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aUniversity of Maribor, Faculty of Natural Sciences and Mathematics, 2000 Maribor, Slovenia
bInstitute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

Abstract. Let A be a unital algebra over a field F with char(F) , 2. In this paper we introduce a new
concept of a generalized Jordan derivation, covering Jordan centralizers and Jordan derivations, as follows:
a linear map f : A → A is a generalized Jordan derivation if there exist linear maps 1; h : A → A such that
f (x) ◦ y + x ◦ 1

(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A (here x ◦ y = xy + yx). Our aim is to give the form of map f in

terms of the so called quasi Jordan centralizers and quasi Jordan derivations. In addition, a characterization
of such maps is presented.

1. Introduction

LetA be a unital (associative) algebra over a field F with char (F) , 2. By x ◦ y = xy + yx we denote the
Jordan product of elements x, y ∈ A.

A linear map d : A→A is a derivation if d
(
xy

)
= d (x) y+ xd

(
y
)

holds for all x, y ∈ A. If d is a derivation
for Jordan product, meaning d

(
x ◦ y

)
= d (x) ◦ y+ x ◦ d

(
y
)

for all x, y ∈ A, then it is called a Jordan derivation.
Let us denote the set of all derivations of A by Der (A) and by JDer (A) the set of all Jordan derivations
of algebra A. Obviously Der (A) ⊆ JDer (A). The study of conditions that force a Jordan derivation to
be a derivation was initiated in the second half of the 20th century with Jacobson and Rickart and their
study of Jordan homomorphisms [8], and with Herstein [6]. I. N. Herstein [6] proved in 1957 that every
Jordan derivation of a prime ring of characteristic not 2 is a derivation and later this result was extended to
semiprime rings and algebras in various directions (see e.g. [1, 2, 5, 12] and references therein).

Further, let Cent(A) denote the set of all centralizers of algebra A, i.e. linear maps f satisfying f
(
xy

)
=

f (x) y = x f
(
y
)

for all x, y ∈ A, and let JCent(A) be the set of all Jordan centralizers, i.e. linear maps satisfying
f
(
x ◦ y

)
= f (x) ◦ y for all x, y ∈ A. Clearly, every centralizer is a Jordan centralizer and, analogous to the

above mentioned study of derivations, the algebras satisfying JCent(A) = Cent(A) are of special interest.
For example, Zalar in [14] proved that on semiprime algebras Jordan centralizers and centralizers coincide.

In this paper we are interested in a natural generalization of Jordan centralizers and Jordan derivations
defined in terms of Jordan product. We call a linear map f : A → A a generalized Jordan derivation if there
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exist linear maps 1, h : A→A such that

f (x) ◦ y + x ◦ 1
(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A. (1)

The set of all generalized Jordan derivations of algebraAwill be denoted by GJDer (A). Main motivation for
the terminology used in the present paper comes from [10], where Leger and Luks present a systematic study
of generalized derivations of Lie algebras. A generalized derivation of a Lie algebra L = (L,+, [, ] , ·) is a
linear map f : L → L such that there exist linear maps 1, h : A→A satisfying

[
f (x) , y

]
+
[
x, 1

(
y
)]
= h

([
x, y

])
for all x, y ∈ L. Note that in [11] maps satisfying the special case of (1), namely h = f , on triangular algebras
were considered. In [3] Brešar defines a linear map h : A→A satisfying (1) to be a Jordan

{
f , 1

}
-derivation.

It follows from [3, Theorem 4.3] that in case of a unital semiprime algebra A a map h is of the form
h (x) = λx + d (x) for all x ∈ A, where d is a derivation and λ is a central element. Therefore we can write
h ∈ Cent(A) +Der (A).

Some connections regarding generalized Jordan derivations and Jordan { f , 1}-derivations are presented
in the second section. Let us note here that there exist generalized Jordan derivations on the algebra
of all upper triangular matrices over a unital commutative ring which can not be presented as Jordan
{ f , 1}-derivations. Theorem 2.3 states, that in case of a unital semiprime algebra A equality GJDer (A) =
Cent(A) +Der (A) holds. More generally, Theorem 2.1 states that every f ∈ GJDer (A) can be presented as
f = f1 + f2, where f1 is a quasi Jordan centralizer (i.e. map f1 is such that f1 (x) ◦ y = x ◦ f1

(
y
)

for all x, y ∈ A)
and f2 is a quasi Jordan derivation (i.e. map f2 satisfyies f2 (x)◦ y+x◦ f2

(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A). Denote

the set of all quasi Jordan centralizers by QJCent(A) and the set of all quasi Jordan derivations of A by
QJDer (A). Note that QJCent(A) ∩QJDer (A) = JCent(A) and that the following chains of inclusions hold

Cent (A) ⊆ JCent (A) ⊆ QJCent (A) ,
Der (A) ⊆ JDer (A) ⊆ JCent (A) + JDer (A) ⊆ QJDer (A) .

