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The ¢p-mixed volumes

Chang-Jian Zhao?

“Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

Abstract. In the paper, our main aim is to introduce a new @-mixed volume 1_/(,,(K], ...,K, L) of (n+1)
convex bodies, which obeys classical properties. The new affine geometric quantity in special case yields
the classical mixed volume V(Kj,...,K,), p-mixed quermassintegral W,;(K, L) and the newly established
L,-multiple mixed volume V(Pp(Kl,...,Kn,Ln), respectively. As an application, we establish an Orlicz
Alesandrov-Fenchel inequality for the gp-mixed volumes, which follows the classical Alesandrov-Fenchel

inequality, L,-Minkowski inequality for p-mixed quermassintegrals and L,-Alesandrov-Fenchel inequality,
respectively.

1. Introduction

If K is a nonempty closed (not necessarily bounded) convex set in IR", then (see e.g. [2])
h(K,x) = max{x-y:yeKj}, (1.1)

for x € R", defines the support function h(K, x) of K, where x - y denotes the usual inner product of x and y
in R". A nonempty closed convex set is uniquely determined by its support function.

Associated with convex bodies (compact convex subsets with nonempty interiors) Ky, ..., K, is a Borel
measure, S(Ky,...,K,-1;), on S§"1 called the mixed surface area measure of convex bodies Ki, ..., K,_1,
which has the property that for each compact convex subset K, (see e.g [11]),

1
V(Ky,...,Ky) = Ef h(K,, w)dS(Ky, ..., Ky—1; u). (1.2)
sn—l
In fact, the measure S(Kj,...,K,-1;-), can be defined by the property that (1.2) holds for all K,, and
V(Ky,...,K,) denotes the mixed volume of convex bodies Kj,...,K,. When K; = --- = K,,_;1 = K and
K,;=---=K,-1 =B, S5(Kj,...,K,_1;) becomes the i-th mixed surface area measure S;(K; u).

In the paper, our main aim is to introduce a new concept called it p-mixed volume V,(Ky,...,K;, L;)
of (n + 1) convex body, which obeys classical properties, including continuity, boundedness and affine

invariance. The @-mixed volume V(P(Kl,...,K,,,Ln) in special case yields the classical mixed volume
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V(Ky,...,Ky), p-mixed quermassintegral W, ;(K,L) and the newly established L,-multiple mixed volume
Ve, (K1,..., Ky, Ly), respectively. We establish an Orlicz Alesandrov-Fenchel inequality for the ¢-mixed
volumes, which follows the classical Alesandrov-Fenchel inequality, L,-Minkowski inequality for p-mixed
quermassintegrals and L,-Alesandrov-Fenchel inequality, respectively. As applications, some Orlicz Brunn-
Minkowski type inequalities are also derived.

We consider a convex and strictly increasing function ¢ : [0, 00) — [0, 00) with ¢(0) = 0. Let ® be the
class of convex and strictly increasing functions ¢ : [0, c0) — [0, o0) such that ¢(0) = 0. The @-mixed volume

V@(Kl, ..., Ky, Ly) of (n + 1) convex bodies Ky, ..., Ky, L, is defined by (see Section 3 for the definition)

P\ KL, u)

n—1

( WKy, u)

Vo(Ki, ..., Ky Ly) = inf {/\ >0 f )dV(Kl,...,Kn_l,Ln; 1) < 1}, (1.3)
S

where dV(Ky, ..., Ky,-1,Ly; u) denotes mixed volume probability measure of Ki, ..., K1, L,, and (see [14])

1

dVK/..'/K—’L; = h
(Kq n=1, Luj 1) nV(Ki, ..., Ky-1,Ly)

(Lnl M)dS(Kl, ceey Kn—l; 1/[). (14)

Remark 1.1 With ¢ = ¢;(t) = t, (1.3) becomes

V(Kll sy Kn)

Vo (Ki, ..., Ky, Ly) = : 1.
Vpl( ! " n) V(K1/-~~/Kn—1/Ln) ( 5)
With ¢ = @,(t) =, and p > 1, (1.3) yields that

_ Vo (Ky,...,K,, L

V‘PP(Klr ce rKn/Ln)p = (Pp( : n) (16)

