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Abstract. In 2022, the notion of pointwise slant Riemannian maps were introduced by Y. Gündüzalp
and M. A. Akyol (Journal of Geometry and Physics, 179, 104589, 2022) as a natural generalization of slant
Riemannian maps, slant Riemannian submersions, slant submanifolds. As a generalization of pointwise
slant Riemannian maps and many subclasses notions, we introduce pointwise bi-slant Riemannian maps
(briefly,PBSRM) from almost Hermitian manifolds to Riemannian manifolds, giving a non-trivial (proper)
example and investigate some properties of the map, we deal with their properties: the J-pluriharmonicity,
the J-invariant, and the totally geodesicness of the map. Finally, we study some curvature relations in
complex space form, involving Chen inequalities and Casorati curvatures for PBSRM, respectively.

1. The first section

In differential geometry, it is useful to define appropriate maps in order to compare differentiable
manifolds. In this respect, there are some important maps between manifolds such as isometric immersions,
Riemannian submersions and Riemannian maps which are natural generalizations of isometric immersions
and Riemannian submersions.

The notion of isometric immersions included many subclasses of submanifolds including important
submanifolds of Kaehler manifolds. More precisely, holomorphic and totally real submanifolds were
submanifolds examples of Kaehler manifolds. As a generalization of holomorphic and totally real sub-
manifolds, slant submanifolds were introduced by B. Y. Chen in [18]. We recall that a submanifold M is
called slant submanifold if for all non-zero vector X tangent to M the angle θ(X) between JX and TpM is a
constant, i.e, it does not depend on the choice of p ∈M and X ∈ TpM.

In the 1889’s, Casorati introduced Casorati curvature which is a very natural concept for regular surfaces
in the three-dimensional Euclidean space in [17]. In a Riemannian manifold, this curvature is defined as
the normalized square of the length of the second fundamental form, and it is well known that this is
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ORCID iDs: https://orcid.org/0000-0003-2334-6955 (Mehmet Akif Akyol), https://orcid.org/0000-0002-0932-949X

(Yılmaz Gündüzalp)
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an extrinsic invariant. Afterwards, many geometers studied some optimal inequalities involving Casorati
curvatures in various ambient spaces, for example see ([11], [12], [32], [33], [34], [58], [59], [64], [65]).

In the 1960’s, B. O’Neill [41] and A . Gray [24] independently introduced Riemannian submersions.
More precisely, a differentiable map π : (M1, 11) −→ (M2, 12) between Riemannian manifolds (M1, 11) and
(M2, 12) is called a Riemannian submersion if π∗ is onto and it satisfies

1M2 (π∗X1, π∗X2) = 1M1 (X1,X2) (1)

for X1,X2 vector fields tangent to M1, where π∗ denotes the derivative map. The theory is also very active
research field not only in mathematics but also in mathematical physics. More precisely, some of them are
the Yang-Mills theory ([14], [62]), the Kaluza-Klein theory ([15], [38]), supergravity and superstring theories
([39], [40]), etc.

In the 1990’s, F. Etayo introduced the notion of pointwise slant submanifolds under the name of quasi-
slant submanifolds in [22] and B. Y. Chen and O. Garay studied this kind of submanifolds and investigated
the geometrical characterizations in [21].

In the 1990’s, B. Y. Chen established some inequalities between the main extrinsic (the squared mean
curvature) and main intrinsic invariants (the scalar curvature and the Ricci curvature) of a submanifold in
a real space form [19]. The author also established a relation between the Ricci curvature and the squared
mean curvature for a submanifold [20]. For the inequalities, see: ([3, 4, 10, 36, 37, 56, 60, 61]).

In the 1992’s , A. E. Fischer [31] defined the notion of Riemannian maps as a generaliation of isometric
immersions and Riemannian submersions. It is also important to note that Riemannian maps satisfy the
eikonal equation which is a bridge between geometric optics and physical optics. For the geometry of
Riemannian maps between various Riemannian manifolds and their applications in spacetime geometry,
see: ([1, 2, 5–9, 23, 26–29, 42–44, 49–54]).

In the 2010’s, B. Şahin introduced anti-invariant Riemannian submersions, semi-invariant Riemannian
submersions and slant submersions from almost Hermitian manifolds to Riemannian manifolds as an
analogue of anti-invariant submanifolds, semi-invariant submanifolds and slant submanifolds, respectively
in [53]. Afterwards, as a natural generalization of slant submersions, the notion of hemi-slant submersions
has defined by Taştan et.al in [57].

In the 2014’s, J. W. Lee and B. Şahin defined the notion of pointwise slant submersions, as a generalization
of slant submersions which can be seen analogue of pointwise slant submanifolds and obtained several
basic results in this setting in [35]. More precisely, let σ be a Riemannian submersion from an almost
Hermitian manifold

(
M1, 11, J1

)
onto a Riemannian manifold

(
M2, 12

)
. If, at each given point p ∈ M1, the

Wirtinger angle θ(X) between J1X and the space (kerσ∗)p is independent of the choice of the nonzero vector
X ∈ (ker σ∗), then we say that σ is a pointwise slant submersion. In this case, the angle θ can be regarded as
a function on M1, which is called the slant function of the pointwise slant submersion. One can find many
papers related to this notion see: ([45], [46], [47], [48]).

In [51], B. Şahin introduced slant Riemannian maps from almost Hermitian manifolds onto Riemannian
manifolds as a generalization of holomorphic Riemannian maps and anti-invariant Riemannian maps, anti-
invariant submanifolds, anti-invariant Riemannian submersions, slant submanifolds, slant submersions,
then he studied the geometry of such maps. As a generalization of these notions, he also defined the notion
of hemi-slant Riemannian maps in [55].