In what follows a Jordan centralizer that is not a centralizer will be called a proper Jordan centralizer.
Analogously, a proper quasi Jordan centralizer is a quasi Jordan centralizer not contained in JCent(A).

In the third section we present a classification of maps in QJCent (A), see Theorem 3.1 and Corollary 3.2.
Matrix algebras and semiprime algebras are basic examples of algebras satisfying QJCent (A) = Cent (A).
So, there do not exist proper Jordan centralizers and not even proper quasi Jordan centralizers of these
algebras. Algebras generated by idempotents and triangular algebras are examples of algebras not having
proper Jordan centralizers (there can exist proper quasi Jordan centralizers of such algebras). Note, when
JCent (A) = QJCent (A) holds for an algebra A, then GJDer (A) = QJDer (A) and so for the description of
generalized Jordan derivations it is enough to know the form of quasi Jordan derivations.

In the fourth section the equality QJDer (A) = JCent (A) + JDer (A) is observed. This equality holds for
matrix algebras (Corollary 4.3), algebras generated by idempotents (Proposition 4.2), triangular algebras
(Corollary 4.5) and semiprime algebras. Lemma 4.1 gives an easy criterion for f ∈ QJDer (A) to satisfy
f ∈ JCent (A) + JDer (A).

Let us conclude this introductory part with pointing out that our definition of a generalized Jordan
derivation clearly differs from the definition of a generalized Jordan derivation presented in some other
studies, for example [7, 9, 13]. In these studies a generalized Jordan derivation is a map f : A → A
satisfying f (x2) = f (x)x + xd(x) for all x ∈ A, where d : A→A is a Jordan derivation.

2. Preliminary results

In the following theorem a basic fact about generalized Jordan derivations is given. Namely, to give
the form of generalized Jordan derivations it is enough to know the forms of quasi Jordan derivations and
quasi Jordan centralizers.

Theorem 2.1. LetA be a unital algebra over a field F and char (F) , 2. Then the following equalities hold
(a) GJDer (A) = QJCent(A) +QJDer (A) and
(b) JCent(A) = QJCent(A) ∩QJDer (A).
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Proof. Let f ∈ GJDer (A). Therefore (1) holds for some linear maps 1, h on A. Since Jordan product is
commutative it follows that

f (x) ◦ y + x ◦ 1
(
y
)
= h

(
x ◦ y

)
,

1 (x) ◦ y + x ◦ f
(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A. Denote f1 = 1

2
(

f + 1
)

and f2 = 1
2
(

f − 1
)
. From the above identities it follows that

f1 (x) ◦ y + x ◦ f1
(
y
)
= h

(
x ◦ y

)
,

f2 (x) ◦ y − x ◦ f2
(
y
)
= 0

for all x, y ∈ A. Therefore f1 ∈ QJDer (A) and f2 ∈ QJCent(A). Since f = f1 + f2 this proves (a).
To prove (b) let f ∈ QJCent(A) ∩QJDer (A). Then there exists a linear map h onA such that

f (x) ◦ y + x ◦ f
(
y
)
= h

(
x ◦ y

)
and

f (x) ◦ y − x ◦ f
(
y
)
= 0

for all x, y ∈ A. Adding up these identites we obtain 2 f (x) ◦ y = h
(
x ◦ y

)
and further, substituting y = 1, we

get h (x) = 2 f (x). Therefore f
(
x ◦ y

)
= f (x) ◦ y for all x, y ∈ A and thus f ∈ JCent(A).

