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Some characterizations of p-adic mixed central Campanato spaces via
commutator of p-adic Hardy type operator

Jianglong Wu?, Yida Sun®*, Yunpeng Chang?

*Department of Mathematics, Mudanjiang Normal University, China

Abstract. In this paper, we mainly prove the boundedness of commutators generated by Hardy type
operator and p-adic mixed central campanato functions in p-adic mixed central Morrey spaces, and give
some characterizations of p-adic central mixed campanato spaces.

1. Introduction and main results

Let x = p”§, where x € Q and y € Z, p is any prime number, a and b are integers coprime with p and a is
integers coprime with b,then the p-adic norm is defined by

_Jpr ifx#0,
'x'ﬂ‘{o if x = 0.

It is interesting to note that the above p-adic norm satisfy |x + yl|, < max{|x|,, [y|,}, where |x|, # [yl, =

|x + yl, = max{|x|,, |yl,}, for precise information regarding the ultrametric inequality, we can see book [1] for
example.

We denote by Q;,’ the n dimensional p-adic vector space. The magnitude of a point x = (x1, %, -, Xu) €
Q) (xi € Qy (i =1,...,n))is x|, = maxigj<y Xl A p-adicball centered ata € Q; of radius p? (y € Z)is denoted
by B,(a) = {x € Qp:lx—al, < p’}. A corresponding p-adic sphere is shown as S, (a) = {x € Qp:lx—alp =
p’} = B, (a) \ By_1(a).

Since Qy is a locally compact commutative group under addition, there exists unique Haar measure dx
on Q;’. The measure dx by fBo 0 dx = |Bo(0)ly = 1, where |By(0)|; is denoted by the Haar measure of p-adic
unit ball. By simple analysis, we have fB}, @ dx = |B,(a)l, = p"” and fsy @ dx =S, (a)lp.

In recent years, the intersection of harmonic analysis and number theory has attracted the attention of
many people, not only due to the generalization of classical operators and space theories [2-4], but also
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because of its wide applications in many fields, such as mathematical physics and p-adic wavelet theory
[5-7], which continue to promote the development of this field.

Definition 1.1. (see[8]) Let 0 < a <nand f € Lzloc (QZ) ,B(0, |xlp) is a ball in Q, with center at 0 € QZ and radius
|x|p-

1 . f(®)
H f(x) = dt, HY = “o—dt, » \{0}.
of () = = f3<o,x|,,>f(t) t,H, f(x) fQ = dt, x € Q\{0}

Jx[ B, 1l
Remark 1.1. (see [9]) If & = O, then HY, = HP and HY" = HP*, that is

Hiw = [ fomresw = [ IO 4 xeqvio)
Il Jeosa) Q\BO,) |f|p

Definition 1.2. Letb: Q; — Rbe a locally integrable function, the commutators of fractional p-adic Hardy operator
can be defined by

H.J) = s f (b(x) — b)) F(O)t,
B(0,Ixl,)

Wisw= [ L
’ Q\BOx) [y~

Remark 1.2. If o = 0, then ‘HZb = 7{5 and (HZ; = 7—(5’*, that is

5 \0}.

I f(x) = f (b(x) — b F(O)t,
l |P B(O,|x],)

HY fx) = f@ L9 2) - biopa, x e Q)

B, [ty

In 2015, Shi and Lu [10] gave some characterizations of the central Campanato spaces. Next, the
similar results of [10] has been extended to number theory in [11]. Lu and Zhou [12] established some
characterizations of mixed central Campanato spaces, via the boundedness of the commutator of Hardy
type. Recently, some p-adic mixed central function spaces were first introduced in [13], which provides a
basis for further study on these spaces. A natural idea is whether we can consider the generalization of the
results of [12] to number theory?

In the section 3, we prove the boundedness of commutators generated by H?, HF*, HE, HY" and p-adic
central mixed Campanato functions in p-adic mixed central Morrey spaces, and give some characterizations
of p-adic central mixed Campanaro spaces.

It is commonly known that function b adheres to the well-established mean value inequality if there
exists a positive constant C > 0 such that for any ball B, (x) ¢ Q; with y € Z,

C
sup 10~ b ol < G [ 16 = by, 1)
B, (x)3y yOln I, )

where bg () = m Jl;, ® |b(y)ldy, a function class that satisfies (1.1) is called a reverse Holder class. See

[11, 14, 15] for more details on the reverse Holder class and some examples.