In 2022, the present authors [26] introduced the notion of pointwise slant Riemannian maps as a gener-
alization of many notions including slant submanifolds, slant Riemannian submersions, slant Riemannian
maps, pointwise slant submanifolds, pointwise slant submersions . The aim of the present paper is to in-
troduce and study a new class of Riemannian maps are called pointwise bi-slant Riemannian maps (briefly,
PBSRM) as a generalization of many concepts mentioned in the abstract.

The paper is structured as follows. In Section 2 we recall some notions, which will be used in the
following sections. In Section 3 we define the notion of PBSRM from almost Hermitian manifolds to
Riemannian manifolds, giving a non-trivial (proper) example and investigate some properties of the map,
we deal with their properties: the J-pluriharmonicity of PBSRM , the J-invariant of PBSRM and the
totally geodesic maps of PBSRM. In Section 5 we study some curvature relations in complex space form,
involving Chen inequalities and Casorati curvatures for PBSRM, respectively.
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2. Preliminaries

In this section, recall some basic materials from [13, 31, 55, 63].
A 2n−dimensional Riemannian manifold (M1, 11, J) is called an almost Hermitian manifold if there exists

a tensor field J of type (1, 1) on M such that J2 = −I and

11(X,Y) = 11(JX, JY), ∀X,Y ∈ Γ(TM1), (2)

where I denotes the identity transformation of TpM1. Consider an almost Hermitian manifold (M1, 11, J)
and denote by ∇ the Levi-Civita connection on M1 with respect to 11. Then M1 is called a Kaehler manifold
[63] if J is parallel with respect to ∇, i.e.

(∇X J)Y = 0, (3)

∀X,Y ∈ Γ(TM1).
As a generalization of isometric immersions and Riemannian submersions, the notion of Riemannin

maps was defined by Fischer in [31] as follows;
Let σ be a C∞-map from a Riemannian manifold

(
M1, 11

)
to a Riemannian manifold

(
M2, 12

)
. The second

fundamental form of σ is given by

(∇σ∗) (X,Y) = ∇σXσ∗Y − σ∗ (∇XY) for X,Y ∈ Γ(TM1), (4)

where ∇σ is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the
metrics 11 and 12 [13].

We call the map σ a totally geodesic map if (∇σ∗) (X,Y) = 0 for X,Y ∈ Γ(TM1) [13].
Denote the range of σ∗ by ran1eσ∗ as a subset of the pullback bundle σ−1TM1. With its orthogonal

complement
(
ran1eσ∗

)⊥ we obtain the following decomposition

σ−1TM2 = range σ∗ ⊕
(
rangeσ∗

)⊥ .
Moreover, we have

TM1 = ker σ∗ ⊕ (ker σ∗)
⊥ .

Finally, B. Şahin proved the following lemma in [49].

Theorem 2.1. [49] Let σ be a Riemannian map from a Riemannian manifold
(
M1, 11

)
to a Riemannian manifold(

M2, 12
)
. Then

(∇σ∗) (X,Y) ∈ Γ((range σ∗)⊥) for X,Y ∈ Γ((ker σ∗)⊥). (5)

Let σ be a Riemannian map from a Riemannian manifold (M1, 11) to a Riemannian manifold (M2, 12).
Then, we define T andA as

Tξ1ξ2 = h∇vξ1 vξ2 + v∇vξ1 hξ2 (6)

and

Aξ1ξ2 = v∇hξ1 hξ2 + h∇hξ1 vξ2 (7)

for every ξ1, ξ2 ∈ Γ(TM1), where ∇ is the Levi-Civita connection of 11. In fact, one can see that these
tensor fields are O’Neill’s tensor fields which were defined for Riemannian submersions. For any ξ1 ∈

Γ(TM1),Tξ1 andAξ1 are skew-symmetric operators on (Γ(TM1), 11) reversing the horizontal and the vertical
distributions. We note that the tensor fields T andA satisfy

Tη1η2 = Tη2η1, Aξ1ξ2 = −Aξ2ξ1, ∀η1, η2 ∈ kerσ∗,∀ξ1, ξ2 ∈ (kerσ∗)⊥. (8)
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Using (6) and (7), we obtain

∇η1η2 = Tη1η2 + ∇̂η1η2; (9)

∇η1ξ1 = Tη1ξ1 + h∇η1ξ1; (10)

∇ξ1η1 = Aξ1η1 + v∇ξ1η1; (11)

∇ξ1ξ2 = Aξ1ξ2 + h∇ξ1ξ2, (12)

for any ξ1, ξ2 ∈ Γ((kerσ∗)⊥), η1, η2 ∈ Γ(kerσ∗), here ∇̂η1η2 = v∇η1η2.

3. PBSRM from Kaehler Manifolds

In this section, we are going to introduce pointwise bi-slant Riemannian maps (briefly, PBSRM)
from almost Hermitian manifolds to Riemannian manifolds, provide some examples and investigate the
geometry of foliations and their geometric properties. We first obtain necessary and sufficient conditions
for the image of φ∗ to be a local product Riemannian manifold and give necessary and sufficient conditions
for φ to be totally geodesic. Finally, we give some theorems on the harmonicity of the PBSRMmaps.

Definition 3.1. Let (M1, 11, J) be an almost Hermitian manifold and (M2, 12) be a Riemannian manifold. Then we
say that a Riemannian map φ : M1 → M2 is a pointwise bi-slant Riemannian map (PBSRM) if there exists a pair
of orthogonal distributionsDθ1 andDθ2 on kerφ∗ such that

1. The space kerφ∗ admits the orthogonal direct decompositionDθ1 ⊕D
θ2 .

2. J(Dθ1 ) ⊥ Dθ2 and J(Dθ2 ) ⊥ Dθ1 ,
3. The distributionsDθ1 andDθ2 are pointwise slant with slant functions θ1 and θ2, respectively.

