t>0.
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(H3) We assume the existence of a positive function G such that

dG JG
(f(ul 'U), g(ur U)) = (E/ %)r

G20, uf(u,v)+uvg(u,v)=Gu,0),

and |g(u,v)| < r(ul’ + [ol?).

Remark 2.1 ([24]). There are two positive real numbers d and ty, such that

¥(0) £ ~TODG) < ~0(0) S =20, Ve 0] ©
The energy of problem (1) is represented by
1- [ o(s)d 1
0= L+ o)+ L + 0 o Ve | oo @

where ||| represents the norm in L?(0, 1) and
¢
(pou)= f Ot — 5) llu(t) — u(s)|? ds.
0
Lemma 2.2. The energy (4)) satisfies

< b b
E'()) = =30 lnll + 3¢ 0 0 = a Junlf? 0. ©)

Proof. Multiplying the system (I) by (u¢, v;) and performing integration by parts over (0, 1), we obtain

2 2 2 2
lleael|” + 0el|” + el +b|IUx||]

1 1
—a |Juxyll® - f fu, v)updx — f g(u, v)vdx
0 0

¢ 1
b[)cﬁ(s—t)fo Vx(S)vyedxds.

To complete the proof, we utilize condition (H3) and the following identity

il

N~

+

t 1 t
[P ots=0 [ onts = ~Joted? + 30700 - 18 @000 [ oeustol?]
0

Remark 2.3. Based on (H1), (H2),(H3) and Lemma we can infer energy dissipation. Furthermore,

E() <E(0) Vt>O0.

3. Well-posedness

This section focuses on proving the well-posedness for the problem described in (I). To accomplish this,
we utilize the Faedo-Galerkin approach.

Theorem 3.1. Let V = H}J(O, 1). Suppose (H1) holds, and let (19, u1), (vo, v1) € V X L%(0,1). Then, thereis a unique
weak solution to the problem (T)).
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Proof. Let us consider {w;};2; and {z;};; as bases of the space V. Then we define the finite-dimensional
subspaces V,, = span{wi, wy, ..., wy} and Z,, = span{zi,zy,...,z,}. The initial data is projected on these
subspaces V,, and Z,, as follows

ug (x) = iaia)i, uf'(x) = Z biw; and v (x) = i cizi, vl(x) = Zm: diz;,
i1 i=1 i=1

where

(ug', o) = (uo,v0) N VXV.
@, o) = (u1,01)  in L*(0,1) X L*(0,1).

Now, we search the approximate solutions
W, t) = Y O (D) and " (x, 1) = ) g (Bzi(x)
i=1 i=1

to the finite dimensional Cauchy problem

fo uttwdx+f0 ul wxdx+af0 u wxdx+f0 f", v™Mwdx =0,
fo vfzdx + bfo vz dx + fo g™, v"™)zdx = bfo (t—ys) fo vz, dxds, (6)
u™(0),0"(0)) = (ug', vg'), (uy*(0),0}"(0)) = (u',o}).

According to the theory of ODEs, the problem (6) has solutions (67(1), g7"()) on [0, t,]. The following a

priori estimates will prove that t,, = +oo.
Energy estimates: Multiplying the system (6) by (67'(t))” and (g7"(t))’, respectively, and using (H3), we get

dwm+ﬂp” —doﬂ—g¢MMWsa (7)

where

fo qb(s)ds |

1
£ = 2 (P + or )« P + i + Sooers [ G 2o

Integrating (7) over (0, t), and as (ugy', vg") and (uf', v]") are bounded in V and L%(0,1), it follows that

¢
2
Wm+fﬂmmgﬂ@=m
0
where ¢y denotes a positive constant, independent of both t and m. Consequently,

(u™), (v™) are bounded in L*(0, oo; V),
(ul") is bounded in L%(0, 00; L%(0,1)) N L2(0, o0; V),
(") is bounded in L*(0, o0; L%(0, 1)).