Let linear maps f , 1, h : A → A be such that (1) holds. Using the definition given in [3] this is equal
to saying that h is a Jordan

{
f , 1

}
-derivation. Knowing the form of generalized Jordan derivations of some

algebraA the form of Jordan { f , 1}-derivations can be given. Namely, for y = 1 in (1) we get

h (x) = f (x) + β ◦ x for all x ∈ A,

where 2β = 1 (1). The next simple example of a map on algebra A = T2 (A) illustrates that the opposite
does not hold. Namely, there exists a generalized Jordan derivation f on the algebra of all upper triangular
matrices over a unital commutative ring which can not be presented as a Jordan {1, h}-derivation.

Example 1. Let A = T2 (A) be an upper triangular matrix algebra over a unital commutative algebra A.
Using the notation ei j for the matrix units every x ∈ A can be presented as x = ae11 + me12 + be22 for some
a,m, b ∈ A. Define a map f : A→A as f (x) = e12 ◦ x = (a + b) e12 for all x ∈ A. Direct calculations show that

f (x) ◦ y = (a + b) e12 ◦ y = (a + b) (a′ + b′) e12,

x ◦ f
(
y
)
= x ◦ (a′ + b′) e12 = (a + b) (a′ + b′) e12,

f
(
x ◦ y

)
= 2 (aa′ + bb′) e12

for all x = ae11 +me12 + be22 and y = a′e11 +m′e12 + b′e22. Therefore f is a quasi Jordan centralizer and is not
a Jordan centralizer.

Next we show that f is not a Jordan {1, h}-derivation for any choice of linear maps 1, h. Assume contrary,
that f

(
x ◦ y

)
= 1 (x) ◦ y + x ◦ h

(
y
)

for all x, y ∈ A. Writing f1 = 1
2
(
1 + h

)
this equality transforms into

f
(
x ◦ y

)
= f1 (x) ◦ y + x ◦ f1

(
y
)

for all x, y ∈ A. Substituting x = y = 1 we get 4 f1 (1) = 2 f (1) = 4e12 and
f1 (1) = e12. Substitution x = e11 and y = e22 gives

f (e11 ◦ e22) = f1 (e11) ◦ e22 + e11 ◦ f1 (e22)
0 = f1 (e11) e22 + e22 f1 (e11) + e11 f1 (e22) + f1 (e22) e11.

Multiplying this equation from the left side by e11 and from the right side by e22 we get a contradiction

0 = e11 f1 (e11) e22 + e11 f1 (e22) e22 = e11 f1 (1) e22 = e12

and the claim is thereby proved.

More generally, observing the above example it is not hard to see that for n ≥ 2 the map f : Tn (A)→ Tn (A)
defined as f (x) = e1n◦x for all x ∈ Tn (A) is a quasi Jordan centralizer and is not a Jordan centralizer. Therefore
the following remark can be stated.
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Remark 2.2. Let A = Tn (A), n ≥ 2, be an upper triangular matrix algebra over a unital commutative algebra A.
Then JCent (A) , QJCent (A).

The algebra of upper triangular matrices is not a semiprime algebra. Recall, an algebraA is a semiprime
algebra if aAa = {0}, where a ∈ A, implies a = 0. If algebraA is such that aAb = {0}, where a, b ∈ A, implies
a = 0 or b = 0 it is called a prime algebra. In case of a semiprime algebraA Brešar’s result [3, Theorem 4.3]
can be applied and the next statement can be obtained.

Theorem 2.3. LetA be a unital semiprime algebra over a field F with char (F) , 2. Then GJDer (A) = Cent (A)+
Der (A).

Proof. Let f ∈ GJDer (A). Then there exist linear maps 1, h : A→A such that f (x) ◦ y + x ◦ 1
(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A. The map h is a Jordan

{
f , 1

}
-derivation and by [3, Theorem 4.3] we know that h is a{

f , 1
}
-derivation. Therefore

f (x) y + x1
(
y
)
= h

(
xy

)
= 1 (x) y + x f

(
y
)

(2)

for all x, y ∈ A and h (x) = h (1) x + d (x), where h (1) ∈ Z (A) and d : A → A is a derivation. Substituting
x = y = 1 in (2) gives h (1) = f (1) + 1 (1). Next, again using (2), we have

f (x) + x1 (1) = h (x) = 1 (1) x + f (x) ,

thus 1 (1) ∈ Z (A) and therefore also f (1) ∈ Z (A). Finally, we derive

f (x) = h (x) − 1 (1) x =
(
h (1) − 1 (1)

)
x + d (x) = f (1) x + d (x)

for all x ∈ A and so f ∈ Cent (A) +Der (A).

