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Abstract. In 2022, the notion of pointwise slant Riemannian maps were introduced by Y. Giindiizalp
and M. A. Akyol (Journal of Geometry and Physics, 179, 104589, 2022) as a natural generalization of slant
Riemannian maps, slant Riemannian submersions, slant submanifolds. As a generalization of pointwise
slant Riemannian maps and many subclasses notions, we introduce pointwise bi-slant Riemannian maps
(briefly, PBSRM) from almost Hermitian manifolds to Riemannian manifolds, giving a non-trivial (proper)
example and investigate some properties of the map, we deal with their properties: the J-pluriharmonicity,
the J-invariant, and the totally geodesicness of the map. Finally, we study some curvature relations in
complex space form, involving Chen inequalities and Casorati curvatures for PBSRM, respectively.

1. The first section

In differential geometry, it is useful to define appropriate maps in order to compare differentiable
manifolds. In this respect, there are some important maps between manifolds such as isometric immersions,
Riemannian submersions and Riemannian maps which are natural generalizations of isometric immersions
and Riemannian submersions.

The notion of isometric immersions included many subclasses of submanifolds including important
submanifolds of Kaehler manifolds. More precisely, holomorphic and totally real submanifolds were
submanifolds examples of Kaehler manifolds. As a generalization of holomorphic and totally real sub-
manifolds, slant submanifolds were introduced by B. Y. Chen in [18]. We recall that a submanifold M is
called slant submanifold if for all non-zero vector X tangent to M the angle 6(X) between JX and T,M is a
constant, i.e, it does not depend on the choice of p € M and X € T,M.

In the 1889’s, Casorati introduced Casorati curvature which is a very natural concept for regular surfaces
in the three-dimensional Euclidean space in [17]. In a Riemannian manifold, this curvature is defined as
the normalized square of the length of the second fundamental form, and it is well known that this is
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an extrinsic invariant. Afterwards, many geometers studied some optimal inequalities involving Casorati
curvatures in various ambient spaces, for example see ([11], [12], [32], [33], [34], [58], [59], [64], [65]).

In the 1960’s, B. O’'Neill [41] and A . Gray [24] independently introduced Riemannian submersions.
More precisely, a differentiable map m : (M1, g1) — (Mp, g2) between Riemannian manifolds (Mj, g1) and
(M3, g2) is called a Riemannian submersion if 7. is onto and it satisfies

gm, (1. X1, 1.X2) = gm, (X1, X2) 1)

for X3, X, vector fields tangent to M;, where 7, denotes the derivative map. The theory is also very active
research field not only in mathematics but also in mathematical physics. More precisely, some of them are
the Yang-Mills theory ([14], [62]), the Kaluza-Klein theory ([15], [38]), supergravity and superstring theories
([39], [40)), etc.

In the 1990’s, F. Etayo introduced the notion of pointwise slant submanifolds under the name of quasi-
slant submanifolds in [22] and B. Y. Chen and O. Garay studied this kind of submanifolds and investigated
the geometrical characterizations in [21].

In the 1990’s, B. Y. Chen established some inequalities between the main extrinsic (the squared mean
curvature) and main intrinsic invariants (the scalar curvature and the Ricci curvature) of a submanifold in
a real space form [19]. The author also established a relation between the Ricci curvature and the squared
mean curvature for a submanifold [20]. For the inequalities, see: ([3, 4, 10, 36, 37, 56, 60, 61]).

In the 1992’s , A. E. Fischer [31] defined the notion of Riemannian maps as a generaliation of isometric
immersions and Riemannian submersions. It is also important to note that Riemannian maps satisfy the
eikonal equation which is a bridge between geometric optics and physical optics. For the geometry of
Riemannian maps between various Riemannian manifolds and their applications in spacetime geometry,
see: ([1,2,5-9, 23, 26-29, 42-44, 49-54]).

In the 2010’s, B. Sahin introduced anti-invariant Riemannian submersions, semi-invariant Riemannian
submersions and slant submersions from almost Hermitian manifolds to Riemannian manifolds as an
analogue of anti-invariant submanifolds, semi-invariant submanifolds and slant submanifolds, respectively
in [53]. Afterwards, as a natural generalization of slant submersions, the notion of hemi-slant submersions
has defined by Tastan et.al in [57].

In the 2014’s, J. W. Lee and B. Sahin defined the notion of pointwise slant submersions, as a generalization
of slant submersions which can be seen analogue of pointwise slant submanifolds and obtained several
basic results in this setting in [35]. More precisely, let ¢ be a Riemannian submersion from an almost
Hermitian manifold (M3, g1, J1) onto a Riemannian manifold (M, g2). If, at each given point p € M;, the
Wirtinger angle 0(X) between J; X and the space (kero.), is independent of the choice of the nonzero vector
X € (kero.), then we say that o is a pointwise slant submersion. In this case, the angle 6 can be regarded as
a function on Mj, which is called the slant function of the pointwise slant submersion. One can find many
papers related to this notion see: ([45], [46], [47], [48]).