V(Ky,...,Ky-1,Ly)

where Vi, (Ky, ..., Ky, Ly) is the L,-multiple mixed volume of (1 + 1) convex bodies Ki, ..., Ky-1, L, and (see

[14])

1 (K, u)\
Vo, (K1, ..., Ky, Ly) = - fsnl (h(Ln.u) h(L,, u)dS(Ky, ..., Ky-1; u). (1.7)
Remark 1.2 Putting Ky = --- = Ky,—i-1 = K, K- = --- = K,-1 = B, K, = Land L, = K in (1.3), and let

¢ =@y(t) =17, and p > 1, then

) 1/p
_ (Wp,l(K, L)) ’ (18)

V, (K, ...,KB,...,B LK) = | ———~
o A ) Wi(K)
i

where W;(K) is the classical quermassintegral of convex body K, and W,,i(K, L) is the well-known p-mixed
quermassintegral of convex bodies K and L, and (see [6])

WD) = 1 fs L PR 1) S (K 1)

Obviously, the L,-mixed volume V,(K, L) of convex bodies K and L is a special case of W, ;(K,L). Wheni = 0,
(1.8) becomes

1/
_ (V,,(K, L)) P. (19

V, (K ...,K LK) =
%(HH ) V(K)
n-1

In Section 4, we establish the following Orlicz Alesandrov-Fenchel inequality for the new ¢@-mixed
volumes of (n + 1) convex bodies Kj, ..., K, L.
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Orlicz Alesandrov-Fenchel inequality for p-mixed volume If Kj, ..., Ky, L, are convex bodies containing
the origin in their interiors, 1 <r <n, ¢ € ® and ¢(cy) = 1, then

_ 1
Vo(Ky,..., Ky, Ly) >
(p( 1, 7\, n) - Cq;V(Klr' . .,Kn—llLfl

.
3 H VK, ..., K, K1, .., K)". (1.10)
=1

Remark 1.3 When ¢(f) = £, (1.10) becomes the following classical Alesandrov-Fenchel inequality for
mixed volumes of n convex bodies Ky, ..., K, (see e.g. [5]).

The Alesandrov-Fenchel inequality for mixed volumes If Ky, ..., K, are convex bodies containing the origin
in their interiors and 1 < r < n, then

r
VK, ... Ky > H VK., KjKps, o K" (1.11)
j=1

Unfortunately, the equality conditions of this inequality are, in general, unknown (see the discussion in
Schneider [12]).

Remark 1.4 When ¢(t) = t” and p > 1, (1.10) becomes the following L,-Alesandrov-Fenchel inequality
for L,-multiple mixed volumes of (1 + 1) convex bodies Kj, ..., K, L,, which was recently established by
Zhao [14].

The Lp—Aleksandrov-Fenchel nequality for L,,—multiple mixed volumes 1If Ky,---,K,, L, are convex bodies
containing the origin in its interiors, 1 < r <nand p > 1, then

r
H V(Ki crcy Ki/ K7’+1/ sy Kn)P/V
V(Pp (Kl/ Ty Kn/L‘rl) 2 =

1.12
V(Kl/ Tty K‘rl—l/ Ln)p_l ( )

Remark 1.5 Whenr=n-i-1, Ky =---=K,,.;1 =K, K,.ij=---=K,1 =L, K, =Land L, =K,
@(t) = tP and p > 1, and in view of (2.8), (1.10) becomes the following well-known L,-Minkowski inequality
for p-mixed quermassintegral.

L,-Minkowski inequality for p-mixed quermassintegral If K and L are convex bodies containing the origin
in their interiors, p > 1and 0 <i < n — 1, then

Wy,i(K, L)' = Wi(K)" " PW(LY, (1.13)

with equality if and only if K and L are homothetic.

