

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The φ -mixed volumes

Chang-Jian Zhaoa

^aDepartment of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

Abstract. In the paper, our main aim is to introduce a new φ -mixed volume $\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)$ of (n+1) convex bodies, which obeys classical properties. The new affine geometric quantity in special case yields the classical mixed volume $V(K_1,\ldots,K_n)$, p-mixed quermassintegral $W_{p,i}(K,L)$ and the newly established L_p -multiple mixed volume $V_{\varphi_p}(K_1,\ldots,K_n,L_n)$, respectively. As an application, we establish an Orlicz Alesandrov-Fenchel inequality for the φ -mixed volumes, which follows the classical Alesandrov-Fenchel inequality, L_p -Minkowski inequality for p-mixed quermassintegrals and L_p -Alesandrov-Fenchel inequality, respectively.

1. Introduction

If K is a nonempty closed (not necessarily bounded) convex set in \mathbb{R}^n , then (see e.g. [2])

$$h(K, x) = \max\{x \cdot y : y \in K\},\tag{1.1}$$

for $x \in \mathbb{R}^n$, defines the support function h(K, x) of K, where $x \cdot y$ denotes the usual inner product of x and y in \mathbb{R}^n . A nonempty closed convex set is uniquely determined by its support function.

Associated with convex bodies (compact convex subsets with nonempty interiors) $K_1, ..., K_n$ is a Borel measure, $S(K_1, ..., K_{n-1}; \cdot)$, on S^{n-1} , called the mixed surface area measure of convex bodies $K_1, ..., K_{n-1}$, which has the property that for each compact convex subset K_n (see e.g [11]),

$$V(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} h(K_n,u) dS(K_1,\ldots,K_{n-1};u).$$
 (1.2)

In fact, the measure $S(K_1,...,K_{n-1};\cdot)$, can be defined by the property that (1.2) holds for all K_n , and $V(K_1,...,K_n)$ denotes the mixed volume of convex bodies $K_1,...,K_n$. When $K_1 = \cdots = K_{n-i-1} = K$ and $K_{n-i} = \cdots = K_{n-1} = B$, $S(K_1,...,K_{n-1};\cdot)$ becomes the i-th mixed surface area measure $S_i(K;u)$.

In the paper, our main aim is to introduce a new concept called it φ -mixed volume $V_{\varphi}(K_1, \ldots, K_n, L_n)$ of (n+1) convex body, which obeys classical properties, including continuity, boundedness and affine invariance. The φ -mixed volume $\overline{V}_{\varphi}(K_1, \ldots, K_n, L_n)$ in special case yields the classical mixed volume

Received: 10 March 2024; Accepted: 25 November 2024

Communicated by Dragan S. Djordjević

Research is supported by National Natural Science Foundation of China (11371334.109721205).

Email address: chjzhao@163.com; chjzhao@cjlu.edu.cn (Chang-Jian Zhao)

ORCID iD: https://orcid.org/0000-0002-9988-2298 (Chang-Jian Zhao)

²⁰²⁰ Mathematics Subject Classification. Primary 46E30; Secondary 52A39.

Keywords. mixed volume; L_p -multiple mixed volume; Alesandrov-Fenchel inequality for mixed volumes, L_p -Alesandrov-Fenchel inequality.

 $V(K_1, ..., K_n)$, p-mixed quermassintegral $W_{p,i}(K, L)$ and the newly established L_p -multiple mixed volume $V_{\varphi_p}(K_1, ..., K_n, L_n)$, respectively. We establish an Orlicz Alesandrov-Fenchel inequality for the φ -mixed volumes, which follows the classical Alesandrov-Fenchel inequality, L_p -Minkowski inequality for p-mixed quermassintegrals and L_p -Alesandrov-Fenchel inequality, respectively. As applications, some Orlicz Brunn-Minkowski type inequalities are also derived.

We consider a convex and strictly increasing function $\varphi : [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$. Let Φ be the class of convex and strictly increasing functions $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = 0$. The φ -mixed volume $\overline{V}_{\varphi}(K_1, \ldots, K_n, L_n)$ of (n + 1) convex bodies K_1, \ldots, K_n, L_n is defined by (see Section 3 for the definition)

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) \le 1\right\},\tag{1.3}$$

where $dV(K_1, ..., K_{n-1}, L_n; u)$ denotes mixed volume probability measure of $K_1, ..., K_{n-1}, L_n$, and (see [14])

$$dV(K_1, \dots, K_{n-1}, L_n; u) = \frac{1}{nV(K_1, \dots, K_{n-1}, L_n)} h(L_n, u) dS(K_1, \dots, K_{n-1}; u).$$
(1.4)

Remark 1.1 With $\varphi = \varphi_1(t) = t$, (1.3) becomes

$$\overline{V}_{\varphi_1}(K_1,\ldots,K_n,L_n) = \frac{V(K_1,\ldots,K_n)}{V(K_1,\ldots,K_{n-1},L_n)}.$$
(1.5)