Throughout this paper, the letter C always takes place of a constant independent of the primary param-
eters involved and whose value may differ from line to line. In addition, we give some notations. Here and
hereafter |E|, will always denote the Haar measure of a measurable set E on QZ and by xr denotes the charac-

teristic function of a measurable set E C Q;,’. Additionally, we represent q_f =G, = ( qg"ll L -q:z%l), and

0< q_f. < cothatmeans 0 < g;; < oo forall . When0 < q_f < 0o ,werepresentq = (g}, ,q,)such that ql,+ql =1.
]
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Theorem 1.1. Let1 < g5 <oo, -1y 1 <1 <0177, q <Aj<0,j=1,21/=1/q@+1/5,A=A1+A;
and suppose b satisfies (1.1). Then the followmg statements are equwalent.

()b e €M (Qr);

(b) Both HY and H}" are bounded operators from BP> (QZ) to BIA (Qg) .

Remark 1.3. (1) If § = q, then the above results can be found in [11].
(2) In the Euclidean space, we can see [12].

Under some stronger conditions on A and j, the following result can be obtained if remove the
assumption that b satisfies the condition (1.1).

Theorem1.2. Let 1 < § < oo, 1/§+1/7 = 1, —min{% Yt 5pr v Lina a7 } < A < 0. Then the following
statements are equivalent:

(a) b e @XITIA Q) ;

(b) Both H! and H!"" are bounded operators from B (Q;) to BT (Qg) .
In addition, both H; and H." are bounded operators from BIA (QZ) to BT 24 (Qz) .

Remark 1.4. (1) If § = q, then the above result can be found in [11].
(2) In the Euclidean space, we can see [12].

Next, we give some characterizations of €9 (Q;) via the boundedness of H’ Z , and 7’(§ Z on p-adic mixed
central Morrey spaces.

Theorem 1.3. Letq, A, qj, Aj, j =1,2,bbeasin Theorem1.1,0 < a < mm{n(l -+ X W Lyn(A+ 1Y, o },and
B = A2 — a/n. Then the following statements are equivalent:

(a) b e €id (Q);
(b) Both H,, and H"; are bounded operators from Bip (Q;,’) to B (Q;) .

Remark 1.5. (1) If § = q, then the above result can be found in [11].
(2) In the Euclidean space, we can see [12].

Theorem 1.4. Let1 < §< oo, 1/§+1/7 =1, 0<a<m1n{n(1—lzl 1 q) nA+ iyt 1q }
—min {% Yo 0 iIrh 5} <A <0,and p = A —a/n. Then the following statements are equivalent:
(a) b e XTI Q) ;
(b) Both H! and H"", are bounded operators from BT (Q;}) to BT (Qg) .
In addition, both 7{5 pand ?(Z Z are bounded operators from B (Q;’) to BT (Q;) .

Remark 1.6. (1) If § = q, then the above result can be found in [11].
(2) In the Euclidean space, we can see [12].

2. p-adic function spaces

Recently, Sarfraz, Aslam and Malik [13] introduced the following definitions 2.1,2.2.
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Definition 2.1. Let 0 < 7 < oo (P=(r1,72- - 4)), given a measurable function f defined on QZ, then p-adic
mixed Lebesgue spaces is written as

L7(QZ) = {f € M(QZ) ) < oo},

where

r3 ==

Il = «me[fop [f@y [f vz y)|” d]/l) dyz] edy,

Remark 2.1. (1) If rj = oo for all j, then we have to make some suitable modifications.
(2) If rj = r for all j, then LV(QZ) =L (Q;,’)(p—adic Lebesgue spaces).
(3) The class M (QZ) consists of all Lebesgue measurable functions.

Definition 2.2. (p-adic mixed central Morrey spaces) Let 1 < § < coand A € R. Define the p-adic mixed central
Morrey space B (Q;) as follows

gl (QZ) ={f e M(Q)): ||f||zsqv‘(Q;:) <l
where

HfXBy”sz(Q;)

sup ——————
yez |BV|1/1\ ”XBV ||L4(Q?)

”fHZ%\(Q;) = :
Remark 2.2. (1) IfA = -1, then Bi (Q;) = Bi~: (Q;’) (p-adic mixed Morrey spaces).
(2) If § = q. then BT (Qg) = g1 (QZ) (p-adic central Morrey spaces, see [11]).