2. Notations and preliminaries

The setting for this paper is the n-dimensional Euclidean space IR". We write K™ for the set of convex
bodies (compact convex subsets with nonempty interiors) of R". We write K’ for the set of convex bodies
that contain the origin in their interiors. We reserve the letter u € S$™1 for unit vectors, and the letter B for
the unit ball centered at the origin. For a compact set K, we write V(K) for the (n-dimensional) Lebesgue
measure of K and call this the volume of K. Support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K, x), (2.1)
forallx e R" and r > 0.
2.1 Basics regarding convex bodies

For ¢ € GL(n) write ¢' for the transpose of ¢» and ¢~" for the inverse of the transpose of ¢. Write |¢|
for the absolute value of the determinant of ¢p. Observe that from the definition of the support function it
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follows immediately that for ¢ € GL(n) the support function of the image ¢pK = {¢py : y € K} is given by (see
[7])
h(K,x) = h(K, ¢'), (2.2)

Let d denote the Hausdorff metric on K", i.e., for K, L € K",
d(K, L) = [h(K, u) — h(L, )|,

where | - | denotes the sup-norm on the space of continuous functions C(S"™).
Let @ be the class of convex and strictly increasing functions ¢ : [0, 00) — [0, o0) such that ¢(0) = 0. We
say that the sequence {¢;}, where the ¢; € @, is such that ¢; — ¢y € ® provided

lpi — polr = max lpi(t) — po(t)] — 0,

for every compact interval I C IR.
For K € K, rx and Rk are defined by

rx = min h(K, u), Rx = max h(K, u). (2.3)
uesn-1

ues" 1

2.2 Mixed volumes

IfKie K" (i=12,...,rand A; (i = 1,2,...,r) are nonnegative real numbers, then of fundamental
importance is the fact that the volume of };_; A;K; is a homogeneous polynomial in A; given by (see e.g. [8])

VUK + -+ AKe) = Y Ay A Vi, (2.4)

where the sum is taken over all n-tuples (i1, . . ., i,) of positive integers not exceeding r. The coefficient V;,
depends only on the bodies Kj,, ..., K;, and is uniquely determined by (2.4), it is called the mixed volume
of Ki,, ..., K;,, and is written as V(Kj, ..., K;). The mixed volume V(Kj, ..., K;) has recently been given the
following representation (see [14]):

VK, Kyt Ky + € Ky) = V(K -+ K
V(Ky, -+ ,Ky) = lim W Koo, Kt oK) 2 VG, Ke), (2.5)

e—0* &

This is very interesting that the mixed volume is such a limiting form.
LetKy =... =K,-; = Kand K;_i;1 = ... = K, = L, then the mixed volume V(Kj,...,K,) is written as
Vi(K,L). When i =1, V;(K, L) becomes the classical mixed volume V1(K, L) of K and L, and

ViK L) = & lim YD ZVEO) 1 f I(L, w)dS(K, w). 2.6)
S}‘tfl

n -0t & n

A fundamental inequality for mixed volume V(K L) is the following Minkowski inequality: for K, L € K",

Vi(K,L)" = V(K)"'V(L), (2.7)

with equality if and only if K and L are homothetic.
LetKy =...=K,-; = Kand K,_i;1 = ... = K, = L, then the mixed volume V(Kj,...,K,) is written as
V(K L). If K1 =--- = K,_; = K, K;_jy1 = -+ = K,, = B, the mixed volumes V;(K, B) is written as W;(K) and

called as quermassintegrals (or ith mixed quermassintegrals) of K. We write W;(K; L) for the mixed volume

V(K,...,K,B,...,B,L) and call as mixed quermassintegrals. Aleksandrov [1] and Fenchel and Jessen [4]
———

i
(also see Busemann [3] and Schneider [13] have shown that for K € K, and i = 0,1,...,n — 1, there exists
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a regular Borel measure S5;(K, -) on S"1 such that the mixed quermassintegrals W;(K, L) has the following
representation:

1
Wi(K,L) = - f h(L, u)dS;(K, u).
n Jgn-1
A fundamental inequality for mixed quermassintegrals stats that: For K,L € K and 0 <i<n -1,
Wi(K, L)'~ = Wi(K)"TWy(L), (2.8)
with equality if and only if K and L are homothetic.