With $\varphi = \varphi_p(t) = t^p$, and $p \ge 1$, (1.3) yields that

$$\overline{V}_{\varphi_p}(K_1, \dots, K_n, L_n)^p = \frac{V_{\varphi_p}(K_1, \dots, K_n, L_n)}{V(K_1, \dots, K_{n-1}, L_n)}.$$
(1.6)

where $V_{\varphi_p}(K_1, ..., K_n, L_n)$ is the L_p -multiple mixed volume of (n + 1) convex bodies $K_1, ..., K_{n-1}, L_n$, and (see [14])

$$V_{\varphi_p}(K_1,\ldots,K_n,L_n) = \frac{1}{n} \int_{S^{n-1}} \left(\frac{h(K_n,u)}{h(L_n,u)} \right)^p h(L_n,u) dS(K_1,\ldots,K_{n-1};u). \tag{1.7}$$

Remark 1.2 Putting $K_1 = \cdots = K_{n-i-1} = K$, $K_{n-i} = \cdots = K_{n-1} = B$, $K_n = L$ and $L_n = K$ in (1.3), and let $\varphi = \varphi_p(t) = t^p$, and $p \ge 1$, then

$$\overline{V}_{\varphi_p}(K,\ldots,K,\underbrace{B,\ldots,B}_{i},L,K) = \left(\frac{W_{p,i}(K,L)}{W_i(K)}\right)^{1/p},$$
(1.8)

where $W_i(K)$ is the classical quermassintegral of convex body K, and $W_{p,i}(K,L)$ is the well-known p-mixed quermassintegral of convex bodies K and L, and (see [6])

$$W_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p h(K,u)^{1-p} dS_i(K;u).$$

Obviously, the L_p -mixed volume $V_p(K, L)$ of convex bodies K and L is a special case of $W_{p,i}(K, L)$. When i = 0, (1.8) becomes

$$\overline{V}_{\varphi_p}(\underbrace{K,\ldots,K}_{n-1},L,K) = \left(\frac{V_p(K,L)}{V(K)}\right)^{1/p}.$$
(1.9)

In Section 4, we establish the following Orlicz Alesandrov-Fenchel inequality for the new φ -mixed volumes of (n + 1) convex bodies K_1, \ldots, K_n, L_n .

Orlicz Alesandrov-Fenchel inequality for φ **-mixed volume** *If* K_1, \ldots, K_n, L_n *are convex bodies containing the origin in their interiors,* $1 \le r < n$, $\varphi \in \Phi$ *and* $\varphi(c_{\varphi}) = 1$, *then*

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) \ge \frac{1}{c_{\varphi}V(K_1,\ldots,K_{n-1},L_n)} \cdot \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_n)^{1/r}.$$
 (1.10)

Remark 1.3 When $\varphi(t) = t$, (1.10) becomes the following classical Alesandrov-Fenchel inequality for mixed volumes of n convex bodies K_1, \ldots, K_n (see e.g. [5]).

The Alesandrov-Fenchel inequality for mixed volumes If $K_1, ..., K_n$ are convex bodies containing the origin in their interiors and $1 \le r < n$, then

$$V(K_1, \dots, K_n) \ge \prod_{j=1}^r V(K_j, \dots, K_j, K_{r+1}, \dots, K_n)^{1/r}.$$
 (1.11)

Unfortunately, the equality conditions of this inequality are, in general, unknown (see the discussion in Schneider [12]).

Remark 1.4 When $\varphi(t) = t^p$ and $p \ge 1$, (1.10) becomes the following L_p -Alesandrov-Fenchel inequality for L_p -multiple mixed volumes of (n + 1) convex bodies K_1, \ldots, K_n, L_n , which was recently established by Zhao [14].

The L_p -Aleksandrov-Fenchel nequality for L_p -multiple mixed volumes If K_1, \dots, K_n, L_n are convex bodies containing the origin in its interiors, $1 \le r \le n$ and $p \ge 1$, then

$$V_{\varphi_p}(K_1, \dots, K_n, L_n) \ge \frac{\prod_{i=1}^r V(K_i, \dots, K_i, K_{r+1}, \dots, K_n)^{p/r}}{V(K_1, \dots, K_{n-1}, L_n)^{p-1}}.$$
(1.12)

Remark 1.5 When r = n - i - 1, $K_1 = \cdots = K_{n-i-1} = K$, $K_{n-i} = \cdots = K_{n-1} = L$, $K_n = L$ and $L_n = K$, $\varphi(t) = t^p$ and $p \ge 1$, and in view of (2.8), (1.10) becomes the following well-known L_p -Minkowski inequality for p-mixed quermassintegral.

 L_p -Minkowski inequality for p-mixed quermassintegral If K and L are convex bodies containing the origin in their interiors, p > 1 and $0 \le i < n - 1$, then

$$W_{p,i}(K,L)^{n-i} \ge W_i(K)^{n-i-p} W_i(L)^p,$$
 (1.13)

with equality if and only if *K* and *L* are homothetic.