In [51], B. Sahin introduced slant Riemannian maps from almost Hermitian manifolds onto Riemannian
manifolds as a generalization of holomorphic Riemannian maps and anti-invariant Riemannian maps, anti-
invariant submanifolds, anti-invariant Riemannian submersions, slant submanifolds, slant submersions,
then he studied the geometry of such maps. As a generalization of these notions, he also defined the notion
of hemi-slant Riemannian maps in [55].

In 2022, the present authors [26] introduced the notion of pointwise slant Riemannian maps as a gener-
alization of many notions including slant submanifolds, slant Riemannian submersions, slant Riemannian
maps, pointwise slant submanifolds, pointwise slant submersions . The aim of the present paper is to in-
troduce and study a new class of Riemannian maps are called pointwise bi-slant Riemannian maps (briefly,
PBSRM) as a generalization of many concepts mentioned in the abstract.

The paper is structured as follows. In Section 2 we recall some notions, which will be used in the
following sections. In Section 3 we define the notion of PBSRM from almost Hermitian manifolds to
Riemannian manifolds, giving a non-trivial (proper) example and investigate some properties of the map,
we deal with their properties: the J-pluriharmonicity of PBSRM , the J-invariant of PBSRM and the
totally geodesic maps of PBSRM. In Section 5 we study some curvature relations in complex space form,
involving Chen inequalities and Casorati curvatures for PBSRM, respectively.
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2. Preliminaries

In this section, recall some basic materials from [13, 31, 55, 63].
A 2n—dimensional Riemannian manifold (M, g1, J) is called an almost Hermitian manifold if there exists
a tensor field J of type (1,1) on M such that J> = —I and

71X, Y) = (X, JY), VX, Y € I(TM), )

where I denotes the identity transformation of T,M;. Consider an almost Hermitian manifold (M3, g1, ])
and denote by V the Levi-Civita connection on M; with respect to g;. Then M; is called a Kaehler manifold
[63] if | is parallel with respect to V, i.e.

(Vx))Y =0, 3)

VX, Y € T(TM,).

As a generalization of isometric immersions and Riemannian submersions, the notion of Riemannin
maps was defined by Fischer in [31] as follows;

Let 0 be a C®-map from a Riemannian manifold (M3, g1) to a Riemannian manifold (My, g2). The second
fundamental form of ¢ is given by

(Va.) (X,Y) = V4a.Y — 0. (VxY) for X, Y € [(TMy), (4)

where V? is the pullback connection and we denote conveniently by V the Levi-Civita connections of the
metrics g1 and g5 [13].

We call the map o a totally geodesic map if (Vo.) (X, Y) =0 for X, Y € ['(TM;) [13].

Denote the range of 0. by rangeo, as a subset of the pullback bundle 0™'TM;. With its orthogonal
complement (rangeo.)" we obtain the following decomposition

0"'TM, = range 0. & (rangec.)" .

Moreover, we have
TM,; = kero. ® (kerc.)" .

Finally, B. Sahin proved the following lemma in [49].

Theorem 2.1. [49] Let ¢ be a Riemannian map from a Riemannian manifold (M, g1) to a Riemannian manifold
(Mz,gz). Then

(Vo.) (X, Y) e T((range 0.)") for X, Y € I'((kera.)"). (5)

Let 0 be a Riemannian map from a Riemannian manifold (M, 1) to a Riemannian manifold (M, g2).
Then, we define 7 and A as

Te,E2 = hVog,0E + 0V, hE (6)
and
As, &2 = 0V, Wy + WV, 0 (7)

for every &1,& € I'(TM1), where V is the Levi-Civita connection of g;. In fact, one can see that these
tensor fields are O'Neill’s tensor fields which were defined for Riemannian submersions. For any &; €
I'(TM;), T¢, and A, are skew-symmetric operators on (I'(TM,), 1) reversing the horizontal and the vertical
distributions. We note that the tensor fields 7~ and A satisfy

Ttz = T, A éa = =Ag,&1, VY, 2 € kero, V&1, &, € (kero.)™ . 8)
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Using (6) and (7), we obtain

Ve =Ty + v111 12, )
vmél = 7;]151 + hvmél; (10)
Vem = Agm +0Ve,m; (1)
Ve &o = A &0 + Vg, &y, (12)

for any &1, &, € T((kera.)*), n1, 1, € T'(kero.), here @m 2 = oV, 12.

3. PBSRM from Kaehler Manifolds

In this section, we are going to introduce pointwise bi-slant Riemannian maps (briefly, PBSRM)
from almost Hermitian manifolds to Riemannian manifolds, provide some examples and investigate the
geometry of foliations and their geometric properties. We first obtain necessary and sufficient conditions
for the image of ¢. to be a local product Riemannian manifold and give necessary and sufficient conditions
for @ to be totally geodesic. Finally, we give some theorems on the harmonicity of the PBSRM maps.

Definition 3.1. Let (M3, g1, ]) be an almost Hermitian manifold and (Ma, g») be a Riemannian manifold. Then we
say that a Riemannian map ¢ : My — M, is a pointwise bi-slant Riemannian map (PBSRM) if there exists a pair
of orthogonal distributions DO and D% on kere. such that

1. The space kerq. admits the orthogonal direct decomposition D% & D?.
2. J(D%) L D% and J(D%) L D%,
3. The distributions D% and D are pointwise slant with slant functions 6, and 0,, respectively.