So, there exists a subsequence of (#™) and (v™), denoted also by (1) and (v"), where

u™ — u  weak star in L*(0, oo0; V),
u" — u;  weak star in L*(0, 00; L*(0, 1)) N L3(0, o0; V),
" — v  weak star in L*(0, oo; V),

o — v, weak star in L*(0, o0; L*(0, 1)).
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Consequently,

u™ — u  weakin L%(0,c0; V),
uy = u; weakin L2(0, o0; V),
v" — v  weakin L?(0,00; V),

v" — v,  weakin L*(0, 00; L2(0,1)).

t

We are now able to take the limit in the approximate problem (6) to obtain a weak solution to the problem

(see [19,27]).
The proof of uniqueness can be performed by combining Visik-Ladyzenskaya method and the arguments
used, for example, in [12,[19]. O

4. Decay Result

This section is devoted to presenting and proving our stability result. To accomplish this, we begin by
establishing several auxiliary lemmas.

Lemma 4.1. The functional

1 1
L(t) = f uudx + f viodx + a lluxll?,
0 0 2

under the assumption (H1) and (H3), satisfies

, - B ! bCy
LM < lwllP + ol = llul® = b(1 - ¢——)||Ux|| —f G(u,v)dx+2—ﬁl(Lovx),
0

where By is a very small positive number and

f ¢*(s) e o
Bp(s) — cp()s and  L(t) = BP(t) = @' (£).

Proof. Direct computation, combined with the use of (T)), yields

I (1)

1 1 1 '
P+ ol = el = B lolP - f F(u, oyudx - f 90, 0)odx + b f o f & (¢ - 5) 0n(s)dsidx
0 0 0 0

IA

1 1 t
el + 1[oil* = Nl = b lfoal* = f G(u, v)dx + bf Uxf ¢ (t = s) vx(s)dsdx.
0 0 0

For the last term, we estimate it as follows for any 1 > 0

1 ¢
ﬁvx(t)f()‘¢(t—s)vx(s)dsdx

1 £ t
f 0x(t) f P(t = 5)(0x(5) — vx(t))dsdx + (f (P(S)dS) [eN[

2ﬁ1f(f¢(t s) [ox ( )—vx(t)|ds)d +ﬁ cp” ol
1 t )
f(; (fov (P(t—s) |0y (S)_vx (t)lds) dx

1 t )
I} [f W(f(; = B =9)- ¢'<t—s>|vx<s>—vx<t>|ds] "

2 (+—
(f ﬁqsti(t S)t—s> )ff PO (t=5) = &' (t = 9)]lox (6) = o (O dsdx

Cﬁ (L o Z)x) . (8)

and

IA
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Combining the results obtained above leads us to the conclusion of the proof. [

Lemma 4.2. Assuming (H1) and (H3), the functional

1 t
h(t) = - fo vt fo ot = $)(o(t) - v(E))dsd,

satisfies
72
L) < —(Oft¢(s>ds—ﬁ§¢(0))||vt||2+ e T (A S[ZE(0>1q1+§ﬁz)||vxu2
b 1,
+ (z—ﬁzm)cﬁLovx—z—ﬁz((p ovx)+E(cpovx), 9)

where B, is a very small positive number.

Proof. Using (1) into I}(t), and applying integration by parts leads to

1 f 1 t
L) = —(Oftqb(s)ds)llvtllz—fo‘ vtfo({)’(t—s)(v(t)—v(s))dsdxnhjo‘ g(u,v)jo‘(p(t—s)(v(t)—v(s))dsdx

1
+ bf (vx—ftd)(t—s)vx(s)ds)ftq)(t—s)(vx(t)—vx(s))dsdx.
0 0 0

By applying Young and Poincare inequalities, we find

1 t
- fo o fo ¢ (t—5) (0 (1) — 0 (5)) dsdx < ﬁ2—2¢<0)||vt||2—2%(¢'ovx),

and

- ol _ @ oo+ L
fo g(u,v) fo O (t —s) (v (1) — v (s))dsdx < j; lg(u, 0)| dx+ﬁ3(¢) ).