2.3 Mixed p-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals, with
respect to Minkowski addition. The mixed quermassintegrals W,,o(K, L), W,1(K,L),..., W, ,-1(K, L), as the
first variation of the ordinary quermassintegrals, with respect to Firey addition: For K,L € K, and real
p =1, defined by (see [6])

Wi(K+, e-L)— W;i(K
Iiilirg (K 6) & 2.9)

Wp,i(K/ L) = n

where +, is the p-addition. The mixed p-quermassintegrals W, ;(K, L), for all K, L € K7, has the following
integral representation:

W,,i(K, L) = % Ll h(L, u)PdS, (K, u), (2.10)

where S, i(K, ) denotes a Borel measure on §"~1. The measure Sp,i(K, -) is absolutely continuous with respect
to Si(K, -), and has Radon-Nikodym derivative (see [9])

dSpi(K,-) .
BE - h(K, )P, (2.11)

A fundamental inequality for mixed p-quermassintegrals states that: For K,L € K]',p>1land0<i<n-1,
Wi (K, L' = Wi(K)" P Wi(LY, (212)

with equality if and only if K and L are homothetic. Obviously, putting i = 0 in (2.6), the mixed p-
quermassintegrals W), (K, L) become the well-known L,-mixed volume V,(K, L), defined by (see e.g. [10])

V(K L) = % fs h(L, S, (K, ). (2.13)

2.4 Orlicz multiple mixed volumes

Let us introduce Orlicz multiple mixed volume (1 + 1) convex bodies Ky, - -+ , Ky, Ly,.
Definition 2.1 (see [14]) For ¢ € @, we define Orlicz multiple mixed volume of (1 + 1) convex bodies
Ky, -+, Ky, Ly, denoted by V,(Ky, - -+, Ky, L), as

1 h(K,, 1) )
Vp(Ky, -+, Ky, Ly) = . Lz-l (P(h(Ln,u))h(L”'u)dS(Kl""'K"_l'u)' (2.14)
forall Ky, ..., K, L, € K.

Apparently, when ¢(t) = t## and p > 1, V(Ky, -+, Ky, L) becomes the L, multiple mixed volume
Ve, (K1, -+, Ky, Ly) stated in the introduction.

A fundamental inequality for Orlicz multiple mixed volume states that:



C.-J. Zhao / Filomat 39:2 (2025), 369-379 374

Orlicz-Aleksandrov-Fenchel inequality (see [14]) If Ky, -+ , K, L, € K], 1 <r <nand ¢ € D, then

[T, V(K;..., Ki,Kes1, ..., Kp)?

V(P(Kl/”' /I<‘rllLl’l)2 V(K1/ /Kn—lan)'(P V(K1 e Ky L)
’ 7zMn—=1s+=n

(2.15)

Putting ¢(t) = tP and p > 1 in (2.15), (2.15) becomes the L,-Aleksandrov-Fenchel inequality (1.12) stated
in the introduction.

3. The ¢-mixed volume

We first give the definition of ¢-mixed volume of (1 + 1) convex bodies Ky, ..., K,, L,.
Definition 3.1 Let Ky,...,K,,L, € K" and ¢ € @, the p-mixed volume of (n + 1) convex bodies
Ki,..., Ky, Ly, is denoted by l_/(P(Kl, ..., Ky, Ly), is defined by

h(Ky, 1)

V([,(Kl,...,Kn,Ln) = 1r1f{/L >0: j‘;’] @(m)dV(Kl, . .,Kn_l,Ln}M) < 1} (31)

Since ¢ € @, it follows that the function:

WKy, 1)

A — o (p(/\h(Ln, u))dV(Kl, . -/Kn—l/Ln; M)

is also strictly decreasing in (0, o). This yields that
Lemma 3.2 IfKy,...,K,, L, € K and ¢ € O, then

h(Kn/ l/l) . _
fs v (th(Ln, u))dV(Kl' o Kot Lysu) = 1

if and only if
V(P(Kll LRy Kan‘rl) = AO-

When A = 1, the p-mixed volume becomes the-well known Orlicz-multiple mixed volume. This is very
interesting.
Lemma 3.3 IfKy,...,K,, L, K, € K, and ¢ € O, then
(i) Fory >0,
Vo(Ky, ..., YKy, Ly) = pVo(Ky, ..., Ky, Ly).