2. Notations and preliminaries

The setting for this paper is the n-dimensional Euclidean space \mathbb{R}^n . We write \mathcal{K}^n for the set of convex bodies (compact convex subsets with nonempty interiors) of \mathbb{R}^n . We write \mathcal{K}^n_o for the set of convex bodies that contain the origin in their interiors. We reserve the letter $u \in S^{n-1}$ for unit vectors, and the letter B for the unit ball centered at the origin. For a compact set K, we write V(K) for the (n-dimensional) Lebesgue measure of K and call this the volume of K. Support function is homogeneous of degree 1, that is,

$$h(K, rx) = rh(K, x), \tag{2.1}$$

for all $x \in \mathbb{R}^n$ and $r \ge 0$.

2.1 Basics regarding convex bodies

For $\phi \in GL(n)$ write ϕ^t for the transpose of ϕ and ϕ^{-t} for the inverse of the transpose of ϕ . Write $|\phi|$ for the absolute value of the determinant of ϕ . Observe that from the definition of the support function it

follows immediately that for $\phi \in GL(n)$ the support function of the image $\phi K = \{\phi y : y \in K\}$ is given by (see [7])

$$h(\phi K, x) = h(K, \phi^t x), \tag{2.2}$$

Let d denote the Hausdorff metric on \mathcal{K}^n , i.e., for $K, L \in \mathcal{K}^n$

$$d(K, L) = |h(K, u) - h(L, u)|_{\infty},$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$.

Let Φ be the class of convex and strictly increasing functions $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = 0$. We say that the sequence $\{\varphi_i\}$, where the $\varphi_i \in \Phi$, is such that $\varphi_i \to \varphi_0 \in \Phi$ provided

$$|\varphi_i - \varphi_0|_I := \max_{t \in I} |\varphi_i(t) - \varphi_0(t)| \to 0,$$

for every compact interval $I \subset \mathbb{R}$.

For $K \in \mathcal{K}_o^n$, r_K and R_K are defined by

$$r_K = \min_{u \in S^{n-1}} h(K, u), \ R_K = \max_{u \in S^{n-1}} h(K, u).$$
 (2.3)

2.2 Mixed volumes

If $K_i \in \mathcal{K}^n$ (i = 1, 2, ..., r) and λ_i (i = 1, 2, ..., r) are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^{r} \lambda_i K_i$ is a homogeneous polynomial in λ_i given by (see e.g. [8])

$$V(\lambda_1 K_1 + \dots + \lambda_n K_n) = \sum_{i_1,\dots,i_n} \lambda_{i_1} \dots \lambda_{i_n} V_{i_1\dots i_n}, \qquad (2.4)$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V_{i_1...i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n} and is uniquely determined by (2.4), it is called the mixed volume of K_{i_1}, \ldots, K_{i_n} , and is written as $V(K_1, \ldots, K_n)$. The mixed volume $V(K_1, \ldots, K_n)$ has recently been given the following representation (see [14]):

$$V(K_1, \cdots, K_n) = \lim_{\varepsilon \to 0^+} \frac{V(K_1, \cdots, K_{n-1}, K_n + \varepsilon \cdot K_n) - V(K_1, \cdots, K_n)}{\varepsilon}.$$
 (2.5)

This is very interesting that the mixed volume is such a limiting form.

Let $K_1 = ... = K_{n-i} = K$ and $K_{n-i+1} = ... = K_n = L$, then the mixed volume $V(K_1, ..., K_n)$ is written as $V_i(K, L)$. When i = 1, $V_i(K, L)$ becomes the classical mixed volume $V_1(K, L)$ of K and K, and

$$V_1(K,L) = \frac{1}{n} \lim_{\varepsilon \to 0^+} \frac{V(K + \varepsilon L) - V(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} h(L,u) dS(K,u). \tag{2.6}$$

A fundamental inequality for mixed volume $V_1(K, L)$ is the following Minkowski inequality: for $K, L \in \mathcal{K}^n$,

$$V_1(K,L)^n \ge V(K)^{n-1}V(L),$$
 (2.7)

with equality if and only if *K* and *L* are homothetic.

Let $K_1 = \ldots = K_{n-i} = K$ and $K_{n-i+1} = \ldots = K_n = L$, then the mixed volume $V(K_1, \ldots, K_n)$ is written as $V_i(K, L)$. If $K_1 = \cdots = K_{n-i} = K$, $K_{n-i+1} = \cdots = K_n = B$, the mixed volumes $V_i(K, B)$ is written as $W_i(K)$ and called as quermassintegrals (or *i*th mixed quermassintegrals) of K. We write $W_i(K, L)$ for the mixed volume $V(K, \ldots, K, B, \ldots, B, L)$ and call as mixed quermassintegrals. Aleksandrov [1] and Fenchel and Jessen [4]

(also see Busemann [3] and Schneider [13] have shown that for $K \in \mathcal{K}_o^n$, and i = 0, 1, ..., n - 1, there exists

a regular Borel measure $S_i(K, \cdot)$ on S^{n-1} , such that the mixed quermassintegrals $W_i(K, L)$ has the following representation:

$$W_i(K, L) = \frac{1}{n} \int_{S^{n-1}} h(L, u) dS_i(K, u).$$

A fundamental inequality for mixed quermassintegrals stats that: For $K, L \in \mathcal{K}_0^n$ and $0 \le i < n - 1$,

$$W_i(K, L)^{n-i} \ge W_i(K)^{n-i-1} W_i(L),$$
 (2.8)

with equality if and only if *K* and *L* are homothetic.