In this case, the angle θi, i = 1, 2 can be regarded as a functions on M1,which is called the bi-slant function
of the PBSRM.

We now give a non-trivial example for PBSRM.

Example 3.2. Let (R8, 1R8 ) be the Euclid space. Consider {J1, J2} a pair of almost complex structures on R8 and
J1 J2 = −J2 J1, here

J1(l1, ..., l8) = (−l3,−l4, l1, l2,−l7,−l8, l5, l6)

and
J2(l1, ..., l8) = (−l2, l1, l4,−l3,−l6, l5, l8,−l7).

For any function f : R8
→ R, we describe almost complex structure J f on R8 by J f = (cos f )J1 + (sin f )J2.

Then R8
f = (R8, J f , 1R8 ) is an almost Hermitian manifold.

Ψ : R8
f → R

8 by
Ψ(x1, ..., x8) = (0, 0, x3, x4, 0, 0, x6, x8).

Ψ is a proper PBSRM with the bi-slant functions θ1 = arccos sin f and θ2 = f such that

D
θ1 =

〈
∂
∂x3
,
∂
∂x4

〉
, and Dθ2 =

〈
∂
∂x6
,
∂
∂x8

〉
.

Also, we obtain

(kerφ∗)⊥ =
〈
∂
∂x1
,
∂
∂x2
,
∂
∂x5
,
∂
∂x7

〉
,

here x1, ..., x8 are the local coordinates on R8.



M. A. Akyol, Y. Gündüzalp / Filomat 39:13 (2025), 4441–4458 4445

Let φ be a PBSRM from an almost Hermitian manifold
(
M1, 11, J

)
to a Riemannian manifold (M2, 12).

Then for any V ∈ Γ
(
kerφ∗

)
, we put

JV = ϕV + ωV, (13)

where ϕV ∈ Γ
(
kerφ∗

)
and ωV ∈ Γ(kerφ∗)⊥. Also for any X ∈

(
kerφ∗

)⊥, we have

JX = BX + CX, (14)

where BX ∈ Γ
(
kerφ∗

)
and CX ∈ Γ(kerφ∗)⊥.

The proof of the following result is exactly the same as that for slant immersions (see [18] or [16] for
Sasakian case), so we omit its proof.

Theorem 3.3. Let φ be a PBSRM from an almost Hermitian manifold
(
M1, 11, J

)
to a Riemannian manifold

(M2, 12). Then φ is a PBSRM if and only if there exists a constant λ ∈ [−1, 0] such that

ϕ2U = λU (15)

for U ∈ Γ(Dθi ), i = 1, 2. If φ is a PBSRM, then λ = − cos2 θi, i = 1, 2.

By using the above theorem, it is easy to see that

12

(
ϕφ∗(U), ϕφ∗(V)

)
= cos2 θi11(U,V),

12
(
ωφ∗(U), ωφ∗(V)

)
= sin2 θi11(U,V),

for any U,V ∈ Γ(Dθi ), i = 1, 2.
Now, we are going to investigate the J−pluriharmonicity of thePBSRMwith respect to the distibutions

on the total space. First, we have the following definition.

Definition 3.4. Let φ be a PBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold
(M2, 12) with the slant function θi, i = 1, 2. A PBSRM is called J−pluriharmonic, (kerφ∗)⊥-J-pluriharmonic,
kerφ∗-J-pluriharmonic,Dθ1 -J-pluriharmonic,Dθ2 -J-pluriharmonic and ((kerφ∗)⊥ − kerφ∗)-J-pluriharmonic if

(∇φ∗)(X,Y) + (∇φ∗)(JX, JY) = 0 (16)

for any X,Y ∈ Γ(TM1), for any X,Y ∈ Γ((kerφ∗)⊥), for any X,Y ∈ Γ(kerφ∗), for any X,Y ∈ Γ(Dθi ), i = 1, 2 for any
X ∈ Γ((kerφ∗)⊥), Y ∈ Γ(kerφ∗).

We first have the following theorem.

Theorem 3.5. Letφ be aPBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold (M2, 12)
with the slant function θ1. Suppose that the map φ is a Dθ1 -J-pluriharmonic. Then the map φ is a ωDθ1 -geodesic
map if and only if TUV + TϕUϕV +H∇ϕVωW +AωVϕW = 0.

Proof. Given U,V ∈ Γ(Dθ1 ), sinceDθ1 -J-pluriharmonic, by virtue of (4) we obtain

0 = (∇φ∗)(V,W) + (∇φ∗)(JV, JW)
= −φ∗(TVW) + (∇φ∗)(ωV, ωW) − φ∗(TϕVϕW +H∇ϕVωW +AωVϕW)

(∇φ∗)(ωV, ωW) = −φ∗(TVW + TϕVϕW +H∇ϕVωW +AωVϕW)

which completes the proof.

In a similar way, we can obtain the above theorem for Dθ2 . Now, for ((kerφ∗)⊥−kerφ∗)-J-pluriharmonicity,
we have the following theorem.
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Theorem 3.6. Letφ be aPBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold (M2, 12)
with the slant functions θi, i = 1, 2. Suppose that the map φ is a (kerφ∗)⊥-kerφ∗-J-pluriharmonic. Then the following
assertions are equivalent:

(i) The horizontal distribution (kerφ∗)⊥ defines a totally geodesic foliations on M1.
(ii) (∇φ∗)(CX, ωU) = −φ∗(TBXϕU +H∇BXωU +ACXϕU)

for any X ∈ Γ(kerφ∗)⊥ and U ∈ Γ(kerφ∗).