(i) Fory >0,
— 1—
V({)(Kll cee rKnr )/LVI) = ,)_/V(p(Klr v /KVIILV!)'
(iii) . N _
Vo(Ka, -, Kno, Ky + Ky L) < Vo(Ka, - Ky L) + V(Ka, ., Kuo1, K L),

Proof First, for any y > 0, we obtain

. . h(yK, 1) )
1nf{/\ >0: Lﬂ_l (P(m)dV(Kl,...,Kn_l,Ln,u) < 1}

. . h(Ky, u) .
yinf {p >0: erl (p(—yh(Lmu))dV(Kp...,Kn—1.Ln,u) < 1}

YVe(Ki, ..., Ku, L),

‘_/(p(Klf ey Kn—ll VKn; Ln)

=~

where p = v
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Second, for any y > 0, we obtain

inf{)\>0:f @(M)dV(Kl,...,Kn_l,Ln;u) sl}
Sn—l

‘_/({J(Klr o K1, Ky, yL‘/l)

Ayh(Ly, 1)
1, , (K, 1) .
= > 1nf{6 >0: L,_l (P(éh(Ln,u))dV(Kl""'K"_l'L”'u) < 1}
1—

= =Vu(Ky,..., Ky L),

~

where 0 = Ay.
Let Vy(Ky, ..., Ky, Ly) = Ay and V(K ..., Ky-1, K], L) = Ay, then

h(Ky, 1) N
L,l (p(All’l(Ln,u))dV(Kl’ .,Kn,l,Ln,u) = 1,

and

h(K},, u)
B Vv, K = 1.
fsnl(P(Azh(Ln,u)) (Ky 174)

Combining the convexity of the function s — ¢(s/h(L,, 1)), we obtain

— /\1 h(Kn’ M) .

! - A+ A j.;”-l ¢ (Alh(Ln, Ll) dV(Klz e, Kyq;u)
Ao h(K.,, 1) |

At Ao fs Y (Azh@n, ) VK- K

(Ko, u) + h(K, 1) _
fs,” (P( (A1 + A)(Ly, u) )dV(Kl"“’K"—l'”)

[ o et K Yoy, i
Sn—l(P (/\1+)\2)h(Ln,u) Loy Bt

Hence

VoKi o Ko, K + K L) < Ar+ A2
VoK1, .., Kn, L) + V(K1 ..., Ky, K], L).

This completes the proof. m]
In the following, we prove that the p-mixed volume functional V(p(Kl, ..., Ky, L) is continuous.
Lemma 3.4 If Ky,...,K,,L, € K, and ¢ € @, then @-mixed volume functional I_/(P(Kl, ., Ky, Ly) :
K X XK — [0, 00) is continuous with respect to the Hausdorff metric.
—_———
n+1

Proof To see this, indeed, let K;; € §",i € NU {0}, j = 1,...,n, be such that K;j; — Koj as i — oo and
Ly — Lo, as i — oo. Noting that

V(p(Kilr ceey Kin/ Lin)

: h(Kin, 1)
= mf{/\ >0: fs @(m)dV(Kil,...,Ki(n_l),Lin;u) < 1}

1 ( h(Kin, 1t)
Gn-1

———— | h(L;,, Ki, ..., K-, u) <1
nV(Ki, ..., Kig-1), Lin) v /\h(Lin,M)) (Lin, 1)S(Ki -7 1) }

:inf{/\>0:
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Since the mixed area measures is weakly continuous, i.e.
dS(Ki, ..., Kig-1);u) = dS(Ko1, . . ., Kopu—1); 1) weakly on st

Since h(Kiy, u) — h(Koy,, u) and h(Li,, u) — h(Loy, 1), uniformly on s1 and @ is continuous, implies that for
any A >0

h(Kiy, 1) h(Kon, )
(P(Ah(Lm,u))_) (Ah(LO,,,u))‘

Further

h Kin,u h K n, U
f P (¥) adV(Ki, ..., Kign-1y, Lin; u) — P (L) dV (Ko, - . ., Kom-1), Lon; ).
Sn- Gn-

Ah(Lm, M) Ah(LOVlI M)
Hence
. . h(Ko,, u
llirg Vo(Kit, ..., Kin, Lin) = inf {/\ >0: fsnl (P(%)dv(KOL--~/K0(n—1)/LOn} u) < 1}

= Vy(Kot,- .., Kon, Lon).