We introduce the p-adic mixed central Campanato space for the purpose of studying the Theorems
1.1-1.4.

Definition 2.3. (p-adic mixed central Campanato spaces) Let 1 < § < 0o, =1y L < A < 1 then p-adic

i=1g;
mixed central campanato spaces is defined by

€I (Q2) = 1f e M(Q)) : IIfllgsn < oo},

where

lless ey = If = fi ), s
flginer) = o 4 1B, M|, .

Li@Q)
Remark 2.3. (see [16]) If § = g, then €7 (Q;) =gt (Q;‘) (p-adic central Campanato spaces).

Lemma 2.1. (Holder’s inequality [13]) Let Q}; be an n-dimensional p-adic vector space.Suppose that 1 < § < oo
with %, + q% = 1,and measurable functions f € LT (QZ) and g € L7 (QZ). Then there exists a positive constant C such
that

fQ g < Ol el g
»
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Lemma22. Letl<f<oo, -1y L <A <0andikeZ. Ifbe(i“(@") then

llq

1b(y) = b,,| < 1b(y) = b, | + Cmax{|Bly, Bl Hlbllgi qp)-
Proof. Using Holder’s inequality to 7 and ¢/, we get

Ibs, ~ b, | < IB LY

Bin

IB " =, (0= b, ey

)X, iy

Biy1

|B| ||XB+1||U7 (Qﬂ)”(b b,

| i+1|h
= "IBil, ”XBM”U @) ||XBH1||L17(Q;)||b||¢qz«@;)

< ClBisal; bllgagy-

If k < j, then

Ib(y) = by, | < b(y) = b, |+Z|b3
j-1
<Ib(y) ~ b, | + CZ 1B [y 1ol oy
i=k
< |b(y) - szl + C|Bk|2||b||¢w(@;)-

z+1

If k > j, then

Ib(y) — b, | < Ib(y) b, | + Z b5, —
i=]
k-1
< 1b(y) = by |+ C Y IBraalplbllgin gy
=
< 1b(y) = b, | + CIBl; IPllgia -

1+1

Thus the proof of lemma 2.2 is finished. O

3. Proofs of the principal results

Proof. [Proof of Theorem 1.1] The proof can be divided into two steps.

3967

(a) = (b) Given a fixed ball B, C Q}, the task is now to show that there exists a positive constant C such

that

1HE H, 5yy = OB e gy Mol oy

)

A" 2, gy < OB s, sy 1M g Iy

(3.1)

(3.2)
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The definition of 7—{5 and Minkowski’s inequality give that

b(-)-b d
6, O |pr O~ U) sy

[ Hx,, )1|m,, )
@)
v
< ¥ o f (b() - b(y) f)y
= Li@)
<c Z O Y J. @0=ba) ey
P im—co L@
e Z B0 Z ORI
L7(@Qy)
=I+1L
Firstly, we estimate I . For % = ql? + q%z and 1 = ql} % by Holder’s inequality, we get
72
1= Yyl 6ot Y ff(ydy
k=—co = L
< Yool Y v [ o
D) im0 172 @p)

fXs, Hmz(Q" ”XB ”L“Z(Q"

Z p kn |XBk (b~ Bk)”m](Qn) Z |X8k||mz @)
k=—oc0
|f||B’ErA2(Q;) k—Z: P |Bk|21 “XB;(”M(Q;)

k
X Z |Bi|22 ”XB,(”UE(Q;)

i=—00
Y
|f“sz/\z(Q;;) k_Z P_kn |Bk| |XBkHL’7 @) Z |B |}\2+1

< ||b||¢q'1,«’~1(Qg)

X, ”Lﬁ(Qﬁ) ||XBi ”LJZ(Q;)

l——CX)

< CHb”@ﬂ/‘l (Qg)

|f| |3E~‘z (@)’

A
< CIB,|, ”ng i@y 1Bl 5.1, (@)

where
TP NERLET DuAY- N ’

XBk“mE(Q;;) ~ |Bil, ‘XBk”Lfi(Q”

”XB)(”L'H(Q;)
</\2<0and/\ A1+/\2

and we have used the fact -1 Y1, ql <A<0, —; 1 -
==+ z Land1= q —7 allow us to estimate the term II as

