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Backward error analysis of generalized eigenvalue problems
preserving block structures of matrices

Sk. Safique Ahmad®*, Gyan Swarup Nag?

?Department of Mathematics, Indian Institute of Technology Indore, India

Abstract. This paper considers the backward error analysis of an approximate eigenpair of blockwise
structured matrix pencils that becomes an exact eigenpair of an appropriately minimal perturbed block
matrix pencil. The obtained perturbed pencil preserves the structures of different blocks for the Frobenius
norm. In application, we discuss the different pencils arising in continuous-time linear quadratic optimal
control problems, discrete-time linear quadratic optimal control, and port-Hamiltonian descriptor systems
in optimal control. We also present several numerical examples to illustrate our framework.

1. Introduction

Backward error analysis is crucial for understanding the computed solution’s quality and the numerical
algorithm’s stability. By backward error analysis, we know how far the computed solution stands from
the original solution in an algorithm. A literature series is available where unstructured and structured
eigenpair backward errors of matrix pencils and polynomials have been discussed (see, [1} 3, 4} [11]). In
these papers, the blocks” symmetry has been ignored if it is present in the matrices. In [21], the author has
discussed blockwise perturbation for a symmetric matrix. In many applications (see [14} [17, [19]) where
we get block-structured matrices, those blocks have some physical significance. We often need algorithms
that take care of the blocks to preserve their physical importance. To study the quality of the computed
solutions and the sensitivity of the algorithms that preserve the block structure of the matrices, we must
study the blockwise structured, backward error. In this paper, we consider the perturbation of matrix
pencils. In particular, we derive structured backward errors for eigenpairs of structured matrix pencil
arising in optimal control theory (see, [15, 17, [18]). Consider the linear quadratic optimal control problems
for the continuous case. Here the associated matrix pencil is of the form L.(z) = M, + zN,, where

0 A B 0 E O
M.:=|A* Q S|andN.:=|-E* 0 0 (1)
B S R 0 00
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with A,E,Q € C™", S,B € C™™", and R € C"™". Here, Q and R are positive definite and [8 is positive

R
semidefinite (see e.g., [13,[17]). In continuous time case, the problem is to minimize the functional

1 “ * * * * *
3 | 0 Qu0 -+ a6y RuC) + w0 v0) + oSt
to
subject to the constraints Ex(t) = Ax(t) + Bu(t), %(to) = x°, y(t) = x(t). If we consider the linear quadratic

optimal control problem for the discrete case, the associated matrix pencil is of the form L;(z) = My + zNy,
where

0 A B 0 E O
My:=|-E* Q S|andN;:=|-A* 0 0f, (2)
0 S R -B* 0 0

AE,QeC™, S,BeC™, and R € C"™", the problem is to minimize the functional
1 - * * * * *
> Z[kayk + w Ruy + ;. Sy + v, Sugl,

k=0

subject to the difference equation Exy.1 = Axyx + Buy, xi, = X0, Yk = Xx. We also consider the matrix pencil
L,(z) of the form

0 J-R B 0 E 0
L(2)=M,+zN,=|[(J-R Q O|+z[-E" 0 0], 3)
B 0 S 0 0 0

where R, E,Q e C™", BeC" and S € C"" satisfy [* = - R* =R, E*=E,Q"=Q,and 5 =5 > 0, i.e,
S is positive definite. These types of pencils arise in optimal control and H, control problems and in the
passivity analysis of dynamical systems. If we consider the optimal control problem of minimizing the cost
functional

f [x"Qx + u*Su]dt
to

subject to the constraint Ex(f) = Ax(t) + Bu(t), x(to) = x°, y(t) = x(t). Here, we assume that E = E*. Then,
partition it into skew-symmetric and symmetric parts A = | — R. The above system is the port Hamiltonian
descriptor system (see, e.g., [8,[10]). In this paper, we do perturbation analysis on matrix pencils given in
the equations (I), (2), and (3), respectively. The main highlights of the paper are given as follows:

e The authors in [1} 3} 5H7] have discussed eigenpair backward error, but those frameworks cannot be
implemented for the blockwise structured perturbations.

e We have formulated a framework designed to uphold both the block structure and the internal
structure within each block within our theory. By our framework, we also maintain the sparsity
within the block structures.

e Mehl etal. in [16] derive blockwise eigenpair for A € iR for the pencil (3), where they have considered
the matrix Q = 0. Our framework calculates the structured blockwise eigenpair backward error for
any such A € Cand Q € C™". In some cases, bounds of the backward error have been derived in their
paper, but by our framework, we find the exact backward errors.

e In this paper, we introduce a method for perturbing our block matrices without altering the defi-
niteness of the individual blocks due to these perturbations. For instance, in equation (TJ), the block

[g R] maintains its positive semidefinite property. In subsection 3.1} we demonstrate how we pre-

serve the original block structure’s semidefiniteness. Still, if we want to perturb all the blocks, the
same framework can be applied to the rest to calculate the corresponding backward error.
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e In [8], linear port-Hamiltonian descriptor systems are discussed; in that paper and the reference
within the paper, we can find many block-structured matrices, and this analysis can help to find the
blockwise backward error of those structures.

e Recently, in [20], the authors consider block structured pencils obtained from optimal and robust
control, and it discusses eigenvalue characterization under linear perturbation. Our framework can
be used to study the blockwise eigenpair backward error for those structures.

The paper is organized as follows: Section 2] reviews some definitions and preliminary results required in
the later part of the paper. In Section [3) we derive formulae for the blockwise eigenpair backward error
for various block structures in different subsections. Finally, in Section [d we have illustrated numerical
examples based on our theory and compared it with previous literature.

2. Notation and Preliminaries

Throughout the paper, we follow the following notation: C"™ is the set of all n X m complex matrices.
Define A" as the pseudoinverse of the matrix A € C". For A € C"™™, AT and A* denote the transpose
and the conjugate transpose of A, respectively. Let sgna = 1 when a # 0, otherwise sgna = 0. For a
matrix A;:= (a;,]q)) eC™™,j=1,2,wherep=1,...,n,g=1,...,m, we define sgn A; = (sgna;,]q)) e C"™™"_ For
A = (a;) € C™"and B = (b;j) € C"™", we define AoB := (a;;b;;),i = 1,...,n,j=1,...,m. We denote SHerm(n)
and Herm(n) to be the set of all skew-Hermitian and Hermitian matrices of size n X n, respectively. We
define spectral and Frobenius norm on C"™" by [|All,:= maxXjy=1/lAx|lz and ||Al|r:= +/trace(A*A), respectively.
For a vector v = (v1,vs,...,0,)! € C", diag(v) denotes a diagonal matrix of size n X n with diagonal entries
viforj=1,...,n. If A= (a;;) € C"™", then vec(A) =[a11, .., Any oo Ay Aum]” € C"IfA = (a;j) € C™"
is symmetric matrix, then define vec(A) := [a11,...,811,822, . .., 820, - - . , An=1)(n=1), An—1)n, Ann], Where vec(A) €
C?*+m/2 Tf Ais skew-symmetric matrix, then we define vec(A) := [a1a, ..., 414,823, . . ., G20, - - -, An-2)n, a(”_l)n]T,
where vec(A) € C~"/2, We set L(C"™") as the space of matrix pencils.

Definition 2.1. For the pencil L € L(C™™") of the form L(z) = A + zB, the norm of the pencil is defined by
L= (AIZ+IBIE) 2.

Definition 2.2. Let (A,x) € C x C" \ {0} be the exact eigenpair of the perturbed pencil L — AL € L(C™"). Then the
unstructured and structured eigenpair backward errors of (A, x) for the pencil L are defined by

ne(L, A, x) = inf{l]AL]: (L(A) — AL(A))x = O}and

(L, A, x) inf{]AL]: AL € S, (L(A) — AL(A))x = 0},

respectively, where S denotes some specific structure and AL(z) = AA + zAB.