3. Characterization of maps in QJCent (A)

As pointed out already in the introductory section, for every unital algebraA over a field F the inclusions
Cent (A) ⊆ JCent (A) ⊆ QJCent (A) hold. In this section we give a characterization of maps from these sets
and provide examples of algebras for which the above inclusions are actually equalities, i.e. JCent (A) =
Cent (A), QJCent (A) = JCent (A) and QJCent (A) = Cent (A). Let

[
x, y

]
= xy − yx denote the Lie product

of elements x, y ∈ A.

Recall, a map f is a centralizer of a unital algebra A if and only if it is of the form f (x) = ax where
a ∈ Z (A). The center of algebra A, Z (A) = {a ∈ A| [a,A] = {0}}, is therefore in a bijective correspondence
with the set Cent (A). In the characterization of the maps in QJCent (A) similar role will be played by the
sets

ZJ (A) =
{
a ∈ A|

[
[a, x] , y

]
= 0 for all x, y ∈ A

}
and

ZQ (A) =
{
a ∈ A|

[
a,

[
x, y

]]
= 0 for all x, y ∈ A

}
.

By the Jacobi identity,
[
[a, x] , y

]
+

[[
y, a

]
, x

]
+

[[
x, y

]
, a

]
= 0 for all a, x, y ∈ A, the following holds

F · 1 ⊆ Z (A) ⊆ ZJ (A) ⊆ ZQ (A) ⊆ A.

Theorem 3.1. Let A be a unital algebra over a field F, char (F) , 2. For a linear map f : A → A let us denote
f (1) = 2α. Then

(a) f ∈ QJCent (A) if and only if f (x) = α ◦ x, where α ∈ ZQ (A) ,
(b) f ∈ JCent (A) if and only if f (x) = α ◦ x, where α ∈ ZJ (A) .
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Proof. Let f ∈ QJCent (A). For y = 1 in f (x) ◦ y = x ◦ f
(
y
)

we get f (x) = α ◦ x for all x ∈ A. Therefore

f (x) ◦ y − x ◦ f
(
y
)
= (α ◦ x) ◦ y − x ◦

(
α ◦ y

)
= 0

for all x, y ∈ A. By a known identity (α ◦ x) ◦ y − x ◦
(
α ◦ y

)
=

[
α,

[
x, y

]]
this implies α ∈ ZQ (A). For the

opposite direction of (a) note that for every α ∈ ZQ (A) a linear map f defined as f (x) = α ◦ x for all x ∈ A
is contained in QJCent (A).

Next, let f ∈ JCent (A). Then f
(
x ◦ y

)
= f (x) ◦ y and so

f
(
x ◦ y

)
− f (x) ◦ y = α ◦

(
x ◦ y

)
− (α ◦ x) ◦ y

0 =
[[
α, y

]
, x

]
holds for all x, y ∈ A. Therefore α ∈ ZJ (A). Contrary, for α ∈ ZJ (A) a linear map f (x) = α ◦ x, x ∈ A, is a
Jordan centralizer.

A direct corollary of the theorem can be stated.

Corollary 3.2. LetA be a unital algebra over a field F, char (F) , 2. Then the following propositions hold
(a) If ZJ (A) = Z (A), then JCent (A) = Cent (A).
(b) If ZQ (A) = Z (A), then QJCent (A) = Cent (A).
(c) If ZQ (A) = ZJ (A), then QJCent (A) = JCent (A).

Remark 3.3. Last corollary and Theorem 2.1 imply: if ZQ (A) = ZJ (A), then GJDer (A) = QJDer (A).

Note, that all algebras in the next subsections are algebras over a field F with char(F) , 2 even if this is not
mentioned explicitly.

3.1. Examples of algebras satisfying QJCent (A) = Cent (A)

Matrix algebras and semiprime algebras are basic classes of algebras on which there are no proper
Jordan centralizers nor proper quasi Jordan centralizers.

Proposition 3.4. Let A be a unital algebra, and A = Mn (A), n ≥ 2, the matrix algebra. Then QJCent (A) =
Cent (A).

Proof. Let
{
ei j|i, j = 1, 2, ...,n

}
be the set of matrix units and let 1 denote the identity matrix inA. Let a matrix

a =
∑n

i, j=1 ai jei j satisfy
[
a,

[
x, y

]]
= 0 for all x, y ∈ A. In particular, for every i , j we have

0 =
[
a,

[
eii, ei j

]]
= aei j − ei ja

=

n∑
k=1

akiekj −

n∑
k=1

a jkeik.