This shows that the gp-mixed volume V(p (Ki,..., Ky, L) is continuous. O
Lemma 3.5 IfKy,...,K,, L, € K, and ¢; € D, i € N, then

i > P D=V, (Ky,..., Ky, Ky, L) = Vi(Ky, ..., Ky, L)

Proof We note that ¢; — ¢ € @, implies that

(Pi( h(Ky, u) ) = q0( h(K,, u) ) c .

Ah(L,, u) Ah(L,, 1)
Further
[ (K, w) . h(Ky, 1) '
fs v (/\h(Ln, u))dV(Kl’ oKl = | (/\h(Ln, 2|4V Ea - K, L)
Hence

Y7 h Kl’l/
limVy(Ki, ..., Ky L) = inf {/\ >0: f (p(M)dV(KLWKH_LLn;u) < 1}
1—00 gn-1

A(Lo, 1)

VoK1, ..., Ky, Ly).

[m]

Lemma3.6 IfKj, ..., Ky, L, € K}, and ¢ € ©, then Orlicz mixed Uolumei_/(p(Kl, o, K Ly) i KX XK —
————
n+1

[0, 00) is bounded.
Proof For ¢ € @, there must be a real number 0 < ¢, < oo such that ¢(c,) = 1, and let

VoK1, ..., Ky, Ly) = Ao
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Hence
1 = olcp)

h(K,, u) '
fs v (th@n, u>)dV(K1f o Ky, L)

h(LTl/ u) )
> (P(js‘n_l WdV(Kh...,Kn_l,Lm u))

rL
~—dV(Ky,...,Ku-1,L,;u
(P(Lnl AORK” ( 1 1 ))

an
P\ MR, )

Since ¢ is monotone increasing on [0, o), from this we obtain the lower bound,

r
Ao = Ly .
C(PRKn

In a similar approach, we can obtain upper bound for h(I1, (K, . .., Ky, u),

Ry,

C(pi"](”

Ag £

This completes the proof. O
We easily find that the ¢-mixed volume V(p (Ky, ..., Ky, L) is invariant under simultaneous unimodular

centro-affine transformation.
Lemma 3.7 IfKy,...,K,, L, € K, ¢ € SL(n), and ¢ € @, then

Vo(@Ki, ..., Ky, &Ly) = Vip(Ky, ..., Ky, Ly). (37)
Proof From (2.2) and (3.1), we obtain

% ; 1 h(K,,
V(P((PKL A ,(Panl, KVll qun) = inf {/\ >0: V(¢K1, . ,¢Kn_1,¢Ln) g1 ¢ (/\I’ZECPL;,{L))
X h(pLy,, u)dS(pKy, ..., pKy—1;u) < 1}

1 h(Ky, u)
V&, - K, L) Jor P\ AR, o)

= inf{/\>0:

X h(Ly, @'u)dS(Ky, ..., Ky-1;¢'u) < 1}

1 WKy, d~'u)
V(Kl/ sy Kn—ll Ll’l) Gn-1 Ah(Ln/ 1/[)

= inf{/\>0:

X h(L,,u)dS(Ky,...,Ky_1;u) < 1}

1 h(¢)71Knru)
VK1, - Ko, Lp) Jgin "\ AR(Ly, 1)

= inf{/\>02

X h(Ln, M)dS(Kl, .. .,Kn_1;1/l) < 1}

= Vo(Ki,...,Kuo1, 07Ky, Ly).
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Hence . .
Vo(pKi, ..., oKy, ¢L,) = Vo(Ky, ..., Ky, Ly).

This completes the proof.

4. Orlicz Alesandrov-Fenchel inequality for ¢p-mixed volumes

378

Theorem 4.1 (Orlicz Alesandrov-Fenchel inequality for ¢-mixed volume) If K, ..., Ky, L, € K, 1 <r <

n, @ € ®and @(cy) = 1, then

= 1
Vo(Ki, ..., Ky, Ly) >

r
ANV, ... K, Kuq,..., K)".
C(PV(KL .. '/Kn—l/ Ln) H ( l b ")

Proof For ¢ € @, let
Vo(Ky,..., Ky, Ly) = A.