2.3 Mixed p-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals, with respect to Minkowski addition. The mixed quermassintegrals $W_{p,0}(K,L), W_{p,1}(K,L), \dots, W_{p,n-1}(K,L)$, as the first variation of the ordinary quermassintegrals, with respect to Firey addition: For $K, L \in \mathcal{K}_o^n$, and real $p \ge 1$, defined by (see [6])

$$W_{p,i}(K,L) = \frac{p}{n-i} \lim_{\varepsilon \to 0^+} \frac{W_i(K + \varepsilon \cdot L) - W_i(K)}{\varepsilon},$$
(2.9)

where $+_p$ is the p-addition. The mixed p-quermassintegrals $W_{p,i}(K,L)$, for all $K,L \in \mathcal{K}_{oo}^n$, has the following integral representation:

$$W_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p dS_{p,i}(K,u),$$
 (2.10)

where $S_{p,i}(K,\cdot)$ denotes a Borel measure on S^{n-1} . The measure $S_{p,i}(K,\cdot)$ is absolutely continuous with respect to $S_i(K,\cdot)$, and has Radon-Nikodym derivative (see [9])

$$\frac{dS_{p,i}(K,\cdot)}{dS_i(K,\cdot)} = h(K,\cdot)^{1-p}.$$
 (2.11)

A fundamental inequality for mixed *p*-quermassintegrals states that: For $K, L \in \mathcal{K}_{o}^{n}, p > 1$ and $0 \le i < n - 1$,

$$W_{v,i}(K,L)^{n-i} \ge W_i(K)^{n-i-p}W_i(L)^p,$$
 (2.12)

with equality if and only if K and L are homothetic. Obviously, putting i = 0 in (2.6), the mixed p-quermassintegrals $W_{v,i}(K,L)$ become the well-known L_v -mixed volume $V_v(K,L)$, defined by (see e.g. [10])

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p dS_p(K,u).$$
 (2.13)

2.4 Orlicz multiple mixed volumes

Let us introduce Orlicz multiple mixed volume (n + 1) convex bodies K_1, \dots, K_n, L_n .

Definition 2.1 (see [14]) For $\varphi \in \Phi$, we define Orlicz multiple mixed volume of (n + 1) convex bodies K_1, \dots, K_n, L_n , denoted by $V_{\varphi}(K_1, \dots, K_n, L_n)$, as

$$V_{\varphi}(K_1,\dots,K_n,L_n) =: \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{h(L_n,u)}\right) h(L_n,u) dS(K_1,\dots,K_{n-1};u), \tag{2.14}$$

for all $K_1, \ldots, K_n, L_n \in \mathcal{K}_o^n$.

Apparently, when $\varphi(t) = t^p$ and $p \ge 1$, $V_{\varphi}(K_1, \dots, K_n, L_n)$ becomes the L_p multiple mixed volume $V_{\varphi_p}(K_1, \dots, K_n, L_n)$ stated in the introduction.

A fundamental inequality for Orlicz multiple mixed volume states that:

Orlicz-Aleksandrov-Fenchel inequality (see [14]) *If* $K_1, \dots, K_n, L_n \in \mathcal{K}_0^n$, $1 \le r \le n$ and $\varphi \in \Phi$, then

$$V_{\varphi}(K_{1},\cdots,K_{n},L_{n}) \geq V(K_{1},\cdots,K_{n-1},L_{n}) \cdot \varphi\left(\frac{\prod_{i=1}^{r} V(K_{i},\ldots,K_{i},K_{r+1},\ldots,K_{n})^{\frac{1}{r}}}{V(K_{1},\cdots,K_{n-1},L_{n})}\right).$$
(2.15)

Putting $\varphi(t) = t^p$ and $p \ge 1$ in (2.15), (2.15) becomes the L_p -Aleksandrov-Fenchel inequality (1.12) stated in the introduction.

3. The φ -mixed volume

We first give the definition of φ -mixed volume of (n + 1) convex bodies K_1, \ldots, K_n, L_n .

Definition 3.1 Let $K_1, ..., K_n, L_n \in \mathcal{K}^n$ and $\varphi \in \Phi$, the φ -mixed volume of (n + 1) convex bodies $K_1, ..., K_n, L_n$, is denoted by $\overline{V}_{\varphi}(K_1, ..., K_n, L_n)$, is defined by

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) \le 1\right\}. \tag{3.1}$$

Since $\varphi \in \Phi$, it follows that the function:

$$\lambda \to \int_{S^{n-1}} \varphi\left(\frac{h(K_n, u)}{\lambda h(L_n, u)}\right) dV(K_1, \dots, K_{n-1}, L_n; u)$$

is also strictly decreasing in $(0, \infty)$. This yields that

Lemma 3.2 *If* $K_1, ..., K_n, L_n \in \mathcal{K}_o^n$ and $\varphi \in \Phi$, then

$$\int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\lambda_o h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) = 1$$

if and only if

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)=\lambda_o.$$

When $\lambda_0 = 1$, the φ -mixed volume becomes the-well known Orlicz-multiple mixed volume. This is very interesting.