Next, by Holder’s inequality, the fact 1, = ’fl

uscﬁ T Z f (b(y) = b,) f(y)dy

k=—00 i=—00

L@
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k
Ko, 2, 6= b fxs s s

i=—00

<C i pfkn
k=—c0

<C Z oY Z I — ba ), s oy

k=—c0 j=—00

L7(Qyp)

fXB “LWZ(Q” ”XB ”U @
'}/
< Wl ) o ) 2o P B el s ey
k=—co
k
oD ML L O T
1=—00
)4
) )f“B‘er/\z(Q;;) Z pkn(/\1+ Z‘t lq +,, pya 1H_1)
k=—oo

XZ Ntk T o T

l——OO

< CIB, I s, gy Wi ) 11l sy

< C”b”@rﬁ«/‘] (Q;;

and we have used the fact that -1 Zl 1 q <A <0, A=A+ Ay, and — <A<0.

i= 1 q
By virtue of the estimates of I and II, we can obtain (3.1).

To prove (3.2), note that

* (bO) — b)) fW) |
HP o = [|Xs, U ol
”( L Hx J,()” X, ()LE\B(O lxly) v

L@} lylp i
P
b(-) = b(y)) f(
< x,, ) O W,,
) p}/112|y|p2| ‘p |y|p L‘7(Q;,’)
(b() = b(y)) f( )
0 T W 4y
lylp>p" Ylp L@
=I+1I.

The term I’ can be handled in a similar method as that of (3.1), the only difference being in the analysis of
the term II’. Analysis similar to that of 7—(5 shows

I'<

1
5.0 [, 000 sy

Li(@Qy)

O Z f (b0) - b)) )y

')/

<)

k=meo Li(@Qp)
<Y XBL()Z f (b() - b)) f )y
koo = L1(@y)

< C|B;/|h ||XB‘/||L‘7(Q;,’) ”b“(gﬁm (@) B2 (Q) *
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For the term II’, applying Minkowski’s inequality, we obtain

b() = b,, ) f(y)
relhof [ L0,
k= ' L@}
—b(y)) fv) .
+ |1X, (¢ )Zf yl; — ¢ =10} + 11
S LiQ)
For % = ql? + q%z and 1 = q%z %/ by Holder’s inequality, the fact -1 Y1, q <Ay <0and A = Ay + Ay, deduce
that "
: If(y)l
117 = [lx,, ()(() ng: e
ey s W uf(@;’)
. IfOl
< [, O (b0 -1, N 1 st Z SO e sl g
XBk )‘LqZ(Q”

< ClBV' ”XBy“m(Qn 16 ”(W M Q,’})Zp o ||fXBk||[jIZ(Q”
k=y
qu N (Q“) Z P_kn|B |A2+1

) |f “Bﬁ‘zﬂz (@)

sa&|mub@unmhg

< C|By|,/1\1 “Xsy “LJ(Q;;) Bl gsi 1 @

To estimate II},, we need the following decomposition

) (bw) - (@) - b, ) fW) )f (y)
IIZ B) Z |]/| y
S g i@y
)f(v)
B ’ ’
+ 11X, ( )Z f o ————dy = Il + II},.
k=y ¢ )
We first consider II;. For = & + - and 1 = q% + q%, using Holder’s inequality, we deduce
2

%<Q:p.£lw> ) Fdy

C e, s ) Z_: " b= by)fxs, “Li(@;:) I, ||m7<@;:>

m, <C
Li@)

XBk”Lq (Q"

fXBkHUz(Qn

Qn) Z pikn “(b ka )XBk Hm @)

k=y
) Z p—kn|B |/\+1

< Cllxs, Ny Pl ()
=

< Cllxs, |,
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< By b, Flloesocep

@) “b“(gﬁ/h (Q;)

where we have used the conditions A = A; + A, and —+ Y74 q <A<0.
For the term II,,, we claim first that for k >y,
|bBV — ka| < Cp()/+1)11)\1”b”@wl @)
Indeed,
k-1 = -
b, —b, |< ) b, —=b, |< —f |b(y) — b, |d
B By p B Bji1 = |B]|h B y Bi Y
1oy
= Mo (CCORTN PO NN (NN P
j=y IBjls ( W)= f“) Bl @ 112 lIL @)
v 1Byl
B
< Clbllgsi (o) Z B
k-1
< C||b||¢.ﬁ,/\1 @) Z p(]+1)n/\1 < Cﬂ}’ﬂ)nh”b”@idl (@)
=y
Therefore, for -1 Y7, q <Ay <0and A = A1 + Ay, using Holder’s inequality again, we get
11, <l 021 P 4
2 = @)t L s Ty