Proof. For X ∈ Γ(kerφ∗)⊥ and U ∈ Γ(kerφ∗), since the map φ is a ((kerφ∗)⊥−kerφ∗)-J-pluriharmonic, by using
(4), we get

0 = (∇φ∗)(X,U) + (∇φ∗)(JX, JU)
= −φ∗(∇XU) + (∇φ∗)(BX, ϕU) + (∇φ∗)(BX, ωU)
+ (∇φ∗)(CX, ϕU) + (∇φ∗)(CX, ωU)
= −φ∗(∇XU) − φ∗(TBXϕU) − φ∗(H∇BXωU)
− φ∗(ACXϕU) + (∇φ∗)(CX, ωU)

(∇φ∗)(CX, ωU) = −φ∗(∇XU) − φ∗(TBXϕU +H∇BXωU +ACXϕU)

which completes the proof.

Finally, we will find necessary and sufficient conditions for the PBSRM to be the J−invariant of the
distibutions on the total space. First, we have the following definition.

Definition 3.7. Let φ be a PBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold
(M2, 12) with the slant function θi, i = 1, 2. A PBSRM is called J−invariant, (kerφ∗)⊥-J-invariant, kerφ∗-J-
invariant,Dθ1 -J-invariant,Dθ2 -J-invariant and ((kerφ∗)⊥ − kerφ∗)-J-invariant if

(∇σ∗)(Z,W) = (∇σ∗)(JZ, JW) (17)

for any Z,W ∈ Γ(TM1), for any Z,W ∈ Γ((kerφ∗)⊥), for any Z,W ∈ Γ(kerφ∗), for any Z,W ∈ Γ(Dθ1 ), for any
Z,W ∈ Γ(Dθ2 ), for any Z ∈ Γ((kerφ∗)⊥),W ∈ Γ(kerφ∗).

We first have the following theorem.

Theorem 3.8. Letφ be aPBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold (M2, 12)
with the slant function θ1. Suppose map φ is aDθ1 -J-invariant. The following assertiones are equivalent.

(i) The fibres are totally geodesic submanifolds in M1.
(ii) ∇φ∗(ωU, ωV) = φ∗(TϕUϕU +H∇ϕUωV −AωUϕU)

for any U,V ∈ Γ(Dθ1 ).

Proof. Given U,V ∈ Γ(Dθ1 ), sinceDθ1 -J-invariant, by virtue of (4), we obtain

(∇φ∗)(U,V) = (∇φ∗)(JU, JV)
−φ∗(∇UV) = (∇φ∗)(ϕU, ϕV) + (∇φ∗)(ϕU, ωV) + (∇φ∗)(ωU, ϕV) + (∇φ∗)(ωU, ωV)
−φ∗(∇UV) = −φ∗(∇ϕUϕV) − φ∗(∇ϕUωV) − φ∗(∇ωUϕV) − φ∗(∇ωUωV)
−φ∗(∇UV) = −φ∗(TϕUϕV +H∇ϕUωV −AωUϕV) − φ∗(∇ωUωV).

which completes the proof.

In a similar way, we can obtain the above theorem forDθ2 . Finally, for ((kerφ∗)⊥−kerφ∗)-J-invariant, we have
the following theorem.
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Theorem 3.9. Letφ be aPBSRM from an almost Hermitian manifold (M1, 11, J) to a Riemannian manifold (M2, 12)
with the slant function θi, i = 1, 2. If the map φ is a ((kerφ∗)⊥−kerφ∗)-J-invariant if and only if C(TBXU+ACXU)+
ω(∇̂BXU +V∇CXU) +AXU = 0 for any X ∈ Γ(kerφ∗)⊥ and U ∈ Γ(kerφ∗).

Proof. Given X ∈ Γ(kerσ∗)⊥ and U ∈ Γ(kerσ∗).We assume that the map is invariant. In this case, by virtue of
(4) we have

(∇φ∗)(X,U) = (∇φ∗)(JX, JU)
−φ∗(∇XU) = (∇φ∗)(BX, JU) + (∇φ∗)(CX, JU)
−φ∗(∇XU) = −φ∗(∇BX JU) − −φ∗(∇CX JU)

−φ∗(∇UV) = −φ∗(J(TBXU + ˆ∇BXU) + J(ACXU +V∇CXU))

0 = φ∗(C(TBXU +ACXU) + ω( ˆ∇BXU +V∇CXU +AXU))

which completes the proof.

Recall that a map φ is called totally geodesic if
(
∇φ∗
)

(X,Y) = 0 for X,Y ∈ Γ(TM1). Geometrically the
notion implies that for each geodesic β in M1 the image φ(β) is a geodesic in M2.

Theorem 3.10. Let φ be a PBSRM from a Kaehler manifold
(
M1, 11, J

)
to a Riemannian manifold

(
M2, 12

)
. Then

σ is totally geodesic if and only if

sin 2θU(θ)W +H∇UωϕW + CH∇UωW + ωTUωW = 0
sin 2θX(θ)W +H∇XωϕW + CH∇XωW + ωAXωW = 0

and
∇
φ
Xφ∗(Y) = −φ∗

(
AXϕBY +H∇XωBY

)
+ CH∇XCY + ωAXCY

)
for U,V ∈ Γ

(
kerφ∗

)
,Z ∈ Γ

(
D
θ1
)

and X,Y ∈ Γ
(
kerφ∗

)⊥ .
Proof. For U ∈ Γ

(
kerφ∗

)
and W ∈ Γ

(
D
θ1
)
, (4), (3) and (13) imply

(
∇φ∗
)

(U,W) = φ∗
(
∇Uϕ

2W + ∇UωϕW + ωTUωW + CH∇UωW
)
.