Note: The statement (A,x) € C x C" \ {0} is the exact eigenpair of the perturbed pencil L — AL € L(C™")
can be rewritten as (A,x) € C x C" \ {0} to be the approximate eigenpair of the unperturbed matix pencil
L e L(C™™).

For further development of our theory we define the following matrices

CE | B SRR B v 0 Vi Vi
ps = \/E \/E ,Qs = \/z 1 :2 s Pss = \5 . \5 Qs = .2 0 .2-
5 5 1 V2 V2o 1 = 0 V2 V2 o0

and the vectors generated from these matrices are

TR ) [ EUR VARG Y (v e 1 ] RV OORYG1 9

respectively. To maintain the sparsity within the blocks we introduce sgn function as follows:
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Remark 2.3. Consider the perturbed system of equation

(Saux(l) + 66!12X(2) + 6611336(3) = b(l)
6&219((1) + (561229((2) + 601233((3) = b(z)
(5&313((1) + 6a32x(2) + 6&333((3) = b(3).

Now, if we want to maintain the sparsity in the perturbed system of equations, we can write the equivalent system of
equations as follows:

(3&21 6a22 5&23 o[sgnar; Sgndzy SgNass x(Z) = b(z) .

da;; Oa;y Oa;z] [sgnap sgnapp sgnap][xV b
60131 (56132 5&33 sgnaz; Sgnas; Sgnass x(S) b(3)

Now, we discuss all possible cases in which we write the system of equations in their equivalent form
in the following lemmas. Firstly, we write this for general unstructured block matrices.

Lemma 2.4. Let A1, AA; € R™", and Ay, AA; € R™™ be generated by [a(l) ) a(l)]T € ]R”z,

1174127 1 fnn
(0, 60, ..., 6001 € R”, [02,42,...,a2] € R™, and [543, 502,...,

M
x = [ia)] € R™", where xV = [x(111)"' X (1)] eR",x@ = [x(Z) ., ml]T e R", and b € R", then

6al2) 1T € R™, respectively. Let

£

nx(n+m) [x(z) =b

[ AA; o sgnA; | AAz o sgnA, ] ]
(n+m)x1

is equivalent to

. . vec(AA; osgnAr)|
[ Xoding(vectsgnay) | Xodiogtvectsgnde) |, eV 23000
where PO (1)
) A 2l ?1) (1) (()1) .l o o .0
. 0 0 - 0 |af ) - 2] 0 o o0
x® = . .
: : : : P "
0 0 -+ 0[]0 0 - 0 |-|x) o oox)]
and
x(121) xg) x(zi o --- 0 0 0
@ 9 @
o 0 0 0 | x5; xy X 0 0
x@ = .
: : : : r - r
0 0 -+ 0 [0 0 - 0 |-|x) - o x2]
Proof. Consider
M
x
[ Ay o SgI‘IA1 ‘ Adyo SgnA2 ]nx(n+m) [x(z)] =b,
(n+m)x1
where
6a(l)sgn aV ba(l)sgn a(l) a 5a(1)sgn at!
6a%1])sgn a%ll) oa 1§sgn ) 2 6a%ﬁsgn a%ﬁ
AA; osgnA; = ) ]
6a(1)sgn a(l) 6a(1)sgn a(l) 6a,(11n)sgna 1
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and 1 1 1 1) 1
oa )sgna( ) 5a )sgna e oal) sgna( )l
6a%1])s nah]) 6a(1§s nal 07 e 611%1515 a%{S
215815 8N4 2 SR
AAj; osgnA, = . .
6115111) sgn afqll) oa 1)sgn a(l) 6ufql,,)15gn al)
Now, from the given system of equation we get
6u(%1];sgna§11; 6a§12;sgna§12; 6a§1};sgna§]}; 6u(%2];sgna§21; 6a(%22;sgna§22; 6a§2)lsgna(2)
1 1 1 1 1 1 2 2 ) 2 2
oay sgnay’  Oay,sgnay, oo bay 'sgnay | day'sgnay’  Oaysgnay - a4y sgn uZm [ ] b
6a(1)sgna(1> 6a(1>sgna o baf}nsgnunln) 6a£lzl)sgnaf121) 6a£,22>sgna;22) cee Oa fmsgna%

Now, by rearranging the system of equations so that the elements of the matrices AA; and AA; are
treated as unknowns, we obtain the system of equations as

vec(AA; o sgnAl)] —p

[ X,wdiag(vec(sgnAy)) | X,odiag(vec(sgnAy)) ][VEC( Ads 0 sgnda)| =

where

@ M (1)
xll x21 xnl 0 0 0 0
0 0 - 0 |49 O 0 O .10 ... ... 0
X = 11 2 nl
X ‘ . . . . . . 7
: : : : o o 0
0 0 -+ 0[]0 0 - 0 |-|af) o o 2]
x(121) x(zzl) 2o . 0 0 0
@ @ 0]
oo 1= 0 0 0 1%y X Y 0 0
X - .
. . . . (2) . . (2)
0 0 -+ 0[O0 0 - 0 |-|uy - - oxy L
and
sgnalll) 0 0
0 sgna(llz) 0
diag(vec(sgnAii)) =| 0 0 0 ,
0 0 v e sgnaﬁn)mzxnz
sgna(z) 0 0
0 sgna(z) 0
diag(vec(sgnAy,)) = 0 0 0 n
: : . .
0 0 ngn% I

Note: In the above equivalent system of linear equations X, diag(vec(sgnA)) and X,»diag(vec(sgnA,))
are of full row rank matrices, follows from the construction that each matrix has linearly independent rows,
and if we combine these two matrices we get a matrix [Xxu)diag(vec(sgnAl)) Xx(z>diag(vec(sgnA2))] is of

full row rank.
In the following lemma, we rewrite the system of equations into its equivalent form consisting of the

transpose of the matrices.
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Lemma 2.5. Let A, AAT € R™", AT, AAT € R™" be generated by [0, ), ..., a)1" e R™, [6a\), 6aL), ..., 600317,
, o)
[aﬁ),a(é),.“ fi;]T e R™, and [6 523,611(122, . ,5a”2”)1]T € R™, respectively. Let x = [x(z) € R™™, where
20 =Y AT e R, 1@ = 22, B T € R™, and b € R™. Then
T T T x®
[AAT osgnAT  AAT o sgnAT]|")| = b,
is equivalent to
- ~ vec(AA; o sgnAy)
[Reo diag(vec(sgnAy) - Xyediag(vec(sgnaz)) [vecmAz o sgnAy)| =
where O 0 A0
alf ?1) e 0]l (()1> N I R (()1) e 0
Z o o 0o ) oo A o 0] 0 ) 0
X . .
) (1) @
0 0 X1q 0 0 X5q 0 0 Xl nxn?
and
20 022 o 0 20 0
@) 2) (2)
}? 0 = 0 X 0 0 Y1 0 0 Y1 0
X&) -
2 ) (2)
0 0 xll 0 0 x21 0 0 ml “nxnm

Proof. The proof follows from the proof method of Lemma[2.4\m

Next, we rewrite the system of equations into its equivalent form consisting of unstructured and
symmetric structures.