On the other hand, applying (H3) and Poincare’s inequality, we conclude
S| 7.2l
2 r
B2 [owofar < B[ b+ P
0 0

<
142
< PO (P P P50 o)
2
S 53‘75 (2EOF lhel? + ZEOI o).

We now apply Young’s inequahty and identity (8), we find

1 t ¢
bj; (UX—L(j)(t—s)vx(s)ds)ﬁ(p(t—s)(vx(t)—vx(s))dsdx
t 1 t 1 t
= b(l—j(;cp(s)ds)j(; vxf(;qb(t—s)(vx(t)—vx(s))dsdx+b](; (L(ﬁ)(t—s)(vx(t)—vx(s))ds

b(1- [ o©ds) .. o 2
sl + (48] [ (00900 ona) @

b " b
< E,BZHUxH +(%+b)cﬂ(14°vx).

2

IA

When all the above estimates are combined, we obtain @D O
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Let us define Lyapunov function by
M(t) = E(t) + mii(t) + maLo (),
where m; and m, represent positive constants.
Lemma 4.3. Assuming (H1), the function
M(t) = E(t) + miLy(f) + maLo(b),
satisfies
M (t) < —kE(t) +kipon,, (10)
where k and k; are defined as positive constants.
Proof. Let ty > 0 be fixed and ¢ = f " ¢(s)ds > 0. By combining Lemma and using Poincare’s

inequality (||ut||2 ™ ) and taking f, < ——, m; < , p1 =1- ¢, for t > ty, we obtain

$o
$(0)’
2¢ﬁa

, a
M@® <~ - [%mz - ml] ol - [m1

—®W 72
_[(1 2@ o _( ¢53[ZE(0)]q 1, éﬁz)m2]||0xll2—m1f G, o)
0

b ¢(0)
T

[2EO) 1%] [N

M)’ © vy + ﬁ%mz(j) o Uy + [Zﬁl my + (% + b) mz] CgL o v,.

If B, and B3 are small enough and m;, > q%ml we find,
0

b 1
my + +b|my|Csg < —m
[Zﬁll(ﬁ )Z]ﬁﬁsz
Then, for some k > 0, we obtain (I0). O

Theorem 4.4. Let (H1), (H2) and (H3) be satisfied. Then, positive constants ny and ny exist such that E(t) satisfies
the following inequality:

t
E(t) < ny®; 7! (m f C(s)ds) Vit > to, (11)
@-1()

where @ is strictly decreasing and convex on (0, 1], and

!
1
q)l(t) = I F’(S)ds

Proof. Using (@) and (§) we find:

to to
f (8) [02() — 0a(t — )P ds < — 2O f &'(9) lox(t) — vs(t — )P ds < ~uE' (D).
0 d 0

forall t > t,.
Next, we use Lemma [4.3] for some k,k; > 0 and t > ty, to get:

M'(t) < —kE(t) + ki o vy

f
KE() - pE'(8) + Ky f (6) lox(t) - ox(t - )P ds.
to

IA
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By taking L(t) = M(t) + uE(t), we have

t
L(t) < —KE() + ki f (5) lloa(t) — vu(t — s)IP ds.
fo

According to the properties of @, we examine the following two cases:
1) O(t) is linear: Using (H2) and (5), we get

L)

t
< SKCOE®) + K f (6) ll03(6) — 03¢ — )| ds
to
t
< —KOE® +k [ 666 ost) - alt - )P ds
< —KC(E() — koE (D).

Since C is decreasing, we obtain

(CL+kE) (t) < —kC(t)E(t),

and CL + k;E ~ E. Therefore, from Gronwall’s lemma, we obtain

E(t) < kpe <o SO

2) @(t) is nonlinear: Let I,(t) = ¢ ft: lox(t) — vu(t — s)|I* ds. Then

L(t)

IA

IN

IN

IN

IN

7 [ st - ente - 1P s

29 ("
2 [ oo + o - 1P s
0

a fscf))t f(; (E(s) + E(t —s)) ds
89 t
a —cﬁ)tfo Fox
89 t 89
_ E(0)ds = —E(0) < co.
(1—qb)tfo s =750 <

Choosing 0 < 9 < 1, so that

L) < 1.