Then by using (15), we derive

sin2 θ
(
∇φ∗
)

(U,W) = φ∗
(
sin 2θU(θ)W +H∇UωϕW + CH∇UωW + ωTUωW

)
. (18)

In a similar way, for X ∈ Γ
((

kerφ∗
)⊥) and W ∈ Γ

(
D
θ1
)
, we obtain

sin2 θ
(
∇φ∗
)

(X,W) = φ∗
(
sin 2θX(θ)W +H∇XωϕW + CH∇XωW + ωAXωW

)
. (19)

For X,Y ∈ Γ
((

kerφ∗
)⊥), from (4), (3) and (11), we have(

∇φ∗
)

(X,Y) = ∇φXφ∗(Y) + φ∗ (∇X JBY) + φ∗ (J∇XCY)

= ∇
φ
Xφ∗(Y) + φ∗(AXϕBY +H∇XωBY + CH∇XCY + ωAXCY). (20)

Thus proof is complete due to (18)-(20).
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4. Chen-Ricci inequality of PBSRM

In the present section, we aim to obtain some inequalities involving the Ricci curvature and the scalar
curvature on the vertical and horizontal distributions forPBSRM from a Kaehler manifold to a Riemannian
manifold. We also consider the equality cases of these inequalities.

R̂(U,V,F,W) =
c
4
{11(V,F)11(U,W) − 11(U,F)11(V,W)

+ 11(U, JF)11(JV,W) − 11(V, JF)11(JU,W)
+ 211(U, JV)11(JF,W)} − 11(TUW,TVF) + 11(TVW,TUF), (21)

for all vector fields U,V,F,W ∈ Γ(kerφ∗) and

R∗(X,Y,Z,H) =
c
4
{11(Y,Z)11(X,H) − 11(X,Z)11(Y,H)

+ 11(JY,Z)11(JX,H) − 11(JX,Z)11(JY,H)
+ 211(X, JY)11(JZ,H)} + 11(AXY,AZH) − 11(AYZ,AXH)
+ 11(AXZ,AYH) (22)

for all vector fields X,Y,Z,H ∈ Γ(kerφ∗)⊥.
Let (Mm

1 (c), 11, J1) be a complex space form, (M2, 12) a Riemannian manifold and φ : M1(c) → M2
be a PBSRM with (ran1eφ∗)⊥ = {0} and dim(kerφ∗) = p = 2k1 + 2k2. For every q ∈ M1, we consider
{E1,E2 = secθ1E1, ...,E2k1−1,E2k1 = secθ1E2k1−1,
E2k1+1,E2k1+2 = secθ2E2k1+1...,E2k1+2k2−1,Ep = secθ2E2k1+2k2−1}

and {Ep+1,Ep+2, ...,Eb1 } two orthonormal bases of (kerφ∗) and (kerφ∗)⊥, respectively. One can get easily,

12
1(JEk,Ek+1) =

{
cos2 θ1, f or k ∈ {1, 2, ..., 2k1 − 1};
cos2 θ2, f or k ∈ {2k1 + 1, ..., 2k1 + 2k2 − 1}.

Then
p∑

k,s=1

12
1(JEk,Ek+1) = 2(k1 cos2 θ1 + k2 cos2 θ2). (23)

Let’s denote T αks by

T
α
ks = 11(TEk Es,Eα) (24)

where 1 ≤ k, s ≤ p and p + 1 ≤ α ≤ b1.

Now, for kerφ∗ using (21), since φ is a proper PBSRM with (ran1eφ∗)⊥ = {0} then, for each unit vector
F1 ∈ kerφ∗ we arrive at

Rickerφ∗ (F1) =
c
4

[(p − 1) + 3(cos2 θ1 + cos2 θ2)]

− p11(TF1 F1,H) +
p∑

k=1

11(TEk F1,TF1 Ek). (25)

From here, we get:

Theorem 4.1. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eσ∗)⊥ = {0}. Then, we have

Rickerφ∗ (F1) ≥
c
4

[(p − 1) + 3(cos2 θ1 + cos2 θ2)] − p11(TF1 F1,H).

For a unit vertical vector F1 ∈ kerφ∗, the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.
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Applying the Theorem 4.1, we can get:

Corollary 4.2. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 = 0 and (ran1eφ∗)⊥ = {0}. Then, we have

Rickerφ∗ (F1) ≥
c
4

(p + 5) − p11(TF1 F1,H).

For a unit vertical vector F1 ∈ kerφ∗, the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

Corollary 4.3. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 =
π
2 and (ran1eφ∗)⊥ = {0}. Then, we get

Rickerφ∗ (F1) ≥
c
4

(p − 1) − p11(TF1 F1,H).

For a unit vertical vector F1 ∈ kerφ∗, the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

Corollary 4.4. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 =
π
2 , 0 < θ2 < π2 and (ran1eφ∗)⊥ = {0}. Then, we obtain

Rickerφ∗ (F1) ≥
c
4

[(p − 1) + 3 cos2 θ2)] − p11(TF1 F1,H).

For a unit vertical vector F1 ∈ kerφ∗, the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

By polarization, using (25), we obtain:

Theorem 4.5. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0}. Then, the Ricci tensor Skerφ∗ on kerφ∗ satisfies

Skerφ∗ (F1,F2) ≥
c
4

[(p − 1) + 3(cos2 θ1 + cos2 θ2)]11(F1,F2) − p11(TF1 F2,H).

For F1,F2 ∈ kerφ∗, the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

Similarly, by using (21), we obtain

2ρkerφ∗ =
c
4

[p(p − 1) + 6(k1 cos2 ϕ1 + k2 cos2 ϕ2)]

− p2
∥H∥

2 +

p∑
k,s=1

11(TEk Es,TEk Es), (26)

here ρkerφ∗ =
∑

1≤k<s≤p Rkerφ∗ (Ek,Es,Es,Ek).
Therefore, we can state the following result.