In this case, the angle 0;, i = 1,2 can be regarded as a functions on M;, which is called the bi-slant function
of the PBSRM.

We now give a non-trivial example for PBSRM.

Example 3.2. Let (RS, grs) be the Euclid space. Consider {J1, ]2} a pair of almost complex structures on R® and
JiJ2 = =J2J1, here

Jih, . l8) = (=13, =ls, 11, 1, =17, =g, 15, Is)
and

Jo(l, o ls) = (=lo, 1y, 1s, =13, =16, I5, Is, —I7).
For any function f : R® — R, we describe almost complex structure | on R® by [ = (cos f)J1 + (sin f)]>.
Then IR? =(R%,J t, grs) is an almost Hermitian manifold.
W IR? — R8 by

‘I’(xl,...,xg) = (0, 0,x3,x4,0,0,x6,x3).

W is a proper PBSRM with the bi-slant functions 61 = arccossin f and 0, = f such that

Jd d Jd d
o — (2 2 92: _—
D _<¢9x3’¢9x4>' and D <3x6'8x8>'

Also, we obtain
Jd od 0 8>

L = —_—— — —
(ker(P*) B <3x1 ! 8x2' 8x5’ 8X7

here x1, ..., xg are the local coordinates on R8.
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Let ¢ be a PBSRM from an almost Hermitian manifold (Mj, g1, J) to a Riemannian manifold (My, g2).
Then for any V € T (ker ¢.), we put

IV =V +awV, (13)
where ¢V € T (ker ¢.) and wV € T(kerg,)*. Also for any X € (kerp.)", we have
X = BX +CX, (14)

where B8X €T (ker ¢.) and CX € I'(kerg.)*.
The proof of the following result is exactly the same as that for slant immersions (see [18] or [16] for
Sasakian case), so we omit its proof.

Theorem 3.3. Let ¢ be a PBSRM from an almost Hermitian manifold (M, g1,]) to a Riemannian manifold
(M2, 92). Then @ is a PBSRM if and only if there exists a constant A € [—1,0] such that

¢*U = AU (15)
for U e T(D%),i=1,2.If p isa PBSRM, then A = —cos? 0;,i = 1,2.
By using the above theorem, it is easy to see that
72 (6. (WD), pp.(V)) = cos? 01 (U, V),
72 (. (L), wp.(V)) = sin? Oig1 (U, V),

forany U,V e T(D%),i =1,2.
Now, we are going to investigate the J—pluriharmonicity of the PBSRM with respect to the distibutions
on the total space. First, we have the following definition.

Definition 3.4. Let ¢ be a PBSRM from an almost Hermitian manifold (M, g1,]) to a Riemannian manifold
(Ma, g2) with the slant function 0;,i = 1,2. A PBSRM is called [-pluriharmonic, (kerq.)*-J-pluriharmonic,
kerq.-J-pluriharmonic, D% -J-pluriharmonic, D%-]-pluriharmonic and ((kerp.)* — kerq.)-J-pluriharmonic if

Vo)X, Y) + (Vo) (X, JY) = 0 (16)

for any X,Y € T(TM,), for any X,Y € T((kerp.)*), for any X,Y € T(kerq.), for any X, Y € T(D%),i = 1,2 for any
X e T'((kerp.)*), Y € T(kerg.).

We first have the following theorem.

Theorem 3.5. Let @ bea PBSRM from an almost Hermitian manifold (M, g1, ]) to a Riemannian manifold (Ma, g2)
with the slant function 0y. Suppose that the map ¢ is a D -]-pluriharmonic. Then the map ¢ is a w D% -geodesic
map if and only if TuV + TeudpV + HVyywW + A,y W = 0.

Proof. Given U,V € T(D%), since DY-]J-pluriharmonic, by virtue of (4) we obtain

0= Ve )(V,W)+ (Ve.)(JV,JW)
= —@(TvW) + (Vp.)(@V, oW) = 9 (Tov oW + HV gy W + A,y W)
(V(p*)(wV, a)W) = —(p*(TVW + T(Pvng + (HV(pva)W + ﬂmV(PW)
which completes the proof. O

In a similar way, we can obtain the above theorem for D%. Now, for ((kerg.)*- —ker¢.)-J-pluriharmonicity,
we have the following theorem.
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Theorem 3.6. Let ¢ bea PBSRM from an almost Hermitian manifold (M, g1, ]) to a Riemannian manifold (Ma, g2)
with the slant functions 0;,i = 1,2. Suppose that the map @ is a (kerq.)*-kerq.-J-pluriharmonic. Then the following
assertions are equivalent:

(i) The horizontal distribution (kerq.)* defines a totally geodesic foliations on M;.
(it) (Vp.)(CX, wl) = —p.(TgxU + HV gxawU + Acxpl)

for any X € T(kerg.)* and U € T'(kerg.).
Proof. For X € I'(kerg.)* and U € T'(ker¢.), since the map ¢ is a ((kerg.)* —kerq.)-J-pluriharmonic, by using
(4), we get
0= (Ve)X, U) + Vo)X, JU)
= —@.(VxU) + (Vo )(BX, pU) + (V. )(BX, wl)
+ (Ve )(CX, pU) + (Ve.)(CX, wU)
= —.(VxU) = (T gxpU) — p.(HVgxwl)
— 0.(AcxdU) + (Ve.)(CX, wl)
(V(p*)(CX, a)ll) = —(P*(qu) - (p*(TBXq)U + ﬂVBXa)U + ﬂcx(PU)

which completes the proof. [

Finally, we will find necessary and sufficient conditions for the PBSRM to be the [-invariant of the
distibutions on the total space. First, we have the following definition.