Lemma 3.3 If $K_1, \ldots, K_n, L_n, K'_n \in \mathcal{K}_0^n$, and $\varphi \in \Phi$, then

(i) For $\gamma > 0$,

$$\overline{V}_{\varphi}(K_1,\ldots,\gamma K_n,L_n)=\gamma \overline{V}_{\varphi}(K_1,\ldots,K_n,L_n).$$

(i) For $\gamma > 0$,

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,\gamma L_n)=\frac{1}{\gamma}\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n).$$

(iii)
$$\overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K_n+K_n',L_n)\leq \overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)+\overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K_n',L_n).$$

Proof First, for any $\gamma > 0$, we obtain

$$\overline{V}_{\varphi}(K_{1},\ldots,K_{n-1},\gamma K_{n},L_{n}) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(\gamma K_{n},u)}{\lambda h(L_{n},u)}\right) dV(K_{1},\ldots,K_{n-1},L_{n};u) \leq 1\right\}$$

$$= \gamma \inf\left\{\mu > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_{n},u)}{\mu h(L_{n},u)}\right) dV(K_{1},\ldots,K_{n-1},L_{n};u) \leq 1\right\}$$

$$= \gamma \overline{V}_{\varphi}(K_{1},\ldots,K_{n},L_{n}),$$

where $\mu = \frac{\lambda}{\gamma}$.

Second, for any $\gamma > 0$, we obtain

$$\begin{split} \overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K_n,\gamma L_n) &= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\lambda \gamma h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) \leq 1\right\} \\ &= \frac{1}{\gamma}\inf\left\{\delta > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\delta h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) \leq 1\right\} \\ &= \frac{1}{\gamma}\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n), \end{split}$$

where $\delta = \lambda \gamma$.

Let $\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)=\lambda_1$ and $\overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K'_n,L_n)=\lambda_2$, then

$$\int_{S^{n-1}} \varphi\left(\frac{h(K_n, u)}{\lambda_1 h(L_n, u)}\right) dV(K_1, \dots, K_{n-1}, L_n; u) = 1,$$

and

$$\int_{S^{n-1}} \varphi\left(\frac{h(K_n',u)}{\lambda_2 h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1};u) = 1.$$

Combining the convexity of the function $s \to \varphi(s/h(L_n, u))$, we obtain

$$1 = \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} \int_{S^{n-1}} \varphi \left(\frac{h(K_{n}, u)}{\lambda_{1} h(L_{n}, u)} \right) dV(K_{1}, \dots, K_{n-1}; u)$$

$$+ \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} \int_{S^{n-1}} \varphi \left(\frac{h(K'_{n}, u)}{\lambda_{2} h(L_{n}, u)} \right) dV(K_{1}, \dots, K_{n-1}; u)$$

$$\geq \int_{S^{n-1}} \varphi \left(\frac{h(K_{n}, u) + h(K'_{n}, u)}{(\lambda_{1} + \lambda_{2}) h(L_{n}, u)} \right) dV(K_{1}, \dots, K_{n-1}; u)$$

$$= \int_{S^{n-1}} \varphi \left(\frac{h(K_{n} + K'_{n}, u)}{(\lambda_{1} + \lambda_{2}) h(L_{n}, u)} \right) dV(K_{1}, \dots, K_{n-1}; u)$$

Hence

$$\overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K_n+K'_n,L_n) \leq \lambda_1+\lambda_2
= \overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)+\overline{V}_{\varphi}(K_1,\ldots,K_{n-1},K'_n,L_n).$$

This completes the proof.

In the following, we prove that the φ -mixed volume functional $\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)$ is continuous.

Lemma 3.4 If $K_1, \ldots, K_n, L_n \in \mathcal{K}_o^n$, and $\varphi \in \Phi$, then φ -mixed volume functional $\overline{V}_{\varphi}(K_1, \ldots, K_n, L_n) : \mathcal{K}_o^n \times \cdots \times \mathcal{K}_o^n \to [0, \infty)$ is continuous with respect to the Hausdorff metric.

Proof To see this, indeed, let $K_{ij} \in S^n$, $i \in \mathbb{N} \cup \{0\}$, j = 1, ..., n, be such that $K_{ij} \to K_{0j}$ as $i \to \infty$ and $L_{in} \to L_{0n}$ as $i \to \infty$. Noting that

$$\overline{V}_{\varphi}(K_{i1}, \dots, K_{in}, L_{in})
= \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi \left(\frac{h(K_{in}, u)}{\lambda h(L_{in}, u)} \right) dV(K_{i1}, \dots, K_{i(n-1)}, L_{in}; u) \le 1 \right\}
= \inf \left\{ \lambda > 0 : \frac{1}{nV(K_{i1}, \dots, K_{i(n-1)}, L_{in})} \int_{S^{n-1}} \varphi \left(\frac{h(K_{in}, u)}{\lambda h(L_{in}, u)} \right) h(L_{in}, u) dS(K_{i1}, \dots, K_{i(n-1)}; u) \le 1 \right\}$$

Since the mixed area measures is weakly continuous, i.e.

$$dS(K_{i1},...,K_{i(n-1)};u) \to dS(K_{01},...,K_{0(n-1)};u)$$
 weakly on S^{n-1} .