Theorem 4.6. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0}. Then, we have

2ρkerφ∗ ≥
c
4

[p(p − 1) + 6(k1 cos2 ϕ1 + k2 cos2 ϕ2)] − p2
∥H∥

2.

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.
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By using (24) and (26), we arrive at

2ρkerφ∗ =
c
4

[p(p − 1) + 6(k1 cos2 θ1 + k2 cos2 θ2)]

− p2
∥H∥

2 +

m∑
α=p+1

p∑
k,s=1

(T αks)
2. (27)

From ([25]), we know that

b1∑
α=p+1

p∑
k,s=1

(T αks)
2 =

1
2

p2
∥H∥

2 +
1
2

m∑
α=p+1

[
T
α
11 − T

α
22 − ... − T

α
pp

]2
(28)

+ 2
m∑

α=p+1

p∑
s=2

(T α1s)
2
− 2

m∑
α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
.

If we put (28) in (27), we obtain

2ρkerφ∗ =
c
4

[p(p − 1) + 6(k1 cos2 ϕ1 + k2 cos2 ϕ2)]

−
1
2

p2
∥H∥

2 +
1
2

m∑
α=p+1

[
T
α
11 − T

α
22 − ... − T

α
pp

]2
+2

m∑
α=p+1

p∑
s=2

(T α1s)
2
− 2

m∑
α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
.

From here, we get

2ρkerφ∗ ≥
c
4

[p(p − 1) + 6(k1 cos2 ϕ1 + k2 cos2 ϕ2)]

−
1
2

p2
∥H∥

2
− 2

m∑
α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
. (29)

On the other hand, using (7), taking F1 = F4 = Ek,F2 = F3 = Es and from (24), we have

2
∑

2≤k<s≤p

RM1 (Ek,Es,Es,Ek) = 2
∑

2≤k<s≤p

Rkerφ∗ (Ek,Es,Es,Ek)

+2
b1∑

α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
.

From the last equality, (29) can be written as

2ρkerφ∗ ≥
c
4

[p(p − 1) + 6(k1 cos2 θ1 + k2 cos2 θ2)] −
1
2

p2
∥H∥

2

+2
∑

2≤k<s≤p

Rkerφ∗ (Ek,Es,Es,Ek) − 2
∑

2≤k<s≤p

RM1 (Ek,Es,Es,Ek). (30)

Also, using the equality

2ρkerφ∗ = 2
∑

2≤k<s≤p

Rkerφ∗ (Ek,Es,Es,Ek) + 2
p∑

s=1

Rkerφ∗ (E1,Es,Es,E1).
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If we put the last equality in (30), then we have

2Rickerφ∗ (E1) ≥
c
4

[p(p − 1) + 6(k1 cos2 θ1 + k2 cos2 θ2)]

−
1
2

p2
∥H∥

2
− 2

∑
2≤k<s≤p

RM1 (Ek,Es,Es,Ek).

Since M1 is a complex space form, curvature tensor RM1 of M1 provides equation (21), therefore we acquire

Rickerφ∗ (E1) ≥
c
4

(p − 1) +
3c
4

(cos2 θ1 + cos2 θ2) −
1
4

p2
∥H∥

2.

Thus, we can give the following result:

Theorem 4.7. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0}. Then we have

Rickerφ∗ (E1) ≥
c
4

(p − 1) +
3c
4

(cos2 θ1 + cos2 θ2) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.

Corollary 4.8. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 =
π
2 and (ran1eφ∗)⊥ = {0}. Then we have

Rickerφ∗ (E1) ≥
c
4

(p − 1) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.

Corollary 4.9. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 = 0 and (ran1eφ∗)⊥ = {0}. Then we have

Rickerφ∗ (E1) ≥
c
4

(p + 5) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.

Now, we give Chen-Ricci inequality on (kerφ∗)⊥ for PBSRMwith (ran1eφ∗)⊥ = {0}.

Let’s denoteAαks by

A
α
ks = 11(AEk Es,Eα) (31)
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Using (1.28) of ([30]) and (31) we have

2ρ(kerφ∗)⊥ =
c
4
{m1(m1 + 2) + 3tr(nB)} − 3

p∑
α=1

m∑
k,s=p+1

(Aαks)
2, (32)

here m − p = m1. From (32), we get

2ρ(kerφ∗)⊥ =
c
4
{m1(m1 + 2) + 3tr(nB)} − 6

p∑
α=1

m∑
s=p+2

(Aα1s)
2
− 6

p∑
α=1

∑
p+2≤k<s≤m

(Aαks)
2. (33)

Moreover, from (1.28) of ([30]) and (31), taking Z1 = Z4 = Ek,Z2 = Z3 = Es we obtain

2
∑

p+2≤k<s≤m

RM1 (Ek,Es,Es,Ek) = 2
∑

p+2≤k<s≤m

R(kerφ∗)⊥ (Ek,Es,Es,Ek)

+ 6
p∑
α=1

∑
p+2≤k<s≤m

(Aαks)
2. (34)

If we consider (34) in (33), then we have

2ρ(kerφ∗)⊥ =
c
4
{m1(m1 + 2) + 3tr(nB)} − 6

p∑
α=1

m∑
s=p+2

(Aα1s)
2

− 2
∑

p+2≤k<s≤m

RM1 (Ek,Es,Es,Ek)

+ 2
∑

p+2≤k<s≤m

R(kerφ∗)⊥ (Ek,Es,Es,Ek).

Since M1 is a complex space form, we get

2Ric(kerφ∗)⊥ (Ep+1) =
c
4

(2m1 − 2 + 6∥CEp+1∥
2) − 6

p∑
α=1

m∑
s=p+2

(Aα1s)
2.