Therefore ai j = 0 and aii = a j j for all i , j. It follows that a = a · 1 for some a ∈ A and it remains to prove that
a ∈ Z (A). This is true since for every b ∈ A we have

0 = [a, [be11, e12]] = [a,be12] = (ab − ba) e12.

So a = a · 1 ∈ Z (A) · 1 = Z (A) and we have proved that ZQ (A) = Z (A). The conclusion of the proposition
follows using Corollary 3.2.

Further, it can be shown, that an element a from a semiprime algebra A satisfying [a, [A,A]] = {0} is
contained in Z (A) (see Lemma 4.2 in [3]). Therefore ZQ (A) = Z (A) holds in this case and the following
proposition holds (it is also an easy consequence of Theorem 2.3).
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Proposition 3.5. LetA be a semiprime unital algebra. Then QJCent (A) = Cent (A).

Let us point out two important examples of operator algebras that are semiprime. Denote by B(X)
the algebra of all bounded linear operators on X, where X is a Banach space over the field of real or
complex numbers. Recall, A is a standard operator algebra if A is a unital subalgebra of B(X) containing
all finite rank operators. Every standard operator algebra is prime and as such also semiprime. Next, a von
Neumann algebraA is a unital C∗-subalgebra of B(H), where H is a complex Hilbert space, which is closed
in the strong operator topology. Any von Neumann algebra is semiprime.

3.2. Examples of algebras satisfying JCent (A) = Cent (A)

As basic examples of algebras on which there are no proper Jordan centralizers we present algebras
generated by idempotents and triangular algebras. Note, since these algebras are not necessarily semiprime,
there can exist proper quasi Jordan centralizers of them (see Remark 2.2)). Let R (A) denote the subalgebra
of algebraA generated by all idempotents inA.

Proposition 3.6. LetA = R (A). Then JCent (A) = Cent (A).

Proof. In view of Corollary 3.2 it suffices to prove that ZJ (A) = Z (A). Let e = e2
∈ A be a nontrivial

idempotent and denote e⊥ = 1 − e. Note that ee⊥ = 0 = e⊥e. Let a ∈ A be such that
[
[a, x] , y

]
= 0 for all

x, y ∈ A. In particular

0 = [[a, e] , e⊥] = [ae − ea, e⊥] = −eae⊥ − e⊥ae.

Multiplying this identity by e and e⊥ successively, we get eae⊥ = 0 = e⊥ae. Therefore a = (e + e⊥)a(e + e⊥) =
eae + e⊥ae⊥ and further

ea = eae = ae,

showing that a commutes with every idempotent in A. Since algebra A is generated by idempotents it
follows that ax = xa for all x ∈ A. So ZJ (A) = Z (A).

Next, let us turn our attention to some special algebras containing nontrivial idempotents. Assume that
A has an idempotent e , 0, 1. ThenA can be represented in the so called Peirce decomposition

A = eAe + eAe⊥ + e⊥Ae + e⊥Ae⊥, (3)

where eAe and e⊥Ae⊥ are subalgebras with units e and e⊥, respectively, eAe⊥ is an (eAe, e⊥Ae⊥)-bimodule
and e⊥Ae is an (e⊥Ae⊥, eAe)-bimodule. Let us assume thatA satisfies the following conditions

exe · eAe⊥ = {0} = e⊥Ae · exe implies exe = 0,
eAe⊥ · e⊥xe⊥ = {0} = e⊥xe⊥ · e⊥Ae implies e⊥xe⊥ = 0

(4)

for all x ∈ A. Basic examples of unital algebras with nontrivial idempotents having the property (4) are
triangular algebras (satisfying e⊥Ae = {0}), matrix algebras, and prime (hence in particular simple) algebras
with nontrivial idempotents.

Proposition 3.7. Let A be a unital algebra with a nontrivial idempotent e satisfying (4). Then JCent (A) =
Cent (A).