Li(@Qyp)

< Clibllggin (@) ||Xs () Z p f If(W)ldy

k=y L@y

= C|BJ’|h ”bH@’“ M (Q” “XB\ ”Lq @) ZP & HfXBk“Lﬂz(Qn

=y
(o]
knA.
N
k=y

|f “B@‘v‘z (@)

XBk | | qu Qn

< CIBy ) ||xs,

1@} ||b||¢rf1~’*1 (Qg)

A
< CIBy by [xs, sy 1Pl ()

Summarizing, we have
’ A
115 < CIBy s,y Welsion (g [l
which implies (3.2). This is the desired result.

(b) = (a). In this case, the important point of the proof is to construct a proper commutator. We are
reduced to proving that for a fixed ball B,,

16 b, |

1B, 1y ||, |

q] (Qn

L1(Q})
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We conclude from (1.1) and Hoélder’s inequality that

1© =080, [y stpy 2, 10D = B s N
1Byl

o, s @) ) By s, L@
ClIb = bg,)x,, I @y
1Byl ||XB7, ”Ll(Q,’i)
Cll(b = bs,) x5, Lin
|B7’|£1 ||XB}’||

L7(@y)

To deal with the above term, we note that

I - bB,,,)XBy”LLT(Q;;) < [ ()- m (Z)dz] XB),(.)
Lq(@;)
XBV
- f (b() - b(2) dz
L‘?(QZ)
XBV(')
<l [ 0=t e
Bylh JB(0,1x1)

L7(Qy)

XB,(')
) b() — b P
1Byl L;\B(mxhﬂ)( €)= b x5, 2z

The (BWZ (Q;) , BN (Q;’)) boundedness of 7—(5 allows us to estimate J; as

Li@p)

N (|h)' N | IS
< s, OH () Ol
< CIByy (s, g 1745 O Ml
< OBy sl I ooy
< CB (1o, N

By the (BWZ (QZ) | BiA (QZ)) boundedness of 7{5 ", it is easy to check that

n
Izlpdz

X5, () (b() = b(2) X, )
LP\B(O xlp)

1B, I l2ly
< Clle, OH 06O gy
< CIByly ”Xfw“ Hy ()

< CIB, i |lx,

Li(@)

L7(Q}) BIM(Q))

el

< CB,Jy [ |

Bi2(Q)

L1Qp)

:]1 +]2.

3972
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Thus we have established the following inequality if we combine the above estimates for J; and |,

”(b bB XB, ”qu(Qn CIB}’lh ”XB» ”Lq(Q"

IB?/lh ||XBy||Lq‘1(Q;) |B)/|h ”Xfﬁ ||L‘71(Q”
Thus the proof of Theorem 1.1 is finished. O
Application Lemma 2.2, we can now return to the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] (a) = (b) Let f € Bl (QE) , b e @it (QZ). The task is now to find a positive
constant C such that for a fixed ball B,, the following inequalities are right

(3.3)

1HG 9260, gy = COB e, gy Mol gy 1 gy

b
L@y 1Bl

[H x| < CIB, i ||xs, | |fHBq7‘(Q,',‘) '

L7(@Q}) Emaxlda’l A (Qy)

To deal with (3.3), we note that

”(Wpf))(ﬁ} ( )“Lq(Qn

b(-)-b d
6, O |pr O~ U) sy

i@y
Y
< X IO | 0620 sy
k=—c0 - |p Li(@Qyp)
ch oy . @0 =ba) sty
- I” i=—c0 L7(@Qp)

+CZ O I” Z f (b(y) = bs,) f(y)dy

=K; +K,.