Lemma 2.6. Let A1,AA; € R™ and A = Ay, AA] = AA; € R™™ be generated by [a SIS a1,

117370
[6a(111),6a§12), 0607 € R™, and [a2,,d2, . i L [6a§21),6a§22), ., 08217 € RD/2 pespectively. Let x =
(1)
|z(2)] e R"™",  where ¥V = [xgll),..., (1)]T e R” and x? = [x(z) X 5421] e R, and b € R". Then

[AA1 osgnA; AA;osgnAjoPso QS] [ ] = b is equivalent to

vec(AA; o sgnAi)

S 1 —
[X.odiag(vec(sgnAr) - X3, diag(vec(sgnAz o Po))| () [Vec( Ads o sgnds 0 Q)| = P
where PRONENS D
D ()1 e 01 lo o o0
o 0 --- 0 x(n) (21) x’(ﬂi . lo -~ ... 0
Xy =1 . .
, ; . ey n
0 0 «+ 0[]0 0 - 0 ||l o ]
and S~ 2
xll %]) . xnl 02 .2. . e 0
0 e 0 xgl) xgl) 0
XS
o) : :
0 0 --- @ o ... .49 @)

11 X1 Xt o 1)
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Proof. The proof is similar to the proof method of Lemma[2.4}m
In the next lemma, we rewrite the system of equations into its equivalent form consisting of unstructured
and skew-symmetric structure.

Lemma 2.7. Let Ay, AA; € R™™ and A] = —Ay, AAL = —AA; € R™ be genemted by [a(lll), 512), saV T,
Pty
[6a (111),601(1) L,6aW T € R™, and [at 12, . Ei) 1)n]T [6a§22),... Ei) - " e R*7 respectzvely Let x = [ (2)]

R™" where xV) = [xgll), X (1)]T e R" and x, = [x(lzl), X (2)]T e R", and b € R". Then we have

XD
[AA1 osgnA; AAj;osgnAjoPgo st] [ (2)] b is equivalent to

[an)diag(vec(sgnAl)) X dlag(vec(sgnAzoPss))][ vec(Ad; o sgndy) ] b,

# vec(AA; o sgnAj o Qss)
where
(1) (1) (1)
A e 0 [0 e 0
0o 0 - 01 O 0O 10 ... ... 0
Xo = 1 X ml
X - . . .
: : : : n : : "
0 0 --- 0 0 0 oo 0 | ) ]
and
(2) (2) (2)
2, 31 X (()2> 0
Lo 0 K& 0
X%, = , .
(2) (2)
0 0 o =% 0 o X ) I

For more clarity, we write the proof of the previous lemma when n = 3 and m = 2.
Remark 2.8. Consider
e
[AAl osgnA; AA;osgnAjoPgo QSS]3X5 [x(z) =b.
5x1

The ﬁrst block of the system of equations can be tackled using Remark[2.3| Consider the second block of the system
of equation i.e., (AA; o sgnAj o Py 0 Qs)x?,

0 1 1
0 6a§22) da 523) 0 sgna(z) sgna<2) V2 2 0 V2 V2[x¥?
522 0 s @ Blol4= 0 |.|va Va2
B @ B ° s o B |2 V2| V2 3‘ x?)
—0a —ba 0 sgna sgna,, 0 L 1L 9 2 2 0
13 23 gnid ;3 Sg N

After multiplication, we get
(\/_ 6a(2))(—sgna + ( V2 (Sa sgm(z))x(z)
v A

—( \/_601(2) ($sgnu + (V2 611 \/Esgna(z))x(z)
—( \/_651(2)

\/Esgnam (2)—(\/_&1 )(7sgna )(2)
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Now, by rearranging, we get

which implies

gy, 0 0
x%) xgi) ?2 ) V2 e \/Eéagsgna%
13
-x;; 0 x3% 0 V2 0 \/§6a13sgna13 ,
0 @ @ o || V26a?sgna®
11 21 0 0 sgna; 23 581153

V2

X, odiag(vec(sgnA,) o Ps)vec(AA; o sgnA; o Q).

Hence, by combining both blocks, we get

[Xxmdiag(vec(sgnAl)) X%, diag(vec(sgnA, o Pss))][

vec(AA; o sgnAi)

VeC(AAZ o SgnAZ o st) - bl

x(2)

where
a0 0 0 0
Xo:=| 0 0 «} «f) R
0 0 0 0 x5 Xy |y
(2) (2)
2, X3 02
Xy = —xgl) 0(2) X (1;)
0 —=xy =Xy Iy
and
sgna(lll) 0 0
0 sgna%) 0
diag(vec(sgnAi)) = 0 0 IR 0 ,
: : . n
0 0 oo .« SgnaBZ _6><6
(2)
Sgnalz 0 0
V2
(2)
diag(vec(sgnA,; o P,)) =| O Ry 0
g( ( gnsln ss)) \/E ]
0 0 sgna(ZS)

\/E 3x3

3984

Note: For arranging unstructured blocks, we need Lemma and to arrange unstructured with
transpose blocks, we need Lemma[2.5| Lemmal2.6]to arrange unstructured with symmetric blocks. Similarly,
for the other cases, we need the respective Lemmas. To calculate the backward error, we need to apply the
combinations of these Lemmas derived in this section. These lemmas will help us to preserve blockwise

perturbation and maintain the sparsity within the blocks.

The next lemma provides the condition for the minimum norm solution of systems of equations.

Lemma 2.9. [9] The system of linear equation Ax = b is consistent ifand only if AA'b = bwhere A' is the generalized

inverse of A € R™", and b € R". A general solution is given by

x=A"b+ (I, - ATA)y

where y € R™ is an arbitrary vector. Moreover, Ax = b has a unique solution if and only if AAY = I,, AA'b = b and

solution is given by
x=A'b.
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3. Structured eigenpair backward errors

In this section, we consider structured matrix pencils of various forms that arise in optimal control
theory. Firstly, we discuss the basic definitions of eigenpair backward error. For matrix pencils of the form
, if we are given (A, x) € C x C*"* \ {0} as an approximate eigenpair then we define backward error by

N(Ly, A, x) = inf{JAL,l|AM,, AN, € C**+"#+7 (L, (A) = ALy(A))x = 0}.

Here, we have ignored the structure of the pencil. Now, if M, is Hermitian and N, is skew-Hermitian, i.e.,
the matrix pencil is *-even, then we define structured eigenpair backward error for even pencil by

NN (Ly, A, x) = inf{]AL,||AM,, € Herm(2n + m), AN, € SHerm(2n + m), (L,(A) — AL,(A))x = 0},

where L,(A) = My, + ANy, AL,(A) = AM,, + AAN,. AM,, and AN, can be found from .

In [12]], the authors discuss various structured polynomial matrices and their linearizations. A matrix
polynomial P(A) = Zf:o AiA;, Ao, ..., Ar € C™" is said to be *-even if P(1) = P*(—A). For our given matrix
pencil L,(z) = M, + zN,, M, € Herm(2n + m) and N, € SHerm(2n + m), which shows that our matrix pencil
is a *-even matrix pencil. Our *-even pencil has some special structured blocks associated with it. The
unstructured and structured backward error results are in [1, (3] 16, [7]. The authors consider structured
matrix pencils and polynomials in these articles and obtain the corresponding eigenpair backward error.
However, the framework used in those papers does not preserve the block structures within the matrices
they considered. In this paper, we focus on matrix pencils with specific block structures. We have preserved
the structure of the pencils and maintained the block structures while perturbing the coefficient matrices.

3.1. Perturbation on pencils arising in continious time linear quadratic optimal control problems

Let L.(z) be of the form (1) and let (A, x) € C x (C>** \ {0}). Let B be the collection of the pencils of the
form AL.(z) = AM. + zAN,, where AM. and AN, are given by

0 AA AB 0 AE 0
AM.=[AA* 0 0 |and AN.=|-AE* 0 0. (4)
AB* 0 0 0 0 0

1)

(

X

If we are given (A,x) € C x (C**" \ {0}), where x = [x(z) ,xD x@ e C" and x® e C", then we define
NE)

eigenpair backward error for perturbation along the blocks by

18(M., N, A, x) = inf{l(AA, AE, AB)| | AA, AE € C™",AB € C™", AL, € B,
(Le(A) = AL (A)x = 0}, (G))

where |(AA, AE, AB)|= \/||AA||%+||AE||%+I|ABII2, and we set ¥V = xgl) + ixS),x(z) = xgz) + ixéz),x@)

= xf’) + ix(zs), Ax® = 4@ = u(ll) + iuél),/\x(z) =u@ = u(lz) + iu(zz),)\x(3) =u® = ug?’) + iu(23), where u(lj) is real part
)

of u') and 1}’ is imaginary part of u. for j = 1,2. In this case, we perturb the block matrices in such a way
that the definiteness of the block matrix [SQ* }S{] won't be hampered.