Since $h(K_{in}, u) \to h(K_{0n}, u)$ and $h(L_{in}, u) \to h(L_{0n}, u)$, uniformly on S^{n-1} , and φ is continuous, implies that for any $\lambda > 0$

$$\varphi\left(\frac{h(K_{in},u)}{\lambda h(L_{in},u)}\right) \to \varphi\left(\frac{h(K_{0n},u)}{\lambda h(L_{0n},u)}\right).$$

Further

$$\int_{S^{n-1}} \varphi \left(\frac{h(K_{in}, u)}{\lambda h(L_{in}, u)} \right) dV(K_{i1}, \dots, K_{i(n-1)}, L_{in}; u) \to \int_{S^{n-1}} \varphi \left(\frac{h(K_{0n}, u)}{\lambda h(L_{0n}, u)} \right) dV(K_{01}, \dots, K_{0(n-1)}, L_{0n}; u).$$

Hence

$$\lim_{i \to \infty} \overline{V}_{\varphi}(K_{i1}, \dots, K_{in}, L_{in}) = \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi \left(\frac{h(K_{0n}, u)}{\lambda h(L_{0n}, u)} \right) dV(K_{01}, \dots, K_{0(n-1)}, L_{0n}; u) \le 1 \right\}$$

$$= \overline{V}_{\varphi}(K_{01}, \dots, K_{0n}, L_{0n}).$$

This shows that the φ -mixed volume $\overline{V}_{\varphi}(K_1, ..., K_n, L_n)$ is continuous. **Lemma 3.5** *If* $K_1, ..., K_n, L_n \in \mathcal{K}_0^n$, and $\varphi_i \in \Phi$, $i \in \mathbb{N}$, then

$$\varphi_i \to \varphi \in \Phi \Rightarrow \overline{V}_{\varphi_i}(K_1, \dots, K_{n-1}, K_n, L_n) \to \overline{V}_{\varphi}(K_1, \dots, K_n, L_n).$$

Proof We note that $\varphi_i \to \varphi \in \Phi$, implies that

$$\varphi_i\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right) \to \varphi\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right) \in \Phi.$$

Further

$$\int_{S^{n-1}} \varphi_i \left(\frac{h(K_n, u)}{\lambda h(L_n, u)} \right) dV(K_1, \dots, K_{n-1}, L_n; u) \to \int_{S^{n-1}} \varphi \left(\frac{h(K_n, u)}{\lambda h(L_n, u)} \right) dV(K_1, \dots, K_{n-1}, L_n; u).$$

Hence

$$\lim_{i\to\infty} \overline{V}_{\varphi_i}(K_1,\ldots,K_n,L_n) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right) dV(K_1,\ldots,K_{n-1},L_n;u) \le 1\right\}$$

$$= \overline{V}_{\varphi}(K_1,\ldots,K_n,L_n).$$

Lemma 3.6 If $K_1, \ldots, K_n, L_n \in \mathcal{K}_o^n$, and $\varphi \in \Phi$, then Orlicz mixed volume $\overline{V}_{\varphi}(K_1, \ldots, K_n, L_n) : \underbrace{\mathcal{K}_o^n \times \cdots \times \mathcal{K}_o^n}_{n+1} \to \underbrace{\mathcal{K}_o^n \times \cdots \times \mathcal{K}_o^n}_{n+1}$

 $[0, \infty)$ is bounded.

Proof For $\varphi \in \Phi$, there must be a real number $0 < c_{\varphi} < \infty$ such that $\varphi(c_{\varphi}) = 1$, and let

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)=\lambda_0.$$

Hence

$$1 = \varphi(c_{\varphi})$$

$$= \int_{S^{n-1}} \varphi\left(\frac{h(K_n, u)}{\lambda_0 h(L_n, u)}\right) dV(K_1, \dots, K_{n-1}, L_n; u)$$

$$\geq \varphi\left(\int_{S^{n-1}} \frac{h(L_n, u)}{\lambda_0 h(K_n, u)} dV(K_1, \dots, K_{n-1}, L_n; u)\right)$$

$$\geq \varphi\left(\int_{S^{n-1}} \frac{r_{L_n}}{\lambda_0 R_{K_n}} dV(K_1, \dots, K_{n-1}, L_n; u)\right)$$

$$= \varphi\left(\frac{r_{L_n}}{\lambda_0 R_{K_n}}\right).$$

Since φ is monotone increasing on $[0, \infty)$, from this we obtain the lower bound,

$$\lambda_0 \geq \frac{r_{L_n}}{c_{\varphi} R_{K_n}}.$$

In a similar approach, we can obtain upper bound for $h(\Pi_{\varphi}(K_1,...,K_n,u),$

$$\lambda_0 \leq \frac{R_{L_n}}{c_{\omega} r_{K_n}}.$$

This completes the proof.

We easily find that the φ -mixed volume $\overline{V}_{\varphi}(K_1, \dots, K_n, L_n)$ is invariant under simultaneous unimodular centro-affine transformation.