Proof. Let e ∈ A be a nontrivial idempotent and decompose A as (3). Let an element a ∈ A satisfy[
[a, x] , y

]
= 0 for all x, y ∈ A. Then

[
a,

[
x, y

]]
= 0 holds for all x, y ∈ A and, using

[
e, eAe⊥

]
= eAe⊥ and
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e⊥Ae, e

]
= e⊥Ae, it follows that

[
a,eAe⊥

]
= {0} and

[
a,e⊥Ae

]
= {0}. Thus, for arbitrary a = eae ∈ eAe,

m = eme⊥ ∈ eAe⊥ and n = e⊥ne ∈ e⊥Ae we have

0 = [a,am] = [a,a] m + a [a,m] = [a,a] m,
0 = [a,na] = [a,n] a + n [a,a] = n [a,a] .

Therefore [a,a] · eAe⊥ = {0} = e⊥Ae · [a,a] holds for all a = eae ∈ eAe and by (4) it follows that [a,eAe] = {0}.
Similarly we can prove that

[
a,e⊥Ae⊥

]
= {0}. Using the obtained relations we derive

[a,A] = [a,eAe + eAe⊥ + e⊥Ae + e⊥Ae⊥] = {0} ,

proving ZJ (A) = Z (A).

According to the last proposition and the paragraph preceding it, the next corollary can be stated.

Corollary 3.8. LetA be a triangular algebra. Then JCent (A) = Cent (A).

Since every upper triangular matrix algebra A = Tn (A), n ≥ 2, where A is a unital algebra, can be
represented as a triangular algebra,

A =

(
A M1×(n−1) (A)

Tn−1 (A)

)
,

by Corollary 3.8 there do not exist proper Jordan centralizers of Tn (A).
Another class of triangular algebras are nest algebras T (N) associated to a nest N , {0,H} (see [4,

Proposition 5]). Let us recall, a nest is a chain N of closed subspaces of a complex Hilbert space H
containing {0} and H which is closed under arbitrary intersections and closed linear span. The nest algebra
associated toN is the algebra

T (N) = {T ∈ B (H) | T (N) ⊆ N for all N ∈ N} .

IfN = {0,H}, thenT (N) = B (H) is an algebra of all bounded linear operators on H and it is a prime algebra.
Let us mention that finite dimensional nest algebras are isomorphic to a complex block upper triangular
matrix algebras. By Proposition 3.5 and Corollary 3.8 the following corollary holds.

Corollary 3.9. Let N be nest of a complex Hilbert space H, dim H ≥ 2 and let A = T (N) be a nest algebra. Then
JCent (A) = Cent (A) .

3.3. Examples of algebras satisfying QJCent (A) = JCent (A)

An algebra A satisfying QJCent (A) = JCent (A) , Cent (A) can be constructed as follows. Let A be
a noncommutative algebra that satisfies polynomial identity [[X,Y] ,Z]. Then for every a ∈ A we have
[[a,A] ,A] = {0} and [a, [A,A]] = {0}. Therefore Z (A) , A = ZJ (A) = ZQ (A) holds and every map
f : A→A defined as f (x) = a ◦ x, where a < Z (A), is a proper Jordan centralizer.

An example of algebra satisfying the conditions from previous paragraph is a Grassmann algebra.
Namely, a Grassmann algebra A is a Z2-graded algebra of the form A = A0 +A1 where A0 = Z (A) and
[A,A] = [A1,A1] ⊆ A0 = Z (A). An example of such algebra is

A =


r s u

r t
r

 ; r, s, t,u ∈ A

 ⊆ T3 (A) ,

where A is a commutative unital algebra. Note that

A0 = Z (A) =


r 0 u

r 0
r

 ; r,u ∈ A

 , A1 =


0 s 0

0 t
0

 ; s, t ∈ A

 .
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3.4. An algebra satisfying Cent (A) , JCent (A) , QJCent (A)

As the final example of this section we present an algebra A satisfying the chain of strong inclusions
Z (A) ⊂ ZJ (A) ⊂ ZQ (A) . Note that this algebra will be used in the construction of a counterexample
presented in the next section. This algebra, given already in [11], is subalgebra of the matrix algebra M4 (A),
where A is a commutative unital algebra. Let

A =



r s t1 u

r v t2
r s

r

 ; r, s, ti,u, v ∈ A

 ⊆M4 (A) . (5)

Direct calculations show

Z (A) = {r1 + t (e13 + e24) + ue14|r, t,u ∈ A} ,
ZJ (A) = {r1 + t1e13 + t2e24 + ue14|r, ti,u ∈ A} ,

ZQ (A) = {r1 + t1e13 + t2e24 + ue14 + ve23|r, ti,u, v ∈ A} ,

noting that e13 is a noncentral element in ZJ (A) and that e23 ∈ ZQ (A) \ ZJ (A). It follows that the map
f1 (x) = e13 ◦ x is a proper Jordan centralizer and the map f2 (x) = e23 ◦ x is a proper quasi Jordan centralizer.