Given that our matrices are expressed in block form, the following lemma rewrites the system of equa-
tions (L.(A) — AL;(A))x = 0 into an equivalent system of equations. This reformulation will be instrumental
in determining the corresponding eigenpair backward error.
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Lemma 3.1. Let L.(z) be of the form (l) and let (A, x) € C X (CZ””” \{0}). If AA, AE € C™" and AB € C™", there
exists AL.(z) = AM, + zAN, € B, such that (L,(1) — AL.(A))x = 0 if and only if

(AA + AAE)X® + ABx® = O, (6)
(AA* = AAEND = 2, 7)
ABx) = 09, (8)

where rV := (A + AE)x® + Bx®, 1@ .= (A* = AE*)x® + Qx® + Sx©®, and v® = BxM + §*x@ 4 RxO),

Proof. The proof is very straightforward. We have

(LC(/\) - ALC(A))'X = 0,
= (M.-AM.) + A(N. - AN))x = 0.
0 AA + AAE  AB][x® @
— |AA* — AAE? 0 0 |[x®@] = [+@].
AB* 0 0 [[x® r®

Now, Multiplying blockwise we get

(AA + AAE)X® + ABx® = 1),
(AA* = AAEHXD = @),
ABxD = O nm

Using the above system of equations, we can calculate the corresponding blockwise backward error.

Theorem 3.2. Let L.(z) be a sparse matrix pencil of the form (l) Let (A, x) € C X (C¥*™ \ {0}) be an approximate

eigenpair of L.. Then there exists minimum norm AL, of the form (@) with sparsity such that (Le(A) — AL (/\))x = 0 i
MA = r is solvable and the backward error is glven by n2(M,, N¢, A, x) = IM*r||p, where M is defined in

andr = [r(ll)T rgl)T rf)T réz)T 713)T rZS)T] where ¥V = r(l) + zr(l) 2 = (2) + zr( ) 13 = r(3) + zr( )

Proof. Let AA = AA; +iAAy, AE = AE; +iAE; and AB = AB; + iAB;. Then from, equation @, we get,

(AA71 + 1AA2)(x( ) 4 zx(2> )+ (AEy + zAEz)(u( ) 4 lu(z)) + (AB1 + zABz)(x( )+ 1x(3 )= r< ) 4 11’(2 , )

where (A — AE)x® + Bx® =1 = rgl) + ir(zl). Now, after multiplication and comparing real and imaginary
parts from equation (9) we get the following equations,

A = A + AEu® - AEsu$ + ABix — ABx) = 4V, (10)
A + A + AEu + AEsu®® + AB1x) + ABY = Al (11)

2

Hence, equations and can be written as

NOR
1
('5 o

[Adi AA; AE AE, AB ABZ] lo| = " (12)
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O
&)
b
Hl = rgl). (13)
b

B
1

[AA1 AA, AE; AE, AB; AB2]

'R R = = R R

Now, since we want to preserve the sparsity within the perturbed system then by using Remark [2.3|and
Lemma 2.4 clockwise, we rewrite equations and as

_ T T
(Xx(12> diag(vec(sgnAq )))

T
—(XX(;) diag(veC(SgnAz))) vec(AA; osgnAy)

. T vec(AA; o sgnAj)
(X”(12) diag(vec(sgnEq ))) vec(AE; o sgnEq) -

. T 1
(X md E vec(AE; o sgnEy)
( W2 iag(vec(sgn z))) vec(AB; o sgn Br)

T
(Xx?) diag(vec(sgnBl))) vec(AB; o sgn By)

T
_(Xx@ diag(vec(sgnBz)))
2

(14)

T, T
(XX(ZZ) diag(vec(sgnA; )))

T
(an) diag(vec(sgnA2))) vec(AAj osgnAq)

! vec(AAj o sgn Ar)
vec(AE1 osgnEq)| )
T| |vec(AE; osgnEyp) | T2
vec(AB1 o sgn By)
vec(AB; o sgn By)

—

Xugz) diag(vec(sgnEy)) 15)
’ )

)
)
X (3diag(vec(sgnBq )))
)

<€

X,

N

T

(

(X @diag(vec(sgnEy
1

(

(

Xx(le.)diag(vec(sgnBz)) |

From equation (7) we get,

(AAT —iAAD) D + i) — (AET —iAED) ) + i) = 7P + ir?, (16)

where 1@ = ' +irl? = (A = AE)x® + Qx® + Sx®). After multiplication and comparing both sides of

equation (16) we get,
M 7

(17)

(
u _ (2)
[AAT AAT AET AE] ABy AB | =

- x(l) -
D

%1)

[AAT AAT AET AE] AB; AB] ‘J(‘l = /2. (18)
1
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Now, using Remark [2.3|and Lemma 2.5, we write equations and as

[}?x(l)diag(vec(sgnAl)) )?Y(l)diag(vec(sgnAz)) —zl(l)diag(vec(sgnEl)) —}?u(l)diag(vec(sgnEz)) 0 0
1 2 1 2

vec(AA; osgnAj)
vec(AA; o sgnAj)
vec(AEq o sgnEyq)
vec(AE; o sgnEy)
vec(AB1 o sgn By)
vec(AB; o sgn By)

= (19)

[f(xmdiag(vec(sgnAl)) —}?Ymdiag(vec(sgnAz)) —)~(u(1)diag(vec(sgnE1)) )~(u(1)diag(vec(sgnE2)) 0 0
2 1 2 1

vec(AA; osgnA)
vec(AA; o sgn Ay)
vec(AE; osgnEq)| /2

vec(AE; osgnEy) |~ 2 ° (20)
vec(ABy o sgn By)
vec(AB; o sgn By)
From equation (8) we get,
(ABT —iABD)() + ixly = 1P + (Y, (21)

where Bx® + §*x@ 4+ Rx® = 0 = r(lg) + ir(23). After multiplication and comparing real and imaginary parts
of equation (21I). Now, using Remark[2.3|and Lemma 2.5 we can write equation (21) as

[Vec(AAj o sgnAy)]
vec(AA; o sgnAj)
00 0 0 Xgdi B) X odi By)||vec(AErosgnED | _ @)

[ (wdiag(vec(sgnBy)) - X o diag(sgn 2)] vec(AE, o spn E») 1, 22)
vec(AB; o sgnBy)
| vec(AB; o sgn By) |

[vec(AA; o sgnAq)]
vec(AA; o sgn Ay)
~ . 2T vec(AEyosgnEy) | _ (3

[0 0 0 0 Xx(zl)dlag(vec(sgnBﬂ) Xx(lndlag(VeC(SgnBz))] vec(AEyosgnEy)| — 27 @3
vec(AB; o sgn By)
| vec(AB; o sgn By) |

where we adjusted the size of the 0 matrices according to the size of the other matrices. Now for calculating
the backward error according to the block perturbations, we combine the equations (I4), (15), (I9), (20),
(22), and (23) and get the following system of equation

MA =r. (24)

vec(AAj osgnAy)
vec(AA; o sgnAy)
vec(AE; o sgnEy)
vec(AE; osgnEy) |’
vec(AB; o sgn By)
vec(AB, o sgn By)

Where M is given in|Appendix Aland A = and 7 = | }|. Now, when M is a full row

L2
rank matrix or the system MA = ris consistent, then from equation (24), we get the minimum norm solution
as A =M'rby Lemma Backward error is given by

infl(AA, AE, AB)|= inf||Al[p= [|M'7||r.m

Note: We can construct minimum norm AA, AE, AB by extracting the elements from A.
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@ ()

T
] then we have

Remark 3.3. Since we have x» € C" then we have x(lz) € C". Now, let x§2) = [xl e X
(2) (2) (2)
¥ a2 xD ((2)) (2) .. ((2)) .l o .. ... 0
X B 0 0 . 0 xl,ll x1,21 . xl,nl . 0 e e 0
T : : : Do
(2) (2)
0 0 - 0 0 0 oo 0 | |2

Similarly, we get the other components of the block matrices.