Lemma 3.7 If $K_1, \ldots, K_n, L_n \in \mathcal{K}_0^n$, $\phi \in SL(n)$, and $\varphi \in \Phi$, then

$$\overline{V}_{\varphi}(\phi K_1, \dots, \phi K_n, \phi L_n) = \overline{V}_{\varphi}(K_1, \dots, K_n, L_n). \tag{3.7}$$

Proof From (2.2) and (3.1), we obtain

$$\overline{V}_{\varphi}(\phi K_{1}, \dots, \phi K_{n-1}, K_{n}, \phi L_{n}) = \inf \left\{ \lambda > 0 : \frac{1}{V(\phi K_{1}, \dots, \phi K_{n-1}, \phi L_{n})} \int_{S^{n-1}} \varphi \left(\frac{h(K_{n}, u)}{\lambda h(\phi L_{n}, u)} \right) \right\}$$

$$\times h(\phi L_{n}, u) dS(\phi K_{1}, \dots, \phi K_{n-1}; u) \leq 1$$

$$= \inf \left\{ \lambda > 0 : \frac{1}{V(K_{1}, \dots, K_{n-1}, L_{n})} \int_{S^{n-1}} \varphi \left(\frac{h(K_{n}, u)}{\lambda h(L_{n}, \phi^{t} u)} \right) \right\}$$

$$\times h(L_{n}, \phi^{t} u) dS(K_{1}, \dots, K_{n-1}; \phi^{t} u) \leq 1$$

$$= \inf \left\{ \lambda > 0 : \frac{1}{V(K_{1}, \dots, K_{n-1}, L_{n})} \int_{S^{n-1}} \varphi \left(\frac{h(K_{n}, \phi^{-t} u)}{\lambda h(L_{n}, u)} \right) \right\}$$

$$\times h(L_{n}, u) dS(K_{1}, \dots, K_{n-1}; u) \leq 1$$

$$= \inf \left\{ \lambda > 0 : \frac{1}{V(K_{1}, \dots, K_{n-1}, L_{n})} \int_{S^{n-1}} \varphi \left(\frac{h(\phi^{-1} K_{n}, u)}{\lambda h(L_{n}, u)} \right) \right\}$$

$$\times h(L_{n}, u) dS(K_{1}, \dots, K_{n-1}, L_{n}) \leq 1$$

$$= \overline{V}_{\varphi}(K_{1}, \dots, K_{n-1}, \phi^{-1} K_{n}, L_{n}).$$

Hence

$$\overline{V}_{\varphi}(\phi K_1,\ldots,\phi K_n,\phi L_n)=\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n).$$

This completes the proof.

4. Orlicz Alesandrov-Fenchel inequality for φ -mixed volumes

Theorem 4.1 (Orlicz Alesandrov-Fenchel inequality for φ -mixed volume) *If* $K_1, \ldots, K_n, L_n \in \mathcal{K}_o^n$, $1 \le r < n$, $\varphi \in \Phi$ and $\varphi(c_{\varphi}) = 1$, then

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) \ge \frac{1}{c_{\varphi}V(K_1,\ldots,K_{n-1},L_n)} \cdot \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_n)^{1/r}. \tag{4.1}$$

Proof For $\varphi \in \Phi$, let

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n)=\lambda. \tag{4.2}$$

Then

$$\frac{1}{nV(K_1,\ldots,K_{n-1},L_n)}\int_{S^{n-1}}\varphi\left(\frac{h(K_n,u)}{\lambda h(L_n,u)}\right)h(L_n,u)dS(K_1,\ldots,K_{n-1};u)=1.$$

Hence

$$\frac{1}{nV(K_{1},\ldots,K_{n-1},L_{n})\overline{V}_{\varphi}(K_{1},\ldots,K_{n},L_{n})}\int_{S^{n-1}}\varphi\left(\frac{h(K_{n},u)}{h(\lambda L_{n},u)}\right)h(\lambda L_{n},u)dS(K_{1},\ldots,K_{n-1};u)=1. \tag{4.3}$$

From (3.1) and (4.3), we have

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) = \frac{V_{\varphi}(K_1,\ldots,K_n,\lambda L_n)}{V(K_1,\ldots,K_n,1,L_n)}.$$
(4.4)

From (4.4) and by using the Orlicz-Aleksandrov-Fenchel inequality (2.15), we obtain

$$\overline{V}_{\varphi}(K_{1},\ldots,K_{n},L_{n}) \geq \frac{V(K_{1},\ldots,K_{n-1},\lambda L_{n})}{V(K_{1},\ldots,K_{n-1},L_{n})} \cdot \varphi\left(\frac{\prod_{i=1}^{r} V(K_{i},\ldots,K_{i},K_{r+1},\ldots,K_{n-1},K_{n})^{1/r}}{V(K_{1},\ldots,K_{n-1},\lambda L_{n})}\right).$$

For $\varphi \in \Phi$, there must be a real number $0 < c_{\varphi} < \infty$ such that $\varphi(c_{\varphi}) = 1$, further

$$1 = \varphi(c_{\varphi}) \ge \varphi\left(\frac{\prod_{i=1}^{r} V(K_{i}, \dots, K_{i}, K_{r+1}, \dots, K_{n})^{1/r}}{V(K_{1}, \dots, K_{n-1}, \lambda L_{n})}\right).$$

In view of the monotonicity of the function φ , we have

$$\overline{V}_{\varphi}(K_1,\ldots,K_n,L_n) \geq \frac{1}{c_{\varphi}V(K_1,\ldots,K_{n-1},L_n)} \cdot \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_n)^{1/r}.$$

This completes the proof.