Then

1 h(K,,,u))
1.7 N\ th,udSK,...,Kn_l‘u :1
nV(Ky,...,Ky-1,Ly) js‘n—l(p(/\h(Ln,u) ( )aS(Ky 1, U)

Hence

nV(Ki,...,Ku1,Ly)V, h(ALy, u)

From (3.1) and (4.3), we have

V@(Kl, LR 1Knr ALI’!)
V(Ky, ..., Ky-1,Ly)

Vp(Ki, ..., Ky, L) =

From (4.4) and by using the Orlicz-Aleksandrov-Fenchel inequality (2.15), we obtain

V@(Klllean) > V(Ky, ..., Ky-1,ALy) (H;—l V(Ki, ..., Ki, K, . 'wKn—l/Kn)l/r)'
V(Ky,...,Ky-1,Ly) V(Ki,...,Ky—1,ALy)

For ¢ € @, there must be a real number 0 < ¢, < oo such that ¢(c,) = 1, further

i i i 1/r
1:(p(c(p)2(P(Hl=1 V(Kl/-..,KllKr+1,...,Kn) )
V(K1, ..., K1, /\Ln)
In view of the monotonicity of the function ¢, we have
r

- 1
Vo(Ky, ..., Ky, Ly) > :
(P( ! " ”) C(PV(K1/~ . -/K‘rl—ll Ll’l)

V(Ki/ cey Ki/ Kr+1/ e /Kn)l/r'
i=1

This completes the proof.

1 f (p(M)h(/\Ln,u)dS(Kh--.,Kn—1;u) =1.
Ky, ..., Ky, Ly) Jsr

4.1)

4.2)

(4.3)

(4.4)

[m]

As an application, we get the following Orlicz Brunn-Minkowski type inequality for ¢-mixed volumes.
Theorem 4.2 (Orlicz Brunn-Minkowski inequality for ¢-mixed volumes) If K, ..., Ky, Ly, Ly € K7,

1<r<n,pedand p(cy) =1, then
V(P(Kll s /KH/LTL+1) + ‘_/([)(Kll e /Kn—lan/Ln+l)

P 1
C(PV(Kl,. . -/anlz

T
: H V(Ki/ e /Ki/ K?’+1/ e /Kn—llKVl + Ll’l)l/r'
Ln+1) =1

4.5)
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Proof This follows immediately from Lemma 3.3 and Theorem 4.1 ]
Corollary 4.3 (L,-Brunn-Minkowski inequality for p-mixed volumes) If Ky, ..., Ky, Ly, Ly € K, p 2 1,
1<r<mn,then

V(pp(Kll RN Kn/ LTL+1) + Vqu (K1/ sy Kn—ll Lnr Ln+1)

1 r

< A | VK, ... K Koga, - Koy, Ky + L)Y 4.6

h V(Kl/"'/Kn—llLi’H-l) ]l;l[ ( l 1 ! - " " n) ( )

Proof This follows immediately from Theorem 4.2 with ¢ = ¢@,(t) =t and p > 1. ]

Corollary 4.4 (Brunn-Minkowski type inequality) If Ky, ..., Ky, Ly, Lys1 € K}, 1 <r <n, then

r

V(K1, . ,Kn) + V(Kl, e ,Kn_1,Ln) < H V(Ki, ..., K, Kii1,..., K, K, + Ln)l/r. (4.7)
i=1

Proof This follows immediately from Theorem 4.2 and (1.5). O

Apparently, in view of (2.7), (4.7) becomes the following classical Brunn-Minkowski inequality: If
K, L € K}, then
V(K + L)V > V(K)Y" + v(L)V",

with equality if and only if K and L are homothetic.
Corollary 4.5 (L,-Brunn-Minkowski inequality for L,-multiple mixed volumes) If Ky, ..., Ky, Ly, Ly41 €
Ki,p=>11<r<n,then

Vo, (K1, ..., K, Lust)) P + Vi (Ky, ..., K1, L, Lue1)'?

1 ; 1/r
< VK Ko L) 007 [1 V(Ki, ..., Ki,Kps1, ..., Kyz1, Ky + L)' (4.8)
Proof This follows immediately from Corollary 4.3 and (1.6). O
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