Remark 3.4. When M is a full row rank matrix, the rank of M automatically equals the rank of the augmented
system for the equation MA = r. If M is not a full row rank matrix but the rank of M is still equal to the rank of the
augmented matrix, meaning the system is consistent, we also obtain a minimum norm solution.

3.2. Perturbation on pencils arising in discrete-time linear quadratic optimal control problems

Let Ly(z) be of the form (2) and let (A, x) € C X (C***™ \ {0}). Let B be the collection of the pencils of the
form AL4(z) = AM, + zAN,;, where AM,; and ANy are given by

0 AA AB 0 AE 0
AM; =|=(AE)* 0 0 [andAN,; = [-(AA)" 0 0]. (25)
0 0 0 —-(AB 0 O
e
If we are given (A, x) € C X (C*"*™ \ {0}), where x = {x(z) € R¥"*" where x1,x@ e C" and x® e C", then
NE)
we define eigenpair backward error for perturbation along the blocks by
n®(Ma,Na, A, x) = inf{l(AA, AE, AB)| |AA, AE € C™",AB € C™",Ls € B,
(La(A) = ALy(A))x = 0}, (26)

where |(AA, AE, AB)|= \/llAA||%+||AE||%+||AB||% and ||./lr denotes the Frobenious norm of a matrix. Now by
the help of the next lemma we formulate the problem into a set of equations.

Lemma 3.5. Let Ly(z) a sparse matrix pencil of the form @) Let (A,x) € Cx C>™\ {0}. If AA,AE € C™" and
AB € C™", then there exists ALy(z) = AMy + zAN; € B such that (Lg(A) — ALz(A))x = 0 if and only if

(AA + AAE)Y® + ABx® = O, (27)
(—=(AE)" = AAAD = /), (28)
~A(AByxD = 9, (29)

where 1V := (A + AE)x® + Bx®, 7@ := (=E* — AA)x® + Qx@ + 5xO®),#® := —AB*x(V + 5*x? + Rx®),
We can calculate the corresponding blockwise error using the above system of equations.

Theorem 3.6. Let Ly(z) be a sparse matrix pencil of the form @) Let (A,x) € C x C?"*™ \ {0} be an approximate
eigenpair of Ly. Then there exists minimum norm AL, of the form with sparsity such that (Ly(A) — ALy(A))x = 0,
if MA = ris solvable and the backward error is given by ng(Hd, Ny, A, x) = |IM*|g, where M is defined in

T
r= [r(lm POt AT T BT r(23)T] r® =0 i) @ = ¢ i 1O = 1 4 D),

Proof. The proof is similar to the proof method of Theorem [3.2/m

3.3. Port-Hamiltonian descriptor system in Control systems

In this section, we perturb different blocks of the port-Hamiltonian system and calculate its blockwise
eigenpair backward error.
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3.4. Perturbation on J,E
Let L,(z) be of the form (8) and (A, x) € C X CZm\ {0}. We define eigenpair backward errors ng (LE, A, x)
and n°(J,E, A, x) by

°(,E,A,x) = infll(A], AE)I| (M, — AM,) + A(N, — AN,))x = 0, AM, + zAN,, € B},
1°(,E A, x) = inf{l(A], AE)I| (M, — AM,) + AN, — AN,))x = 0,AM,, + zAN, € S},
where n2(], E, A, x) is blockwise and 15(], E, A, x) is blockwise symmetry preserving backward error respec-
0
tively. We set x = [x? | where xV,x? € C" and x® € C". The set of all pencils AL,(z) = AM, + zAN,,
NE)
with
0 AJ O 0 AE 0
AM, =|A]* 0 OfandAN,=|-AE" 0 O (30)
0O 0 0 0 0 0

is denoted by 8. When we have A] € SHerm(n), and AE € Herm(n) that set denoted by S. Here we perturb
the block matrices similar to the perturbation defined in [16]. Now, with the help of the next lemma, we
formulate the problem into a set of equations.

Lemma 3.7. Let L(z) be of the form (3) and let (A,x) € C X C2m A\ {0}. If AJ, AE € C™", furthermore ALy(z) =
AM,, +zAN,, € B, then (Ly(A) — AL,(A))x = 0 if and only if

AJx® + AAEX® = /D), (31)
AJ A — AAERD = 42, (32)
Bx® +5x® = o, (33)

where 1V := (] = R + AE)x® + Bx® and r® := (=] = R — AE)xM + Qx®.
Now, using the above system of equations, we can calculate the corresponding blockwise backward
error.

Theorem 3.8. Let L,(z) be a sparse matrix pencil of the form . Let (A,x) € C x C**™ \ {0} be an approximate
eigenpair of L,. Then there exists minimum norm AL, of the form with sparsity such that (L,(A) — AL,(A))x = 0,
if MA = r is solvable and the backward error is given by n%(], E, A, x) = ||M'1||g, where

Xx(z) diag(vec(sgn/)) —Xxm diag(vec(sgnJ>)) Xu(z) diag(vec(sgnEq)) —Xu(z) diag(vec(sgnkE>))

Xxiz) diag(vec(sgn]Ji)) Xx(lzz) diag(vec(sgnJ>)) X“}) diag(vec(sgnEq)) Xu(lzz) diag(vec(sgnE>))

M= Xxgl)diag(vec(sgnh)) )?Xgl)diag(vec(sgn]z)) —}?ugl)diag(vec(sgnEl)) —}?ugl)diag(vec(sgnEz))
Xx(zl)diag(vec(sgnh)) —XX<11)diag(Vec(sgn]2)) —Xu(zl)diag(vec(sgnEl)) Xu(ll)diag(vec(sgnEz))
A
’}1) 1) 1) (2) (2)
and r = r%Z) D =1 +ir 2 =7 +iry .
b

2

Proof. The proof follows from the proof method of Theorem ]
The next theorem calculates the structured blocwise backward error.

Theorem 3.9. Consider L,(z) of the form . Let (A, x) € C x C**" \ {0} be an approximate eigenpair of L,. Then
there exists minimum norm ALy, of the form with sparsity if MA = r is solvable and 11°(J,E, A, x) = [|[M*r||E,
where M is defined in and

_[or or _@r o]
7= ["1 ry ry rs ] ,
= r(ll) +ir 1@ =42

i(2)
> 1t

PR
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Proof. Let A] = AJ1 +iAJ,, and AE = AE; + iAE;. Then from, equation (31), we get,
(A1 + zA]z)(x + lx ) + (AE; + 1AE2)(u(2) + lu(z)) = r )+ zr(l) (34)

where r; := (] — R + AE)x, + Bxs.
Now, after multiplication and comparing real and imaginary parts from equation we get,

(2)

[An AL AE AEz] (22) = 1, (35)
<z>
<z>-

%2)

[Ah AJ, AE; AEZ] } = . (36)

)

Since we need to arrange symmetric and skew-symmetric block structures, we first use Remark [2.3| then
apply the combination of Lemmas[2.6land 2.7} Using those Lemmas we write equations (35) and (36]

[XZZ) diag(vec(sgnJi o Pss)) —Xi(22>diag(vec(sgn]2 o Py)) XZ(]Z’ diag(vec(sgnE; o Ps)) —X“(z)dlag(vec(sgnEZ ) Pss))]

vec(AJ; osgn ]y o Qss)
vecAhosgnf20Q) [0
vec(AEjosgnEjoQ,) |~ "1’

vec(AE; o sgn Ep o Qss)