Li@p)

To estimate K;. For 1 = % + %, by the Holder’s inequality, we get

b)Y | sepay

i=—00

fa=c Z 1Bl
L’NQ”)
Z e enl, Y [ oy

Fl—oo

< Z Buls =B k|h ”XBk”LfI(Q" ”b”@” (@) Z ”fXB ||L4(Q” ”XB ”Lq @)

l——DO

BM Qn Z |Bk|2 -1 ”)(Bk”Lq(q’_gﬂ Z |B |A+1

< CIBy 2 |lx, Hm@) Ibllgin(ay)

< ||b”¢q \(Qn

)’

where we have used the fact -1 Y7, Zq <A<0.
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As for K,, it follows from lemma 2.2 that

'}/
1
fos C,(:Z_:‘)o Bl
'}/

1
CZ|B|
’q

+ Cllbllgra (qp) Z Bl

= K21 + K22.

k
6 Y [ =) sy

L1(Qy)

X Z f (bly) by, f()dy

L7(Qp)

XBk | f IBil; | (y)ldy

Li@p)

Repeated application of Holder’s inequality shows that

Kn<C 2 o ey 2 &~ bs)x,

j=—00

)i (Qn ||fXB “Lq Qp

< C“f”z;q Q) Z |Biln ”XBk”Lq(Qp z ” b - by, )XB ”m @) IBi |h“XB ”U(Q”

l_—DO

< Cllbllgs gy 11l s Z T Z 1, ey 16, i oy Bl
i=—0co

< Cllbllgya gy ) Z i Wallep Z B!
i=—o00

< CIB)"hA“XB ”Lq(Q" |b”W’A(Q” |f”Bq\(Q"

and the condition -1 Y'1" 2q <A<0 has been used.

With the help of the fact -1 YL, - 5 </ <0and Holder’s inequality, the term Kz, can be bounded by

Y k
- 1
Kz < Cllblgin o) Z TS Z IBil} fB f@)ldy

< Clbllgin gy Z Moy Z Bl £ sl

l_—OO

< Clilgss(p) ooy }: Wiy }: B2+

i=—00
< (B, h}‘ ||XB}, ”Li(Qg) ||b||@ﬁ/\(Q;) ”f”BW(Q;) ’

Based on the above estimate for Ky; and Kj;, we get (3.3).

With a slight modification of the proofs for (3.2) and (3.3) can be obtained easily, we omit its proof here
for the similarity.

(b) = (a) We divide the proof into two cases according to the range of § and q_;.

Case 1: § > . In this case, we only need to show that there is a positive canstant C such that for a fixed
ball B,, there holds

= be)xs, |,

B4 [, |

Lq (Qn

L@y
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To deal with this inequality, we note that

[® = bs,)x, |,
e iy 1 1
. Lp— 00 - 5 [ e, O
|B7”|h ”XB,v L@ |B7|h “XB;/HLE(Q;) vih JB, Li(Qp)
X ()
< |y [ 00 - e
1By 1 [|x, [, vy 1OV VB, i@y
1 X5, ()
o [ e venw, e
B Ih ”XBV L@ yih JB(O, ) (@)
1 X, ()
+ — B.] () = b(2))x,, (2)dz
1B, 11| xs, )UT(Q;;I) e Japsojx,) @)
=L+ L.

The (B‘m, (Q;‘) | Bi2A (Q;’)) boundedness of ‘Hf produces the following estimate for the term L,,

1 Xa, () 1
<— e [ 00 - b,
1B, HXBV L@} vik p JBOM,) L1@Qp)
1

< O I, OH )0l

|B'}/|2 ||XBV L,i Qn) ! ! Lq(Q
< C|B'}/|h ||7-IP(XB )||Bq2/‘(Qn
< C|B'}/|h ||XBV '(317,/\(@;’1)
<C

By the (8‘7/‘ (QZ) , B (QZ)) boundedness of #; ", the following can be confirmed easily

1 Xs, () (b() = b(2)) 1, (2)
< : L | d
Byl o s || B ETE
nives ) ) Q\B(O,IxI,) p L)
C
< s, O Ges)Oll s
|B)’|2 HXBV L’f(Q”) ! ' Lq(Q

< CIBy Iy [ M) (x,,)

< CIB, i [l |
<C

o

BiA (Qn

Combining L; and L,, we have

|6 = bs,)x,,

1B, s, |

L (er

L7(@p)

Case 2: § < q'. In view of the (BW (Q;’) , B2 (Q;)) boundedness of H, and H;", the similar ways of Case 1
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can be applied to this and show that

||(b =g, )X, ”Lﬂ”(@ﬁ)

1By, ”XBr “m7 @)

To sum up, we finish the proof of Theorem 1.2. O

Proof. [Proofs of Theorem 1.3 and Theorem 1.4] The ways used in the proofs of Theorem 1.1 and Theorem
1.2 remain valid for that of the following Theorem 1.3 and Theorem 1.4 with only a slight modification,
thus we omit their proof. [J
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