4. Characterization of maps in QJDer (A)

Recalling the definitions of (quasi) Jordan derivations and Jordan centralizers it is not hard to see that
for every unital algebraA the inclusion JCent (A)+ JDer (A) ⊆ QJDer (A) holds. Here we will be interested
in unital algebras over a field F, char(F) , 2, satisfying QJDer (A) = JCent (A) + JDer (A). Using the
observations from the previous section some examples of algebras satisfying QJDer (A) = Cent (A)+Der (A)
will also be given.

First we note that JCent (A)∩JDer (A) = {0}. This holds true since every f ∈ JCent(A)∩JDer (A) satisfies

f (x) ◦ y + x ◦ f
(
y
)
= f

(
x ◦ y

)
= f (x) ◦ y

for all x, y ∈ A. Therefore x ◦ f
(
y
)
= 0 and, for x = 1, f = 0 follows.

Now let f ∈ QJDer (A) and let us denote f (1) = 2α. Set d (x) = f (x) − α ◦ x for all x ∈ A. Then
f (x) = α ◦ x + d (x) and f ∈ JCent (A) + JDer (A) if and only if the map f̄ (x) = α ◦ x is a Jordan centralizer
and d is a Jordan derivation. Of course we can not expect that QJDer (A) = JCent (A) + JDer (A) holds in
general. Let us give an example of algebra for which QJDer (A) , JCent (A) + JDer (A).

Example. LetA be the algebra defined in (5). Let the maps f , h : A→A be given as
r s t1 u

r v t2
r s

r

 f
7→


0 0 0 0

0 2r 0
0 0

0

 and


r s t1 u

r v t2
r s

r

 h
7→


0 0 s 0

0 4r s
0 0

0

 .
Calculations show that f (x)◦ y+x◦ f

(
y
)
= h

(
x ◦ y

)
for all x, y ∈ A. Therefore f is a quasi Jordan derivation.

Since f (1) = 2e23 we can write f (x) = e23 ◦x+d (x). Thus, the map f̄ (x) = e23 ◦x is not a Jordan centralizer as
seen in subsection 3.4. Also, the map d (x) = f (x)− e23 ◦ x = −s (e13 + e24) is not a Jordan derivation. Indeed,
since x ◦ x = 0 holds for x = e12 + e34 it follows that 0 = d (x ◦ x) , d (x) ◦ x + x ◦ d (x) = −4e14, which is a
contradiction. Therefore f < JCent (A) + JDer (A).

The most we can say in general is the following criterion.
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Lemma 4.1. Let f ∈ QJDer (A). Then f ∈ JCent (A) + JDer (A) if and only if f (1) ∈ ZJ (A).

Proof. Clearly, if f = f̄ + d ∈ JCent (A) + JDer (A), then f (1) = f̄ (1) and, since f̄ is a Jordan centralizer, we
have f (1) ∈ ZJ (A).

For the proof of the other implication let f ∈ QJDer (A). Then there exist h : A→A such that

f (x) ◦ y + x ◦ f
(
y
)
= h

(
x ◦ y

)
(6)

for all x, y ∈ A. Denote f (1) = 2α. Substituting y = 1 in (6) we get 2 f (x) + x ◦ f (1) = 2h (x) or equivalently
f (x) + α ◦ x = h (x) for all x ∈ A. Therefore

f (x) ◦ y + x ◦ f
(
y
)
= f

(
x ◦ y

)
+ α ◦

(
x ◦ y

)
(7)

for all x, y ∈ A. Let us write f (x) = α ◦ x + d (x), where d : A→A. By (7) we have

(α ◦ x) ◦ y + d (x) ◦ y + x ◦
(
α ◦ y

)
+ x ◦ d

(
y
)
= d

(
x ◦ y

)
+ 2

(
α ◦

(
x ◦ y

))
,

which can be written as

d
(
x ◦ y

)
− d (x) ◦ y − x ◦ d

(
y
)
= (α ◦ x) ◦ y +

(
α ◦ y

)
◦ x − 2

(
α ◦

(
x ◦ y

))
=

[
[α, x] , y

]
+

[[
α, y

]
, x

]
for all x, y ∈ A. Now, if f (1) = 2α ∈ ZJ (A), then [[α,A] ,A] = {0} and it follows that f̄ (x) = α ◦ x is a Jordan
centralizer and d is a Jordan derivation. Therefore f = f̄ + d ∈ JCent (A) + JDer (A).