[X :, diag(vec(sgnJ; o Ps)) Xi o diag(vec(sgn/ o Ps)) XZ(ZZ, diag(vec(sgnky o Ps)) X>S(2) diag(vec(sgnE; o pss))]
vec(AJ; o sgnfi o Qss)
vec(AJ osgn ]z o Q) (1). (38)

vec(AE; osgnEj o Qs)
vec(AEz o sgn Ej o Q)

From equation (32) we get,

—(AJ1 +iA ]2)(x(11) +ix\") = (AE; +iAE) ) + i) = P +ir, (39)
where r® = r? +irl? = (=] = R— AE)x® + Qx®. After multiplication comparing both sides of equation @)
we get,

D

11>

[AL AL AE, AR —i“’ =/ (40)

)

u,

and

[A]1 A, AE AE2] :uh) =, (41)
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Again Remark[2.3|and combining Lemmas[2.6/and 2.7 we can write equations (40) and as

S
K

diag(sgnJ, o vec(Ps)) —ngl)diag(vec(sgnEl o Ps)) le)diag(vec(sgnEz o Pss))]
vec(AJ1 osgn J1 o Qss)

vec(AJz osgnJp o Qs)

vec(AE; osgnEq o Qs)

vec(AE; o sgnEp o Q)

=P 42

l—XZl)diag(vec(sgnh o Pg)) —Xigl)diag(vec(sgnfz o Ps)) —XZ(zl)diag(vec(sgnEl o Py)) —le)diag(vec(sgn]:"z ) Pss))]

vec(AJy osgn ] o Qss)

vec(AJaosgnj20Qs) | _
vec(AE; osgnEjoQs) |~ T2 (43)

vec(AE; o sgnkj o Qss)
Now, for calculating the backward errors we combine the equations (37), (38), (2), (#3), we get
Xifz) diag(vec(sgnJ o Pss)) —Xi ® diag(vec(sgn/z o Ps)) Xi ® diag(vec(sgnEy o Ps)) —XS:(Z) diag(vec(sgnE; o Pss))

1 2 1 2
X% diag(vec(sgn]; o Ps)) Xi @ diag(vec(sgn/, o Ps)) X”(ZZ) diag(vec(sgnE; o P)) Xf;z) diag(vec(sgnE, o Ps))

@
Xy 1 1
—Xifl)diag(vec(sgnh o Pg)) Xi(l)diag(vec(sgnlz o Py)) —Xi(l)diag(Vec(sgnEl o Py)) Xs:m diag(vec(sgnE; o Pss))
1 2 h ;
_Xiil)diag(Vec(sgnh o Pg)) _Xi(l)diag(VeC(Sgnfz o P)) —Xi(l)diag(vec(sgnﬂ o Ps)) _Xzs(l)diag(vec(sgnEz o)
a 1 ? ]
¥
vec(AJp osgn J1 0 Qss) b
vec(AJposgnfr0Qs) | _ |7 (44)
vec(AEj osgnEjoQs) | r%Z) ’
vec(AE; o sgn Ej o Qss) r%z)
2

)

)

%) |, then by equation (44) we get r = MA. Now when M is

<

vec(AJ1 o sgn i o Q)
vec(AJ, o sgn J> 0 Q)
vec(AE; osgnEq o Q)
vec(AE; o sgn E; o Q) ri2)

a full row rank matrix or the system MA = r is consistent then the minimum norm solution is given by
A = M'r. Backward error is given by

Let A = and r =

S 03

infl(AJ, AE, AB)lr= infl|Allr= [IM"7]|r.m
Remark 3.10. Similar calculations can be made if we perturb the matrices R and E.

3.5. Perturbation on J,R,E and B

Consider L,(z) of the form . Here we perturb the matrices ], R, E, and B of the block pencil L,(z). Let
A,x)eCx C2m\ {0} be an approximate eigenpair. We define eigenpair backward errors T]B (R, E,B, A, x)
and 15(J,R,E, B, A, x) by

178(], R,E,B,A,x) = inf{l(A], AR, AE,AB)||((M, — AM,) + A(N, — AN,))x = 0, AL, € B}
nSUREB,Ax) = infll(A] AR, AE, AB)||((M, — AM,) + AN, — AN,)x = 0,AL, € S},
respectively, where 1]8 (J, R, E, B, A, x) is blockwise and T]S (J R, E, B, A, x) is blockwise symmetry preserving.
0
We set x = [x(z) , where xV,x® € C" and x® e C™. Let the collection of all pencils AL,(z) = AM, + zAN,,
NE)
where
0 AJ]-AR AB 0 AE 0
AM, = [(AT- ARy 0 0| and AN,=|-AE° 0 o0, (45)
AB* 0 0 0 0 O
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is denoted by 8. When we have A] € SHerm(n), and AR, AE € Herm(n). then the set is denoted by S.

Now by applying next lemma we formulate the problem into a set of equations.

Lemma 3.11. Consider L,(z) of the form , and let (A, x) € C x C>™™\ {0}. If AB € C*™, A], AR and AE € C"™",
furthermore ALy(z) = AMy, + zAN, € B, then (Ly(A) — ALy(A))x = 0 if and only if

AAX® + AAEX? + ABx® = D), (46)
AA'XD — AAERD = 2, (47)
ABxD = O (48)

where AA := (A] — AR), ¥V := (] = R+ AE)x® + Bx®,7? := (=] = R — AE)x™ + Qx®@,7® := B*xD + 5x©®),
Now using the above system of equations we can calculate the corresponding blockwise error.
Theorem 3.12. Let L,(z) be a sparse matrix pencil of the form (1i Let (A, x) € C x C*"*™ \ {0} be an approximate

eigenpair of L,. Then there exists minimum norm AL, of the form with sparsity such that (Lp(A) — AL,(A))x = 0
if MA = ris solvable and the backward error is given by 173 (J,R,E,B, A, x) = |[M*r||r, where M is given in

(1>
r
r§1>
2)
and r = %) 7D =D i) D = i =0 i),
)

Proof. From, equation (#6), we get,
(AA; +iAA) (D + D) + (AE; +iAE) P + i) + (ABy + iABy)(r® +ix$) = D 4+ il (49)

where 1V := (] = R + AE)x® + Bx®. Now, after multiplication and comparing real and imaginary parts
from equation {9) we get,

- @7
x
1(2)

—X,
&
[AAi AAy AE, AE, AB; AB _”;(2) = A, (50)

&)

X

[Adi AA; AE AE, ABy AB||'%)| = oY (51)

Here we need to arrange unstructured, symmetric, and skew-symmetric block structures, so firstly we use
Remark [2.3] to introduce sgn function then apply a combination of Lemmas and Using those
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Lemmas we combine equations (50) and as

3994

T
(X"(12) diag(vec(sgnA; )))
) T
_(Xx(zz) d1ag(vec(sgnAz))) vec(AA; o sgnAy)
- T vec(AA; o sgnAy)
(Xugz)dmg(vec(sgnﬁ ° Ps))) vee(AE1 o sgnE1 009 |
_(Xss diag(vec(sgnE, o P )))T vec(AE; osgnEjp o Q)| " (52)
u? & B2 0 Fss vec(ABy o sgn By)
(XY(3> diag(Vec(sgnB1)))T vec(AB; o sgn By)
-1
T
—(Xx(3) diag(vec(sgnBz)))
2
and
T
(X"(zz) diag(vec(sgnAl)))
. T
(Xx(lz) dlag(vec(sgnAz))) vec(AAq o sgnAy)
s g T vec(AA; o sgn Ap)
(Xu(zz) diag(vec(sgnEs © Ps))) vec(AE; osgnE; o Qs) [ ) 53)
(X” diag(vec(sgnE; o P )))T vec(AEz osgnEjy 0 Qss)| — 2 (
u? & BNE2 0 B vec(ABy o sgn By)
(Xx(3) diag(vec(sgnBl)))T VeC(ABZ o sgn BZ)
2
T
(Xxga) diag(vec(sgnBz)))
From equation (#7) we get,
(AAT —iAAD) Y + i) — (AE; +iAE) @) +iul”) = P +irD, (54)

where r® = r? +irl?) = (=] = R — AE)x® + Qx®. After multiplication and comparing both sides of equation

we get,

~ xél) 9
1)