Definition 3.7. Let ¢ be a PBSRM from an almost Hermitian manifold (M, g1,]) to a Riemannian manifold
(My, g2) with the slant function 6;,i = 1,2. A PBSRM is called J—invariant, (kerg.)*-J-invariant, kerq.-J-
invariant, D -J-invariant, D°2-J-invariant and ((kerp.)* — kerq.)-J-invariant if

(Vo.)(Z, W) = (Va.)(JZ, JW) (17)

for any Z,W € T(TM,), for any Z,W € T((kerg.)*), for any Z,W € T(kerq.), for any Z, W € T(D%), for any
Z,W € T(D%), for any Z € T((kerp.)*), W € T(kerg.).

We first have the following theorem.

Theorem 3.8. Let @ bea PBSRM from an almost Hermitian manifold (M, g1, ]) to a Riemannian manifold (Ma, g)
with the slant function 61. Suppose map ¢ is a D% -J-invariant. The following assertiones are equivalent.

(i) The fibres are totally geodesic submanifolds in M.
(ii) V(p*(a)ll, a)V) = (p*(‘i},ugbu + 7‘{V¢UCL)V - ﬂwugi)U)

forany U,V € T(D%).
Proof. Given U,V € T(D%), since DY -J-invariant, by virtue of (4), we obtain
Vo )(U, V) = (Ve)(JU,JV)
-0.(VuV) = (Vo.)(oU, V) + (Vep.)(oU, wV) + (Vo.)(wU, ¢V) + (Ve.) (U, wV)

_(P*(VUV) = _(P*(V(PU(PV) - (P*(V(J)Ua)v) - (P*(un(PV) - (P*(Vmuwv)
-0.(VuV) = —p.(TyupV + HVyuawV — A,udpV) — .(VouwV).

which completes the proof. [

In a similar way, we can obtain the above theorem for D%. Finally, for ((kerg.)*—ker¢.)-J-invariant, we have
the following theorem.
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Theorem 3.9. Let ¢ bea PBSRM from an almost Hermitian manifold (M, g1, ]) to a Riemannian manifold (Ma, g2)
with the slant function 0;,i = 1,2. If the map ¢ is a ((kerq.)*—kerq.)-]-invariant if and only if C(TgxU + AcxU) +
w(VgxU + VVexU) + AxU = 0 for any X € I'(kerg.)* and U € I'(kerg.).

Proof. Given X € I'(kerc.)* and U € I'(kerc.). We assume that the map is invariant. In this case, by virtue of
(4) we have

Ve.)(X, U) = (Ve.)(JX, JU)
—@.(VxU) = (Ve.)(BX, JU) + (V.)(CX, JU)
—@.(VxU) = =p.(VaxJU) = —p.(VexJU)
—p(VuV) = =p.(J(TaxU + VaxU) + J(AcxU + VVcxU))
0 = p.(C(TaxU + AcxU) + w(VgxU + VVexU + Ax))

which completes the proof. O

Recall that a map ¢ is called totally geodesic if (Vg.) (X,Y) = 0 for X,Y € I'(TM;). Geometrically the
notion implies that for each geodesic  in M; the image ¢(B) is a geodesic in My.

Theorem 3.10. Let ¢ be a PBSRM from a Kaehler manifold (M, g1, ]) to a Riemannian manifold (My, g2). Then
o is totally geodesic if and only if

sin 20U(0)W + HV oW + CHV ywW + oTyoW = 0
sin 20X(0)W + HVxwdW + CHVxaW + o AxwW = 0

and
Vip.(Y) = —p. (AxPBY + HVxwBY) + CHVXCY + wAxCY)

for U,V €T (kerp.),Z €T (Z)Gl) and X,Y €T (kerp.)" .
Proof. For U €T (ker¢.) and W € 1"(1)61), (4), (3) and (13) imply

(Vo.) (U W) = @. (Vug*W + VuwdW + oTuwW + CHVyoW).
Then by using (15), we derive

sin 0 (Ve.) (U, W) = @ (sin 20U(O)W + HVywpW + CHVuoW + oTuwW). (18)
In a similar way, for X e T ((ker (p*)l) and WeT (1)91), we obtain

sin” 0 (Vg.) (X, W) = @. (sin 20X(O)W + HVxwpW + CHVxwW + wAxwW). (19)
For X,YeT ((ker (p*)l), from (4), (3) and (11), we have

(Vo) (X,Y) = Vipu(Y) + . (VxJBY) + ¢. (JVxCY)
= VE@.(Y) + 0u(AxPBY + HVxwBY + CHVXCY + wAxCY). (20)

Thus proof is complete due to (18)-(20). O
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4. Chen-Ricci inequality of PBSRM

In the present section, we aim to obtain some inequalities involving the Ricci curvature and the scalar
curvature on the vertical and horizontal distributions for PBSRM from a Kaehler manifold to a Riemannian
manifold. We also consider the equality cases of these inequalities.