Then, we can write

Ric(kerφ∗)⊥ (Ep+1) ≤
c
4

(m1 − 1 + 3∥CEp+1∥
2).

Thus, we can give the following result:

Theorem 4.10. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0}. Then we have

Ric(kerφ∗)⊥ (Ep+1) ≤
c
4

(m1 − 1 + 3∥CEp+1∥
2).

the equality status of the inequality satisfies if and only

A1s = 0, s = p + 2, ...,m.
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5. Casorati curvatures of PBSRM

The following lemma plays a key role in the proof of our theorem:

Lemma 5.1. Let W = {(y1, y2, ..., ym) ∈ Rm : y1 + y2 + ... + ym = z} be a hyperplane of Rm, and 1 : Rm
→ R a

quadratic form given by

1(y1, y2, ..., ym) = cΣm−1
k=1 (yk)2 + d(ym)2

− 2Σ1≤k<s≤mykys, c > 0, d > 0.

Then the constrained extremum problem min(y1,y2,...,ym)∈W1 has the following solution:

y1 = y2 = ... = ym−1 =
z

c + 1
, ym =

z
d + 1

=
z(m − 1)
(c + 1)d

= (c −m + 2)
z

c + 1
,

provided that d = m−1
c−m+2 [58].

Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12) with the

slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0}. Suppose {E1, ...,Ep} is an orthonormal basis of the vertical space
kerφ∗q, for q ∈M1, and {Ep+1, ...,Em} be an orthonormal basis of the horizontal space (kerφ∗q)⊥.

We define the scalar curvature τkerφ∗ on the vertical space kerφ∗q by

τkerφ∗ = Σ
p
k,s=111(Rkerφ∗ (Ek,Es)Es,Ek)

and the normalized scalar curvature κkerφ∗ of kerφ∗q as

κkerφ∗ =
2τkerφ∗

p(p − 1)
.

Then, we can write

T
β
ks = 11(T (Ek,Es),Eβ), k, s = 1, ..., p, β = p + 1, ..., b2,

∥T ∥
2 = Σ

p
k,s=111(T (Ek,Es),T (Ek,Es)),

traceT = Σ
p
k=1T (Ek,Ek), ∥traceT∥2 = 11(traceT, traceT)

and the squared norm ofT over the manifold M1, denoted byCkerφ∗ , is called the vertical Casorati curvatures
of the vertical space (kerφ∗)q. Thus, we get

C
kerφ∗ =

1
p
∥T ∥

2 =
1
p
Σb1
β=p+1Σ

p
k,s=1(T βks)

2.

Now, assume that Lkerφ∗ is a t−dimensional subspace (kerφ∗)q, 2 ≤ t and let {E1,E2, ...,Et} be an orthonormal
basis of Lkerφ∗ . Then the Casorati curvature Ckerφ∗ (Lkerφ∗ ) of Lkerφ∗ defined as

C
kerφ∗ (Lkerφ∗ ) =

1
t
∥T ∥

2 =
1
t
Σb1
β=p+1Σ

t
k,s=1(T βks)

2.

The normalized σkerφ∗− Casorati curvatures σkerφ∗
C

(p − 1) and σ̄kerφ∗
C

(p − 1) of kerφ∗)q are given by

[σkerφ∗
C

(p − 1)]q =
1
2C

kerφ∗
q +

p+1
2p in f {Ckerφ∗ (Lkerφ∗ ) : Lkerφ∗ a hyperplane of (kerφ∗)q}, and

[σ̄kerφ∗
C

(p − 1)]q = 2Ckerφ∗
q −

2p−1
2p in f {Ckerφ∗ (Lkerφ∗ ) : Lkerφ∗ a hyperplane of (kerφ∗)q}.
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Theorem 5.2. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1, θ2 and (ran1eφ∗)⊥ = {0} with 3 ≤ p. Then the normalized σ− Casorati curvatures σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
c
4
+

3c
2p(p − 1)

(k1 cos2 θ1 + k2 cos2 θ2), (35)

(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
c
4
+

3c
2p(p − 1)

(k1 cos2 θ1 + k2 cos2 θ2). (36)

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if with respect to suitable
orthonormal basis {E1, ...,Ep} on (kerφ∗)q and {Ep+1, ...,Em} on ((kerφ∗)q)⊥, the components of T satisfy

T
β
11 = T

β
22 = ... = T

β
p−1p−1 =

1
2
T
β
pp, β ∈ {p + 1, p + 2, ...,m},

T
β
ks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ...,m}.

Proof. Using (1.28) of ([30]) and (7), we have

2τkerφ∗ =
c
4

(p2
− p) +

3c
2

(k1 cos2 θ1 + k2 cos2 θ2)

− pCkerφ∗ + ∥traceT∥2. (37)

Now we define a function Qkerφ∗ associated with the following quadratic polynomial with respect to the
components of T :

Q
kerφ∗ =

1
2

[(p2
− p)Ckerφ∗ + (p2

− 1)Ckerφ∗ (Lkerφ∗ )]

− 2τkerφ∗ +
c
4

(p2
− p) +

3c
2

(k1 cos2 θ1 + k2 cos2 θ2).