X

2w

b= r® and (55)
U,

[AAT AAT AE; AE, AB; AB|

[AAT AAT AE; AE, AB; AB| :Z%” =/ (56)

Since we need to arrange blocks with transpose matrices, symmetric and skew-symmetric block matrices,
nction using the logic given in Remark [2.3| then need to apply the combination of

we introduce sgn fu
Lemmas Using these Lemmas we combine equations and as

P?x(ll)diag(vec(sgnAﬁ) }~(x(21) diag(sgnAy) —Xz(l)diag(vec(sgnE]oPS)) ij>diag(vec(sgnE2 oPg)) O 0]
1 2

vec(AA1 o sgnAy)

vec(AA; o sgnAj)
vec(AEq o sgnEq o Qs) e 7)
vec(AE; o sgnEj o Qss) 17

vec(AB; o sgnBy)

vec(AB; o sgnB))
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and
P~(x(1) diag(vec(sgnAi)) —)?X(l)diag(vec(sgnAz)) —Xs(l)diag(vec(sgnEl o Py)) —Xss(l) diag(vec(sgnE; o Pss)) 0 O}
2 1 ) "

vec(AA; o sgnAj)
vec(AA; o sgnAs)

vec(AEj osgnE1 0 Qs) | _ (2
vec(AE; osgnEy o Qgs)| — - (8
vec(AB; o sgnBy)
vec(AB; o sgnBy)
From equation {#8) we get,
(ABT —iaBD) (" + ix) = 7 4+ ir), (59)

where B'x0+5x® = 1@ = ¢l +irl). After multiplication and comparing real and imaginary parts of equation

and using Lemma 2.5 we write

vec(AA; o sgnA)
vec(AA; o sgnAy)
vec(AE; o sgnEq o Q)
vec(AE; o sgnEs o Q)
vec(AB; o sgnBy)
vec(AB, o sgnB,)

=Y, (60)

[0 00 0 X wdiag(vec(sgnBi)) )?xmdiag(vec(sgnBz))] ¢

and

vec(AA; o sgnAy)
vec(AA; o sgnAy)
vec(AE; o sgnEq o Q) e 61)
vec(AE; o sgnEs o Q) 2"
vec(AB; o sgnBy)
vec(AB; o sgnBy)

[0 0 0O }?xgl)diag(vec(sgnBl)) —mediag(vec(sgnBz))]

Combining equations , , , , , and we get

MA=r, (62)
0]
vec(AA; o sgnA;) b
vec(AA; o sgnAy) Y%Z)
where A = vec(AE; o sgnE; o Q) and r = 732) . Now, if M is a full row rank matrix or MA = r is
vec(AE; o SgnEZ ° Qss) r
vec(AB; o sgnBy) 1}3)
vec(AB; o sgnB,) 7}3)
2

consistent then, the minimum norm solution is _giv_en by A = M'r. Backward error is given by
infl(AA, AE, AB)lg= infl(A], AR, AE, AB)Ir= l|Alle= M7l
where A] = (AA — AA*)/2 and AR = —(AA + AA*)/2. m
Note: For calculation of r]B (R, E, B, A, x) we can use the method used in Theorem

3.6. Perturbation on J,E and B
Consider Ly(z) of the form . Here we allow perturbation on the matrices J, E and B of the pencil L.
Let (A, x) € C x C¥*™"\ {0} be a given approximate eigenpair. We define backward errors (], E, B, A, x) and
15(, E, B, A, x) by
n°(LE,B,A,x)
n°(,E, B, A,%)

inf{l(A], AE, AB)l | (M, — AM,)) + A(N,, = AN,))x = 0, AL, € B},
inf{l(A], AE, AB)I | (M, — AM,)) + A(N, — AN,))x = 0,AL, € S},
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where r]B( J,E,B, A, x) is blockwise and 173 (J,E, B, A, x) is blockwise symmetry preserving backward error

e
respectively.  We set x = ix(z) , where x0,x@ e C" and ¥® e C™. The set of all pencils of the form
NGO
L,(z) = AM, + zAN, with
0 A] AB 0 AE 0
AM, = |A]" 0 and AN, = [-AE* 0 0], (63)
AB* 0 O 0 0 O

is denoted by 8. When we have A] € SHerm(n), and AE € Herm(n) that set denoted by S.

Lemma 3.13. Let L,(z) be a sparce matrix pencil of the form (3), and A € C and x € C***™ \ {0}. If AB € C"",A]
and AE € C™", then there exists AL,(z) = AM + zAN € B, such that (L,(A) — ALy(A))x = 0 if and only if

-~

AJx? + ANEx® + ABx® = @, (64)
AJ Y — AAERD = 42, (65)
ABxV = 40, (66)

Py

where ¥V := (] = R + AE)x® + Bx®, 1@ := (=] = R = AE)x®M + Qx®, and r® := B*x™ + 5x©

Theorem 3.14. Let L,(z) be a sparse matrix pencil of the form . Let (A,x) € C x €™\ {0} be an ap-
proximate eigenpair of L,. Then there exists minimum norm AL, of the form with sparsity such that
(Ly(A) = AL,(A))x = 0, if MA = r is solvable and backward error is given by n°5(J,E, B, A, x) = |[M'r||r, where

r= r(l T rgzw T (13)T (3)] with 1V = 'Y +irl), 1@ = 2+ irD 1O =9 4 ir and M is given
inAppod E

Proof. We can adopt the proof method of the strcuture block matrices A; and Ag as given in Theorem
and AB can be rearranged using the proof method of Theorem u

Remark 3.15. When A € iR then equations (64), (65) and (66) can be rearranged as
[A]+AAE AB][ (3)] =70

and

“ @ _|(=]=R=AE)xM1 + Qx®@
[A] + AAE AB] XV = [ BxD &+ Sx®

(2)
Now, let A = [A] + /\AE] and y = [;3)}’ then we get Ay = D, and A*'xD = s, which implies y's = rDxD, after

simplification we get, (x?)*Qx@ + (x®)*Sx® = 0.

3.7. Perturbation on R, E and B

Consider L,(z) of the form @ Here we perturb on the matrices R, E and B of the pencil L. Let (A, x) € Cx €
C?z"\ {0} bea given approxiamate eigenpair. We define backward errors 178 (R,E,B, A, x)and r]S (R,E,B,A,x)
by

n®(R,E, B, A, x)
1°(R,E, B, A, x)

inf(l(AR, AE, AB)|| (M, — AM,) + A(N,, = AN,))x = 0, AL, € B},
inf{l(AR, AE, AB)I| (M, — AM,) + A(N, = AN,))x = 0,AL, € S},
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where nB(R, E, B, A, x) is blockwise and r]S (R, E, B, A, x) is blockwise symmetry preserving backward error
o)
e
+®

respectively. We set x = , where ¥V, x@ € C" and x® € C™. The the set of all pencils of the form

ALy(z) = AM,, + zAN, with

0 -AR AB 0 AE 0
AM,=|-AR" 0 0| and AN,=|-AE* 0 0 (67)
AB* 0 0 0 0 0

is denoted by 8. When we have AR € Herm(n), and AE € Herm(n). then the set is denoted by S.