RWV,EW) = 2V, DU W) = g1(U, Fygs (V, W)

+91(U, JF)g1(JV, W) — g1(V, JF)g1(JU, W)
+2g1(U, JV)g1(JE, W)} = g1 (TuW, TvF) + g1 (Tv W, TuF), (21)

for all vector fields U, V, F, W € T'(ker ¢.) and
. c
R(X,Y,Z,H) = 1{91 (Y, 2)q1(X, H) = 91(X, Z)1 (Y, H)

+01(JY, 2)1(JX, H) — 91(JX, 2)g1(JY, H)
+2g91(X, JY)q1(JZ, H)} + g1(AxY, AzH) — g1(AyZ, AxH)
+ g1(AxZ, AyH) (22)

for all vector fields X, Y, Z, H € T'(ker .)*.

Let (M7'(c), g1,]1) be a complex space form, (M, g2) a Riemannian manifold and ¢ : Mi(c) —» M,
be a PBSRM with (rangep.)* = {0} and dim(kerg.) = p = 2k + 2k,. For every q € M;, we consider
{El,E2 = SecC 91E1, ceey E2k1—1rE2k1 = secC 91E2k1_1,

Eogy+1, Eok, 42 = sec O2Eog 11..., Eoxy42k,-1, Ep = sec O2Eox, 1ok,-1}
and (E,.1, Ep2, ..., Ep, } two orthonormal bases of (kerg.) and (kerg.)*, respectively. One can get easily,

2
5 _ | cos* 61, forke{l,2,..,2k -1}
71Uk Fin) = { cos? 0y, for ke (2ky +1,..., 20 + 2k — 1}

Then
p
Z 7>(JEk, Exs1) = 2(k1 cos?® 01 + ka cos? 0). (23)
k,s=1
Let’s denote 7',(‘; by
7.15; = gl(TEkESIEa) (24)

wherel <k,s<pandp+1<a<b.

Now, for kerg, using (21), since ¢ is a proper PBSRM with (rangep.)* = {0} then, for each unit vector
Fi € kerq, we arrive at

Ric#(F)) = i[(p ~1) + 3(cos? 6 + cos? 6,)]
p
- pg1(TrFi, H) + Z g1(TeF1, Tr Ep). (25)
k=1

From here, we get:

Theorem 4.1. Let ¢ be a PBSRM from a complex space form (MY'(c), g1, ]1) to a Riemannian manifold (M2, g2)
with the slant functions 61, 0, and (rangeo.)* = {0}. Then, we have

Ric%r® (F;) > i[(p — 1) + 3(cos? 01 + cos? 02)] — pg1(Tr, F1, H).

For a unit vertical vector Fy € kerq., the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.
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Applying the Theorem 4.1, we can get:

Corollary 4.2. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, J1) to a Riemannian manifold (M, g2)
with the slant functions 61 = 0, = 0 and (rangeg.)* = {0}. Then, we have

. c
Ric " (Fy) > 2(p +5) = pg1(Tr, F1, H).
For a unit vertical vector Fy € ker¢., the equality status of the inequality satisfies if and only if every fibre is totally

geodesic.

Corollary 4.3. Let ¢ be a PBSRM from a complex space form (M7'(c), 91, ]1) to a Riemannian manifold (M, g»)
with the slant functions 61 = 0, = 5§ and (rangep.)* = {0}. Then, we get

. ken c
Ric "% (F1) 2 2(p = 1) = pgr(Te, Fr, H).
For a unit vertical vector Fy € kerq., the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.
Corollary 4.4. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, 1) to a Riemannian manifold (M, g2)
with the slant functions 61 = 5, 0 < 0, < 5 and (rangeg.)* = {0}. Then, we obtain

Ric#(F;) > 2[(;9 ~1) +3c08? 02)] - pg1 (T, 1, H).

For a unit vertical vector Fy € ker¢., the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

By polarization, using (25), we obtain:

Theorem 4.5. Let ¢ be a PBSRM from a complex space form (MY'(c), g1, ]1) to a Riemannian manifold (M2, g2)
with the slant functions 01, 0, and (rangep.)* = {0}. Then, the Ricci tensor S¥'?- on kerq, satisfies

Skre-(Fy, Fp) > 2[(? —1) + 3(cos? 01 + cos? 02)]g1(F1, F2) — pg1(Tk, F2, H).

For F1,F; € kerg., the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

Similarly, by using (21), we obtain

20k = i[p(p — 1) + 6(k1 cos® By + kp cos? )]
P
- PIHIP+ Y 91(TE,, TrE), (26)
k,s=1

here p*"¢ = ¥\ oy R¥"? (Ex, Es, Es, Ey).
Therefore, we can state the following result.

Theorem 4.6. Let ¢ be a PBSRM from a complex space form (M'(c), g1, ]1) to a Riemannian manifold (Ma, g2)
with the slant functions 61, 6, and (rangep.)* = {0}. Then, we have

20k > %[p(p — 1) + 6(k; cos® 1 + ka cos® ()] — P2IIH|I>.