Thus, to know whether QJDer (A) = JCent (A) + JDer (A) holds for an algebra A we have to check if
every f ∈ QJDer (A) satisfies f (1) ∈ ZJ (A) and identity (7) can be used to verify this. In case of matrix
algebras, algebras generated by idempotents, algebras containing a nontrivial idempotent e satisfying (4)
and semiprime algebras it can be shown that f (1) ∈ Z (A). Since on some algebras every Jordan derivation
is a derivation, some refined statements can be made and the following results are obtained.

Proposition 4.2. LetA = R (A). Then QJDer (A) = Cent (A) + JDer (A).

Proof. Let f ∈ QJDer (A), f (1) = 2α, and let e be an idempotent of algebra A. Set e⊥ = 1 − e. Substituting
y = x = e in (7) we get 2 f (e) e + 2e f (e) = 2 f (e) + 2 (α ◦ e) or equivalently

f (e) e + e f (e) = f (e) + αe + ea.

Multiplying this equality from the left with e and from the right with e⊥ we further get

e f (e) e⊥ = e f (e) e⊥ + eαe⊥.

It follows that eαe⊥ = 0 and similarly it can be proven that e⊥αe = 0. Therefore α = eαe+ e⊥αe⊥ and, noticing
that αe = eαe = eα holds, we have derived that α commutes with idempotent e. By assumptionA = R (A),
so α ∈ Z (A). The conclusion of the proposition follows by Lemma 4.1.

Corollary 4.3. Let A be a unital algebra and A = Mn (A), n ≥ 2, the matrix algebra. Then QJDer (A) =
Cent (A) +Der (A).

Proof. Every matrix algebra over a unital algebra is generated by idempotents. Therefore the statement of
Proposition 4.2 holds for Mn (A). Further, from classical results of Jacobson and Rickart [8, Theorems 7 and
22] it follows that every Jordan derivation of Mn (A) is a derivation.

Proposition 4.4. Let A be a unital algebra with a nontrivial idempotent e satisfying (4). Then QJDer (A) =
Cent (A) + JDer (A).
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Proof. Let f ∈ QJDer (A), f (1) = 2α. Let us use the decomposition (3) for A. As seen in the proof of
Proposition 4.2 the element α commutes with all idempotents of algebraA. The equality [α, e] = 0 implies
α = eαe+e⊥αe⊥. Note that e+m and e+n are idempotents ofA for all m = eme⊥ ∈ eAe⊥ and n = e⊥ne ∈ e⊥Ae.
Therefore we have

[α, e] = 0, [α, e +m] = 0, [α, e + n] = 0

and so [α,m] = 0 = [α,n] for all m ∈ eAe⊥ and n ∈ e⊥Ae, or equivalently
[
α, eAe⊥

]
= {0} =

[
α, e⊥Ae

]
. By the

same arguments as in the proof of Proposition 3.7 it can be seen that this implies [α, eAe] = {0} =
[
α, e⊥Ae⊥

]
and α ∈ Z (A). It follows by Lemma 4.1 that f ∈ Cent (A) + JDer (A).

Since every Jordan derivation of a triangular algebra is a derivation, this was proven by Zhang and Yu
in [15], we can state the next corollary.

Corollary 4.5. Let a be triangular algebraA. Then QJDer (A) = Cent (A) +Der (A).

Every upper triangular matrix algebra Tn (A) , n ≥ 2, over a unital algebra A is a triangular algebra. The
nest algebras T (N) , B (H), dim H ≥ 2, are triangular algebras. Therefore Corollary 4.5 holds for these
algebras. It can be seen that the same conclusion holds also for algebra B (H) since it is prime. Namely, as
a direct consequence of the Theorem 2.3 the following proposition can be stated.

Corollary 4.6. Let A be a unital semiprime algebra. Then QJDer (A) = Cent (A) +Der (A).
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