Lemma 3.16. Let L,(z) be of the form , and let (A,x) € C X C**" \ {0}. If AB € C™, AR and AE € C™", then
there exists AL,(z) = AMy, + zZAN, € B such that (L,(A) — AL,(A))x = 0 if and only if

—ARx® + AAEX® + ABx® = 1), (68)
—AR XD — AAE XD =2, (69)
AB*xV =79, (70)

where 1V := (] = R + AE)x® + Bx®, @ := (=] = R = AE)xM + Qx® and r® := B'xM + Sx©®,
Now using the above system of equations we can calculate the corresponding blockwise error.

Theorem 3.17. Let L,(z) be a sparse matrix pencil of the form (3). Let (A,x) € C x C*"*™ \ {0} be an approximate

eigenpair of L. Then there exists minimum norm AL, of the form (67) with sparsity such that (L,(A) — AL,(A))x = 0,

MA = r is solvable and backward error is given by rrs (R,E,B, A, x) = |[M'r||g, where M is given in and
T

r= [rgm r;m r?)T ,r(zz)T rf)T r(ZS)] ) = r(ll) + ir(zl),r@) = r§2> + iréz),r@ = rf) + irgs).

Proof. The proof is similar to the proof method of Theorem ]

Remark 3.18. When A € iR then equations (68), and can be rearranged as
(2)
[-AR + AAE  AB] [x(s)] =
X
and

S

o _ [T =R=AExD + Qx@
[-AR+AAE AB| 2 = | B 5 640 =

(2)
Now, let A = [—AR + /\AE] and y = [i@}, then we get Ay = 1Y, and A*xV = s, which implies y's = (V) xy, after

simplification we get, (x?)*Qx? + (x¥)*Sx; = 0.

Note: As we have discussed in the Introduction that if we want to perturb all the blocks we can do this
using the same framework. We present this result in the next lemma.

Consider L.(z) of the form H and let (A,x) € C x (C**™ \ {0}). Let B be the collection of the pencils of
the form AL, = AM, + zAN,, where AM, and AN, are given by

0 AA AB 0 AE 0
AM, = [AA* AQ AS|and AN, =|-AE° 0 0. 71)
AB* AS* AR 0 0 0
o)
If we are given (A,x) € C x (C*"* \ {0}), where x = {x(z)} ,xM,x@ e C" and x® € C™, then we get the
NE)

following lemma.
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Lemma 3.19. Let L(z) be of the form , and let (A, x) € C X (C*"*™\ {0}). If AA, AE € C"™" and AB € C"™", then
there exists AL.(z) = AM, + zAN, € B such that (L.(A) — AL.(A))x = 0 if and only if

(AA + AAE)Y® + ABx® = O, (72)
(AA* = AAE)XD + AQx® + ASx® = @), (73)
AB XV + AS ¥ + ARX® = 1O, (74)

where ¥V := (A + AE)x® + Bx®,7® := (A* = AE")x® + Qx@ + Sx®¥, and r® := BxM + §*x? + Rx®,

Now, we can further calculate the required backward errors by organizing the system of equations as
per the block structures and using the combination of the Lemmas given in Section 2|

4. Numerical Illustrations

Here, we validate our theory through some numerical examples using MATLAB software. In this
section, we compare our results with those from existing literature, illustrating this with several examples.

1+i 0
B=| 0 i,
3i

Example 4.1. Consider a Port-Hamiltonian system where

i 2+i 1+i 1 2+5i —2+i
-2+ 2i 3+4i 2-5 2 3+5i
-1+i -3+4 3i -2-i 3-5i -3

12 1-i 2+i 1 0 0 Lo
E=|1+i 2 i |,0=]0 2 o,s:[o 2],
2-i -i 3 0 0 3

J= R =

and the matrix pencil Ly(z) is of the form . Let us consider the perturbation on |, E, and B. Let (A,x) be an
approximate eigenpair of L, where A = —4 — 4i and, x = [0.01 — 0.014, —0.1 — 0.17,0.02 — 0.05i, 0.05 — 0.087, 0.45 +
0.33i,—0.23 + 0.78i,0.23 + 0.04i, —0.07 — 0.007i]”. Then by applying Theorem we get M to be a full row rank
matrix and the perturbed matrices are given by

0.8059i 0.1809 — 1.8546i —0.4418 — 3.9551i
AJ = |-0.1809 — 1.8546i ~7.9559i —7.7487 +5.1481i|,
0.4418 —3.9551i  7.7487 + 5.1481i 10.8433i
2.9596 + 3.1889i 0
AB = 0 —0.7405 + 0.5318i,
6.1971 — 4.5670i  0.9118 + 1.7822i
0.4844 —0.4893 + 0.5777i —0.6819 — 1.0173i
AE = |-0.4893 — 0.5777i -1.1819 ~0.7675 + 0.9210i
~0.6819 + 1.0173i  —0.7675 — 0.9210i 2.1013

and the backward error is 22.1208. In this example, we have preserved both the structure of the blocks and the sparsity
within the block matrix B. In [16] the authors considered a special case where Q = 0 in (3). In contrast, our theory is
applicable for any Q, as demonstrated through an example in our paper.

Next, we consider various pairs (A,x) and compare our results with those from previous structure-preserving
literature, as shown in Table[T, We will compare Theorem [3.14with Proposition 3.6 in [3|] and Theorem 3.7 in [1.

Example 4.2. Consider a Port-Hamiltonian system where
i 2+i  1+i

—2+1i 2i 3+4i

-1+i -3+4i 3i

,R=1[3-4i 5 -1-2i

1+2i -1+2i 1

5 -1-2i
-1+2i 1

]:

5 3+4i 1-2i
,B=

3+4i 1—21']
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A 1n(M,, Ny, A, x) (M, N,, A, x) n5(JE,B, A, x)
3+4i 2.6258 3.6982 30.7490
3.2-3.1i 2.5496 3.5844 28.2120
-0.65-0.2i 6.3758 8.8993 30.2778
4+5i 3.0540 43110 24.1087
-4-4i 0.5372 0.6925 22.1208

Table 1: Numerical examples suggest that the blockwise structured error is relatively larger than that of
unstructured and componentwise structured backward error.

12 1-i 2+i 0 00 10
E=|1+i 2 i |,0=1|0 0 0,5:[0 2]
2—i =i 3 0 0O

and let the matrix pencil L,(z) = My, + zN,, be of the form (3). Let us consider the perturbation only on ] and E. Now
consider different (A, x) and compare our results with the previous structure preserving literature. Here we have taken
x1 and x3 such that B'x + Sx® = 0. We now compare Theorems and with Theorems 4.3 and 4.6 in [16], as
shown in Table[2)

A (L E, A, x) 15(E, A, %) PGEAYE | 1°0,E A x[6]
i 9.5679 11.0604 9.5679 11.0717

2i 10.3078 11.6943 10.3078 11.6986

1+i 9.8718 12.6132 - -

Table 2: Numerical examples suggest that by our framework we can find blockwise eigenpair backward
error for any A € C and for any matrix Q.

Remark 4.3. In Example[4.2}, when we choose A € iR, we observe that M is not a full row rank matrix. However, the
rank of M is equal to the rank of the augmented matrix. Therefore, in this case, we obtain a minimum norm solution.

Conclusion. We have considered the backward error analysis of an approximate eigenpair of blockwise
structured matrix pencils that becomes an exact eigenpair of an appropriately minimal perturbed block
matrix pencil. The obtained pencil preserves the structures of different blocks for the Frobenius norm. In
application, we have discussed the different pencils arising in continuous-time linear quadratic optimal
control problems, discrete-time linear quadratic optimal control, and port-Hamiltonian descriptor systems
in control. We have also presented several numerical examples to illustrate our framework.

Acknoledgement: We thank the anonymous referees and editor for their careful reading and thoughtful
suggestions, which have greatly improved this paper. There are no funding sources to report for this
submission.
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