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.
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By using (24) and (26), we arrive at

kerg.  _ E[p(p — 1) + 6(k1 cos? 01 + ko cos® 92)]

- PIHIP+ Z Z(T“ (27)

2p

a=p+1k;s=1
From ([25]), we know that
Z Z(Ta _ 1 2”7_{”2 +1 i [Ta —ga _ _Ta]z (28)
= 3P > n=7 27" p
a=p+1k,s=1 a=p+1
m p m P >
c2Y Yor2 Y Y [rr- ()]
a=p+1 s=2 a=p+12<k<s<p

If we put (28) in (27), we obtain

kerq.

2057 = Z[p(p = 1) +6(k1 cos? 1 + ky cos” )]

1 2 2 1 - o (] a 2
= PIHIE 5 Y [T =T - =T

=p+1
y . a=p+ } ) 2
2 ) Yrr-2 ), Y |- ()
a=p+1 s=2 a=p+12<k<s<p

From here, we get

zpker(p > = [P(P 1) + 6(k cos (]51 + k; cos <P2)]
1 2
pe-2 Y, Y - ()] =
a=p+12<k<s<p

On the other hand, using (7), taking F; = F4 = Ey, F; = F3 = E; and from (24), we have

2 ) RM(E E,E,E)=2 ) R“"(E,E,E,E)
2<k<s<p 2<k<s<p

by p
2 Y [ - ()]
a=p+1 2<k<s<p

From the last equality, (29) can be written as

2pk”‘P i[p(p 1) + 6(k; cos? 61 + ko cos? 6,)] — —p 2||H |2

+2 Z RN (Ey, By Es E) =2 ) RM(Ey,E, Es, Ep). (30)
2<k<s<p 2<k<s<p

Also, using the equality

P
2pker(p* =9 Z RFkere- (Ex, Es, Es, Ex) +2 Z Rker (E1, Es, Es, E1).
2<k<s<p s=1
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If we put the last equality in (30), then we have
2Rickere (E1) > i[p(p —1) + 6(k; cos® 01 + ky cos? 0,)]

1
~5PIHIP =2 )" R¥(Ey, Eo Eo E).

2<k<s<p

Since M is a complex space form, curvature tensor RM: of M; provides equation (21), therefore we acquire
: ker ¢ 3¢, 2 2 L oayp
Ric™(E1) > Z(p -1+ Z(COS 61 + cos” 6y) — ZP [H]|*.
Thus, we can give the following result:

Theorem 4.7. Let ¢ be a PBSRM from a complex space form (MY'(c), g1, ]1) to a Riemannian manifold (M2, g2)
with the slant functions 01, 6, and (rangep.)* = {0}. Then we have

Rick#(E) > i(p 1)+ %(cosz 61 + cos? 0,) — }Ipzllﬂllz.
The equality status of the inequality satisfies if and only

TH=Tn++T,

T74=0,s=2,..,p.

Corollary 4.8. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, 1) to a Riemannian manifold (M, g2)
with the slant functions 61 = 0, = 5 and (rangeq.)* = {0}. Then we have

1
Rick™(E1) 2 = (p = 1) = ZpPIHIP.
4 4
The equality status of the inequality satisfies if and only
TH=Tn++Ty
T:=0,5s=2,..,p.

Corollary 4.9. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, ]1) to a Riemannian manifold (M, g2)
with the slant functions 61 = 0, = 0 and (rangep.)* = {0}. Then we have

R (E1) 2 $(p+5) = 37 IR
The equality status of the inequality satisfies if and only
THh=Tn++T,
T7.=0,5s=2,..,p.
Now, we give Chen-Ricci inequality on (kerg.)* for PBSRM with (rangeq.)* = {0}.
Let’s denote A by

ﬂliys = gl(ﬂEkESI Ea) (31)
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Using (1.28) of ([30]) and (31) we have
c Lo
2p070)" = Zmy(my +2) +3trnB) =3} ) (AL, (32)
a=1 k,s=p+1
here m — p = m;. From (32), we get
L c . = -
2p%70 = Z{mi(m1 +2) +3tr(nB)) - 6 Y Y @r-6), Y ()2 (33)
a=1 s=p+2 a=1 p+2<k<s<m

Moreover, from (1.28) of ([30]) and (31), taking Z; = Z4 = Ey, Z> = Z3 = E; we obtain

2 Y RM(E,E,E,E) = 2 Y. REP(E,E,E, E)

p+2<k<s<m p+2<k<s<m

a=1 p+2<k<s<m

If we consider (34) in (33), then we have

4 m
zp(kerqh)* — i{ml(ml + 2) + 3t1’(1’lB)} -6 Z Z (ﬂtlxs)2
a=1 s=p+2
- 2 Z RMl (Ek, Es/ ESIEk)
p+2<k<s<m
L+ 2 Z R(kET(P*)L (Ek/ ES/ Es/ Ek)
p+2<k<s<m

Since M; is a complex space form, we get

p m
. i c
2Ric ) (Eyr) = 221 =2+ 6ICEpnlP) =6 )" Y (AL,
a=1 s=p+2

Then, we can write
. L c
Ric® " (Epi1) < £ (m1 =1+ 3|ICEpall).
Thus, we can give the following result:

Theorem 4.10. Let ¢ be a PBSRM from a complex space form (M7'(c), g1, J1) to a Riemannian manifold (M3, g2)
with the slant functions 01, 6, and (rangep.)* = {0}. Then we have

Rict®)" (Eyy1) < Z0m = 1+3ICEpal)

the equality status of the inequality satisfies if and only

A =0,s=p+2,..,m.
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5. Casorati curvatures of PBSRM

The following lemma plays a key role in the proof of our theorem:

Lemma 5.1. Let W = {(y1, y2, ..., Ym) € R" : y1 + y2 + ... + Yy, = z} be a hyperplane of R, and g : R" — Ra
quadratic form given by

IW1, Y2, oY) = S W)* + A(Ym)? = 2T 1 <kesem¥YiYs, € >0, d > 0.
Then the constrained extremum problem ming, y, ...y, ewg has the following solution:

_ L oz oz _z(m—l)
V== = = U = T T e d

z
=(c-m+2)—,
(c—m )c+1

provided that d = 2= [58].

m

Let ¢ be a PBSRM from a complex space form (MY'(c), 41, ]1) to a Riemannian manifold (M, g2) with the
slant functions 01, 6, and (rangep.)* = {0}. Suppose {E, ..., E,} is an orthonormal basis of the vertical space
ker¢.,, for g € My, and {E,41, ..., E;y} be an orthonormal basis of the horizontal space (ker(p*q)l.

kerq.

We define the scalar curvature 7+ on the vertical space kerg., by

T = 50 (R (Ex, ES)Es, Ex)

and the normalized scalar curvature k¢ of ker¢., as

2Tker<p*

pp-1)

Kker@ —

Then, we can write

TP = g(T(EE)Ep), ks=1,.p, f=p+1,..b,
“‘7“”2 = Z‘Z,Szlgl (T(Ek/ ES)/ T(Ek/ ES))/
traceT = Zzzlfi' (Ex, Ex), |ltraceT |* = g1(traceT, traceT)

and the squared norm of 7~ over the manifold M;, denoted by Ckere- is called the vertical Casorati curvatures
of the vertical space (kerg.),;. Thus, we get

b p B2
D1 Zism1(Ti)™

1 1
kerp. _ — 2 _ =
e

Now, assume that L is a t—dimensional subspace (ker.);, 2 < t and let {Ey, E5, ..., E;} be an orthonormal
basis of L*'-. Then the Casorati curvature Ck?-(L*"¢-) of L¥"#- defined as

1 1
Cher (LR = TP = T, T (TR

The normalized %~ Casorati curvatures G’g’r@» (p—1)and élg"p* (p — 1) of kerg.), are given by

[olg’r(f’» (-1, = %C'q“’”"* + ”zlplin f{Ckere-(Lker-) : L¥r¢ a hyperplane of (kerg.),}, and

wl(c}erqh (p-1)l, = 20’;”(”* - %in f{Ckere- (LFere-) : L¥r#- a hyperplane of (ker.),}.
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Theorem 5.2. Let ¢ be a PBSRM from a complex space form (MY'(c), g1, ]1) to a Riemannian manifold (M2, g2)
ker.

with the slant functions 01, 05 and (rangep.)* = {0} with 3 < p. Then the normalized o— Casorati curvatures o,

and 62”")* on (kere.), satisfy

3c

N kerq., kerg., E
() x <o, "(p 1)+4+—2p(p—1)

(k1 cos? 01 + k, cos? 6,), (35)
<

3c 5 5
1 + 29— 1)(k1 cos” 01 + ky cos” 0;). (36)

. _kerg.
(i) K7 <5, " (p-1) +

Furthermore, the equality case holds in any inequalities at a point q € My if and only if with respect to suitable
orthonormal basis {Ey, ..., E,} on (kerq.), and {E,.1, ..., En} on ((ker@.),)*, the components of T~ satisfy

B _ab _ _ b _ 1.3
Th=Tp=w= Tp—lp—l - ETppr pelr+Lp+2,..,mj,

7'ki =0, ksefl,,..plk#s), pelp+1,p+2,..,m}.
Proof. Using (1.28) of ([30]) and (7), we have
27keres = LCI(;U2 -p)+ 3?C(kl cos? 01 + ky cos? 65)
—  pC* e+ ||traceT |1 (37)

Now we define a function @“#- associated with the following quadratic polynomial with respect to the
components of 7 :

1
lergm — E[(pz _ p)Cker% + (p2 _ 1)Ckerqx (Lker(p*)]
- 27k 4 ;L(p2 -p)+ %(kl cos? 01 + kp cos? 0,).