Without loos of generality, by supposing that the hyperplane Lkerφ∗ is spanned by {E1, ...,Ep−1}, one can
produce

Q
kerφ∗ = Σb1

β=p+1Σ
p−1
k=1[p(T βkk)2 + (p + 1)(T βkp)2]

+ Σb1
β=p+1[2(p + 1)Σp−1

1=k<s(T
β
ks)

2

− 2Σp
1=k<sT

β
kkT

β
ss +

p − 1
2

(T βpp)2]. (38)

Using (38), we obtain the critical points

T
c = (T p+1

11 ,T
p+1
12 , ...,T

p+1
pp , ...,T

b1
11 , ...,T

b1
pp )

of Qkerφ∗ are solutions of the next system of equations:

∂Qkerφ∗

∂T
β
kk

= 2(r + 1)T βkk − 2Σp
t=1T

β
tt = 0

∂Qkerφ∗

∂T
β
pp
= (r − 1)T βpp − 2Σp−1

t=1T
β
tt = 0

∂Qkerφ∗

∂T
β
ks

= 4(r + 1)T βks = 0
∂Qkerφ∗

∂T
β
kp

= 2(r + 1)T βkp = 0

(39)

here k, s ∈ {1, 2, ..., p − 1}, k , s and β ∈ {p + 1, ...,m}. Frankly (39) is a system consisting only in linear
homogeneous equations and it is easy to checky that every solution T c has T βks = 0 for k , s, and the
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determinant corresponding to the first two series of linear homogeneous equations in (39) has vanishes.
Furthermore, the Hessian matrix of Qkerφ∗ is defined as

H(Qkerφ∗ ) =

 H1 0 0
0 H2 0
0 0 H3

 ,
here

H1 =


2p −2 ... −2 −2
−2 2p ... −2 −2
... ... ... ... ...
−2 −2 ... 2p −2
−2 −2 ... −2 p − 1

 ,
0 denotes the zero matrix of suitable dimensions and the matrices H2, H3 are ones having the following
diagonal forms

H2 = dia1(4(p + 1), 4(p + 1), ..., 4(p + 1)),
H3 = dia1(2(p + 1), 2(p + 1), ..., 2(p + 1)).

Then a standard computation shows that the eigenvalues ofH(Qkerφ∗ ) are

ξ11 = 0, ξ22 = p + 3, ξ33 = ... = ξpp = 2(p + 1), ξks = 4(p + 1),
ξkm = 2(p + 1), ∀k, s ∈ {1, 2, ..., p − 1}, k , s.

Also it follows that Qkerφ∗ is parabolic and achieves a global minimum value Qkerφ∗ (c) for T c
− the solution

of (39). However we obtain Qkerφ∗ (c) = 0 and we get Qkerφ∗ ≥ 0. Thus,

2τkerφ∗ ≤
1
2

[(p2
− p)Ckerφ∗ + (p2

− 1)Ckerφ∗ (Lkerφ∗ )]

+
c
4

(p2
− p) +

3c
2

(k1 cos2 θ1 + k2 cos2 θ2) (40)

and using (40) we obtain

κkerφ∗ ≤ [
1
2
C

kerφ∗ +
p + 1

2p
C

kerφ∗ (Lkerφ∗ )] +
c
4
+

3c
2p(p − 1)

(k1 cos2 θ1 + k2 cos2 θ2) (41)

for all hyperplane Lkerφ∗ of M1. Now, taking the infimum in (41) over every hyperplane Lkerφ∗ ,we get (i)

κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
c
4
+

3c
2p(p − 1)

(k1 cos2 θ1 + k2 cos2 θ2). (42)

Besides, simply we can check that the equality sign holds in the (42) if and only if

T
β
ks = 0, ∀k, s ∈ {1, 2, ..., p}, k , s, β ∈ {p + 1, ...,m},

and

T
β
pp = 2T β11 = ... = 2T βp−1 p−1, ∀k, s ∈ {p + 1, p + 2, ...,m}.

In a similar way we have (ii).

Using the Theorem 4.2, we obtain the following results:
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Corollary 5.3. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 =
π
2 and (ran1eφ∗)⊥ = {0} with 3 ≤ p. Then the normalized σ− Casorati curvatures

σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
c
4
, (43)

(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
c
4
. (44)

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if with respect to suitable
orthonormal basis {E1, ...,Ep} on (kerφ∗)q and {Ep+1, ...,Em} on ((kerφ∗)q)⊥, the components of T satisfy

T
β
11 = T

β
22 = ... = T

β
p−1p−1 =

1
2
T
β
pp, β ∈ {p + 1, p + 2, ...,m},

T
β
ks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ...,m}.

Corollary 5.4. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions θ1 = θ2 = 0 and (ran1eφ∗)⊥ = {0} with 3 ≤ p. Then the normalized σ− Casorati curvatures
σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
(p + 2)c
4(p − 1)

, (45)

(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
(p + 2)c
4(p − 1)

. (46)

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if with respect to suitable
orthonormal basis {E1, ...,Ep} on (kerφ∗)q and {Ep+1, ...,Em} on ((kerφ∗)q)⊥, the components of T satisfy

T
β
11 = T

β
22 = ... = T

β
p−1p−1 =

1
2
T
β
pp, β ∈ {p + 1, p + 2, ...,m},

T
β
ks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ...,m}.

Corollary 5.5. Let φ be a PBSRM from a complex space form (Mm
1 (c), 11, J1) to a Riemannian manifold (M2, 12)

with the slant functions 0 < θ1 < π
2 , θ2 = 0 and (ran1eφ∗)⊥ = {0} with 3 ≤ p. Then the normalized σ− Casorati

curvatures σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
c
4
+

3c
2p(p − 1)

(k1 cos2 ϕ1 + k2), (47)

(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
c
4
+

3c
2p(p − 1)

(k1 cos2 ϕ1 + k2). (48)

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if with respect to suitable
orthonormal basis {E1, ...,Ep} on (kerφ∗)q and {Ep+1, ...,Em} on ((kerφ∗)q)⊥, the components of T satisfy

T
β
11 = T

β
22 = ... = T

β
p−1p−1 =

1
2
T
β
pp, β ∈ {p + 1, p + 2, ...,m},

T
β
ks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ...,m}.
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