Furthermore, the function w;(t) is given by

wilt) = ft &' (9) lox(t) — v(t - )P ds,

so we find

w, () < —uE' ().

3958

(12)

(13)
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As D is strictly convex on (0,/] and ®(0) = 0, then P(as) < ad(s) for (a,s) € (0,1) x (0,]). By using Jensen’s
inequality, (I3) and (H2), we arrive at

1 ,
) = s f 1) (/O3 lox(t) = (e = s)IP) ds

\%

L f Lo OXOSENS o) — orlt — I ds
SL(t) Jy, ° ! !

[ 2
S5, J, U ox(®) — vt = 9)IF)ds

€ ( f (6) lox(t) = vxt — )P ds)

- C(” ( f B(s) llox(t) = vs(t = S)II dS)

where @ is an extension of @ so that @ is strictly increasing and strictly convex C?(0, +co). Then

1 Swy(t)
f ) Ilox(t) = oult = )| ds < 5D ( 0 )

Thus, equation (12) becomes

v

\%

t> t. (14)

L1(t) < —KE(t) + k3@ (‘9”’”(”)

o)
Now, for ¢y < I, we define

E(®)

L= (60 20

)L(t) +E(),

The equivalence between .£; and E can be straightforwardly inferred.
Using (14) and the conditions E’(t) < 0, ®’ > 0, and ®” > 0, we have

E' -
L = €% ((g)) " ( E((O)))L( ) + ( E((O)))L’(t) +E(t)
5 (. E®) 51 Swo(t)\ =, E(®)
< —kE(f)(D (Gom)-i-kg,q) ( C(t) )(D (6 E(O))

Let @* be defined as the convex conjugate of @ in the sense of Young [4]. Then,

®'(s) =5 (@) (5) - (@) (), (15)
satisfies Young's inequality, i.e.,

XY < D(X) + D(Y), (16)

, ( ) iy - Qwy(t)

with X = ® (GOE(O) andY = 1( 0 )

Using (B) and (I5)-(16), we get

R
E(t) E(t) - E(f) E(t) 0

a7
< ~KE(BY 60%)+k3€°%®'(€ E((») q,,( ()) k)
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o . E(t) E(t) E(#) , .
Multiplying (I7) by (() and using eom <, (e £ 0)) @’ ((—: E( O)) and w,(t) < —uE’(t) we obtain:
, . E®) E® ey (. E®)
C(O)Ly () < —kE@B)CHP (60 E(O)) ka€o == E0) e ( E(O)) kaE'(£).
Letting £, = CL; + k4E, and for some Ay, A, > 0 satisfies
ML (t) < E(t) < M Lo(b). (18)

For ny > 0 and t > f;, we obtain

E(t) (eoE(t)

£ =5 " ko)

(19)

) = —m (t)D; ( E(t))

E(0)
where @,(t) = t@'(eot). Since D) (t) = D’ (eot) + €9tP” (€pt), and D is strictly convex on (0, ], we observe that
@7 (), D2(t) > 0 on (0,[]. Hence, with

Z() = m%,

by ([@8)—(19), we can conclude
Z(t) ~ E(t). (20)
A positive constant 1, exists, so that
Z'(t) < —np0(H)Dy(Z(t)) forall t > t.

Then, integrating over (o, t) yields

1 0Z(to) 1 t
———ds > nszds = — —dsanCsds
jt; Dy ( Z( ) 2 ) czty SP(s) 2 fo )

t
= Z(t)selcb—l(n1 f C(s)ds), (21)
0

where ©4(t) = f <D ———ds, which is strictly decreasmg on (0,]] and hm D(t) =
Finally, combining 1. 1) with (20), we get (1T). O
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