Without loos of generality, by supposing that the hyperplane L*'¢- is spanned by {Ej, ..., E,_1}, one can
produce

Q= g ELIPT + (D)

+

b -1
S a2+ DI (T

p-1
- 2 TRTe+ (T (38)

Using (38), we obtain the critical points

T = gt T, L Th

by
11 7712 77 7pp 7 11""’7;7’7)

of Q¥ are solutions of the next system of equations:

33;5 =2(r+ )75 -2 7= 0
M= (=T 2T = 0 .
agfrf“’ =4(r+1)T) = 0 9
ag;_k,i =2(r + 1)T,fp = 0

here k,s € {1,2,..,p =1}, k # sand § € {p + 1,...,m}. Frankly (39) is a system consisting only in linear
homogeneous equations and it is easy to checky that every solution 7 has 7'kﬁs = 0 for k # s, and the
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determinant corresponding to the first two series of linear homogeneous equations in (39) has vanishes.
Furthermore, the Hessian matrix of Q€%+ is defined as

H; O 0
(]_{(lerq)*) — [ 0 7_(2 0 ],
0 0 H;
here
2p -2 .. =2 =2
-2 2 .. =2 =2
Hy=| oo |
-2 -2 .. 2 -2
-2 -2 .. -2 p-1

0 denotes the zero matrix of suitable dimensions and the matrices H,, 3 are ones having the following
diagonal forms

H, diag(4(p +1),4(p + 1), ..., 4(p + 1)),
H; = diagQp+1),2(p+1),...2(p + 1)).

Then a standard computation shows that the eigenvalues of H(Q¢") are

E11=0,En=p+3, &3=...=&p =2(p+1), & =4(p+ 1),
Sm=2(p+1), Vk,s€{1,2,...,p—1}, k#s.

Also it follows that @ is parabolic and achieves a global minimum value @< (c) for 7~ the solution
of (39). However we obtain @“#-(c) = 0 and we get @“'?- > 0. Thus,

2Tker(pt < %[(pz _ p)Ckergo* + (pz _ l)Cker(p* (Lker(p»)]
c, 5 3c 2 5
+ Z(p -p)+ ?(kl cos” 01 + ky cos” 6,) (40)

and using (40) we obtain

3c
2p(p-1)

for all hyperplane L*'#- of M;. Now, taking the infimum in (41) over every hyperplane L¥¢-, we get (i)

+1
Mmhsgcm%+ﬁzrdmwmmﬂ+i+ (ky cos? 01 + ky cos? 6,) (41)

Kker({h < O_Iéer(p* (p _ 1) + AEL + %(kl C052 01 + k2 COs2 62)- (42)

Besides, simply we can check that the equality sign holds in the (42) if and only if
7ﬁ:0,Vhseﬂlpwpbkis,ﬁem+lpwmb
and
]
7'}fp = 27'151 =..= 27'571;771, Vk,se{p+1,p+2,..,m}.

In a similar way we have (ii).
U

Using the Theorem 4.2, we obtain the following results:
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Corollary 5.3. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, J1) to a Riemannian manifold (M, g2)
with the slant functions 01 = 0, = 5 and (rangeq.)* = {0} with 3 < p. Then the normalized c— Casorati curvatures

olgnp* and c‘f’ém’)* on (kerq.), satisfy
. kero., c

(Z) Kk@r(p* < O.Cf'np (p _ 1) + Z‘:’ (43)

(i) 150 < G (p - D+— (44)

Furthermore, the equality case holds in any inequalities at a point q € M, if and only if with respect to suitable
orthonormal basis {Eq, ..., E,} on (kerq.), and {E,1, ..., En} on ((ker@.),)*, the components of T~ satisfy

U —Tﬁlp Belp+1,p+2,..,m},

17 2PP’
7£=O,hsEHNMJMkiﬂ,ﬁem+lm+2wme

Corollary 5.4. Let ¢ be a PBSRM from a complex space form (M{'(c), g1, ]1) to a Riemannian manifold (M, g2)
with the slant functions 01 = 0, = 0 and (rangeg.)* = {0} with 3 < p. Then the normalized o— Casorati curvatures

olgﬂp and &, 1P on (ker.), satisfy
N ker rp. (p+2)c
(i) K < alé Pp-1)+ 4!(’;7 —1y (45)
kerg. _ker(p (P + 2)C
(i) « <o, "(p-1)+ a1 (46)

Furthermore, the equality case holds in any inequalities at a point q € My if and only if with respect to suitable
orthonormal basis {E1, ..., E,} on (kerg.), and {Epsq, ..., En} on ((kerqo*)q)l, the components of T satisfy

Tﬁ=7~2ﬂ2= —Tﬁlpl—z Wﬁe p+1L,p+2,..,mj,

7‘5:0, kisefl,,.,pltk#s), pelp+1,p+2,..,m}.

Corollary 5.5. Let ¢ be a PBSRM from a complex space form (M}'(c), g1, ]1) to a Riemannian manifold (Ma, g,)
with the slantfunctions 0 < 61 <%, 0, =0and (rangep.)* = {0} with 3 < p. Then the normalized c— Casorati

ker _k
curvatures o, - and 5 " on (ker.), satisfy

C

. kerop, c
() K <o (p-1) + <

3c
+ ——(ky cos®> 1 + k), 47
4 2p(p - 1)( ! 1+ k) (47)

(if) 150 < G577 (p - D+ + (ky cos? Py + k). (48)

3c
2p(p—-1)

Furthermore, the equality case holds in any inequalities at a point q € M, if and only if with respect to suitable
orthonormal basis {Eq, ..., E,} on (kerg.)y and {E,.1, ..., Ep} on ((ker(p*)q)l, the components of T satisfy

B _ g _qB
Thw=Tp=w=T, 4, = zpp,ﬁ€p+1p+2 mj,

TE=0, ksell,, ..plk#s), pelp+1p+2,.,m)
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