As an application, we get the following Orlicz Brunn-Minkowski type inequality for φ -mixed volumes. **Theorem 4.2** (Orlicz Brunn-Minkowski inequality for φ -mixed volumes) *If* $K_1, \ldots, K_n, L_n, L_{n+1} \in \mathcal{K}_o^n$, $1 \le r < n$, $\varphi \in \Phi$ and $\varphi(c_{\varphi}) = 1$, then

$$\overline{V}_{\varphi}(K_{1},\ldots,K_{n},L_{n+1}) + \overline{V}_{\varphi}(K_{1},\ldots,K_{n-1},L_{n},L_{n+1})
\leq \frac{1}{c_{\varphi}V(K_{1},\ldots,K_{n-1},L_{n+1})} \cdot \prod_{i=1}^{r} V(K_{i},\ldots,K_{i},K_{r+1},\ldots,K_{n-1},K_{n}+L_{n})^{1/r}.$$
(4.5)

П

Proof This follows immediately from Lemma 3.3 and Theorem 4.1

Corollary 4.3 (L_p -Brunn-Minkowski inequality for φ -mixed volumes) If $K_1, \ldots, K_n, L_n, L_{n+1} \in \mathcal{K}_o^n$, $p \ge 1$, $1 \le r < n$, then

$$\overline{V}_{\varphi_p}(K_1,\ldots,K_n,L_{n+1}) + \overline{V}_{\varphi_p}(K_1,\ldots,K_{n-1},L_n,L_{n+1})$$

$$\leq \frac{1}{V(K_1,\ldots,K_{n-1},L_{n+1})} \cdot \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_{n-1},K_n+L_n)^{1/r}. \tag{4.6}$$

Proof This follows immediately from Theorem 4.2 with $\varphi = \varphi_p(t) = t^p$ and $p \ge 1$. Corollary 4.4 (Brunn-Minkowski type inequality) *If* $K_1, \ldots, K_n, L_n, L_{n+1} \in \mathcal{K}_o^n$, $1 \le r < n$, then

$$V(K_1,\ldots,K_n)+V(K_1,\ldots,K_{n-1},L_n)\leq \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_{n-1},K_n+L_n)^{1/r}.$$
 (4.7)

Proof This follows immediately from Theorem 4.2 and (1.5).

Apparently, in view of (2.7), (4.7) becomes the following classical Brunn-Minkowski inequality: If $K, L \in \mathcal{K}_o^n$, then

$$V(K+L)^{1/n} \ge V(K)^{1/n} + V(L)^{1/n}$$

with equality if and only if *K* and *L* are homothetic.

Corollary 4.5 (L_p -Brunn-Minkowski inequality for L_p -multiple mixed volumes) If $K_1, \ldots, K_n, L_n, L_{n+1} \in \mathcal{K}_0^n$, $p \ge 1, 1 \le r < n$, then

$$V_{\varphi_n}(K_1,\ldots,K_n,L_{n+1})^{1/p}+V_{\varphi_n}(K_1,\ldots,K_{n-1},L_n,L_{n+1})^{1/p}$$

$$\leq \frac{1}{V(K_1,\ldots,K_{n-1},L_{n+1})^{(p-1)/p}} \cdot \prod_{i=1}^r V(K_i,\ldots,K_i,K_{r+1},\ldots,K_{n-1},K_n+L_n)^{1/r}. \tag{4.8}$$

Proof This follows immediately from Corollary 4.3 and (1.6).

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgments

The author expresses his sincere thanks to the referee for his (her) many very valuable suggestions and comments.

References

- [1] A. D. Aleksandrov, On the theory of mixed volumes. I. Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N. S.), 2 (1937), 947–972
- [2] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
- [3] H. Busemann, Convex surfaces, Interscience, New York, 1958.
- [4] W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd., 16 (1938), 1–31.
- [5] R. J. Gardner, Geometric Tomography, Cambridge University Press, second edition, New York, 2006.
- [6] E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the Minkowski problem. J. Diff. Goem., 38 (1993), 131–150.
- [7] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (3) (1990), 365-391.
- [8] E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339 (2) (1993), 901-916.
- [9] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118 (1996), 244-294.
- [10] E. Lutwak, D. Yang, G. Zhang, L_p affine isoperimetric inequalities, J. Diff. Geom., 56 (2000), 111–132.
- [11] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
- [12] R. Schneider, On the Aleksandrov-Fenchel inequality, Ann. New York Acad. Sei.. 440 (1985), 132–141.
- [13] R. Schneider, Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel, 1979, 13–59.
- [14] C.-J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces, 2018 (2018), Article ID 9752178, 16 pages.