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Abstract. In this presented article, we have exemplified and studied the Fréchet differentiation of nonlinear
operators between neutrosophic normed spaces as a generalization of notions given [34] and introduced
nonlinear theory of neutrosophic bounded operators by introducing chain rule and some algebraic proper-
ties of Fréchet differentiation of operators between neutrosophic normed spaces.

1. Introduction

The concept behind fuzzy logic was preliminary defined by L. A. Zadeh [35] in the year 1965, wherein
specific elements had a degree of membership. In real requisition, although, the information of an object
corresponding to a fuzzy concept may be insufficient, i.e., the addition of the membership degree and the
non-membership degree of an element in a universe corresponding to a vague scheme may be less than one.
But in the fuzzy set postulate, there is no means to incorporate the lack of knowledge with the membership
degrees. The expected solution is to use the intuitionistic fuzzy set (in short, IFS) which was put forward
by Atanassov [2] has pertained extensively in several fields of mathematics, engineering, economics, and
science. Mursaleen et al. [25, 26] explored the statistical and ideal convergence in intuitionistic fuzzy topo-
logical space. These bring magnificent motivation to use IF-sets and IF-operators in an application. The
concept of the IF-set is probably most useful in conclusion-making problems [3, 4, 31]. As an extension of
fuzzy set in the year 2004, Park [27] explained the concept of intuitionistic fuzzy metric space. Furthermore,
Park along with Saadati procured this concept in the norm and introduced intuitionistic fuzzy normed
space-(IFNS) and IF-bounded linear operators [28]. We explored simple approaches of nonlinear functional
analysis of operators equations along with Frechet derivative. Although, many questions in mathematics
cannot be solved by the classical approach. For example, the top most fascinating usage of fuzzy topol-
ogy in quantum particle physics occurs in the string and ϵ∞-theory of El-Naschie [7–11]. Mursaleen and
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Mohiuddin [24] proposed Frechet differentiation of nonlinear operators in between IF-normed spaces as a
generalization of notions given for the present and the fuzzy topology [1, 12–14, 22] which proved as best
recognized theories on discontinuity. The neutrosophic set hypothesis was introduced by Smarandache
[30]. Furthermore, Smarandache [30] generalized Atanassov’s intuitionistic fuzzy sets. This set is an ex-
pansion of IFS no matter if the sum of neutrosophic components is 1−, or 1+, or = 1. For the specific case,
when the sum of T +M + F = 1 (as in IFS), on applying the neutrosophic set operators (NSO), one can get
different results by applying the intuitionistic fuzzy operators (IFO), since the IFS neglect the indeterminacy,
while NSO take into consideration the indeterminacy at the same level as in the generated neutrosophic
set, the components T(truth), M(indeterminacy) and F(falsity) were respectively, and having the value of
in between ]0−, 1+[. We can understand the neutrosophic sets in a more flexible and workable way by
addressing the intuitionistic fuzziness and uncertainty in the traditional IFS. Bera and Mahapatra [5, 6]
aligned the neutrosophic soft normed linear space and revealed convexity, metric and Cauchy sequence on
it. Khan et al. [15, 18, 19] examined the bounded and continuous linear operators in neutrosophic norm
spaces using a literature survey. A vector norm cannot be obtained under a number of conditions, thus the
idea of a neutrosophic norm. Yilmaz [32–34] defined some basic properties of differentiation in intuition-
istic fuzzy normed spaces, which may produce a helpful functional tool to explain the operator equations
assuming such operators as a generalization of notions. In this paper, we want to put forward a nonlinear
theory of neutrosophic bounded operators by suggesting a chain rule and some algebraic properties of
Fréchet differentiation of operators in between NNS. So here, we have tried a proper approach to nonlinear
functional analysis of operator equations by applying Fréchet differentiation of operators in between NNS.

2. Preliminaries

Definition 2.1. ([20, 29]) A continuous t-norm is a binary operation ⋄ : [0, 1] × [0, 1] → [0, 1] with the
following conditions:

(i) ⋄ is associative and commutative;

(ii) ⋄ is continuous;

(iii) η1 ⋄ 1 = η1, ∀ η1 ∈ [0, 1];

(iv) η1 ⋄ η2 ≤ η3 ⋄ η4 whenever η1 ≤ η3 and η2 ≤ η4, f or each η1, η2, η3, η4 ∈ [0, 1].

Definition 2.2. ([16, 17, 29]) A continuous t-conorm is a binary operation ⋆ : [0, 1] × [0, 1]→ [0, 1] with the
following conditions

(i) ⋆ is associative and commutative;

(ii) ⋆ is continuous;

(iii) η1 ⋆ 0 = η1,∀ η1 ∈ [0, 1];

(iv) η1 ⋆ η2 ≤ η3 ⋆ η4 whenever η1 ≤ η3 and η2 ≤ η4, f or each η1, η2, η3, η4 ∈ [0, 1].

Definition 2.3. ([18, 23]) Let U be a linear space and G = {< ζ,T(ζ),M(ζ),F(ζ) >: ζ ∈ U} be a normed space
in such a way that G : U × R+ → [0, 1]. Let ⋄ and ⋆ are continuous t− norm and continuous t− conorm
respectively. Then the four-tuple (U,G, ⋄, ⋆) is called neutrosophic normed space (NNS), if it satisfy the
following axioms, ∀ ζ, y, z ∈ U and d, t > 0;

(i) 0 ≤ T(ζ, t), M(ζ, t), F(ζ, t) ≤ 1,

(ii) 0 ≤ T(ζ, d) +M(ζ, d) + F(ζ, d) ≤ 3,

(iii) T(ζ, d) = 0 for d ≤ 0,
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(vi) T(ζ, d) = 1 for d > 0 iff ζ = 0

(v) T(γζ, d) = T(ζ, d
|γ| ) ∀ γ , 0, d > 0,

(vi) T(ζ, d) ⋄ T(y, t) ≤ T(ζ + y, d + t)

(vii) T(ζ, .) is continuous non-decreasing function, lim
d→∞

T(ζ, d) = 1

(viii) M(ζ, d) = 1 for d ≤ 0,

(ix) M(ζ, d) = 0 for d > 0 iff ζ = 0

(x) M(γζ, d) = M(ζ, d
|γ| ), ∀γ , 0, d > 0,

(xi) M(ζ, d) ⋆M(y, t) ≥ M(ζ + y, d + t),

(xii) M(ζ, .) is continuous non-increasing function, lim
d→∞

M(ζ, d) = 0,

(xiii) F(ζ, d) = 1 for d ≤ 0,

(xiv) F(ζ, d) = 0 for d > 0 iff ζ = 0,

(xv) F(γζ, d) = F(ζ, d
|γ| ) ∀ γ , 0, d > 0,

(xvi) F(ζ, d) ⋆ F(y, t) ≥ F(ζ + y, d + t),

(xvii) F(ζ, .) is continuous non-increasing function, lim
d→∞

F(ζ, d) = 0.

In this case G = {T,M,F} is called neutrosophic norm (NN).

Compared to norm space, neutrosophic normed space is more general. A suitable example illustrates
this.

Let (U,G, ⋄, ⋆) is NNS. Assume ζ ⋄ y = ζy and ζ ⋆ y = ζ + y − ζy for all ζ, y ∈ U and d > 0 with the
condition

T(ζ, d) > 0 and M(ζ, d) < 1, F(ζ, d) < 1⇒ ζ = 0 f or all d > 0.

Let ||ζ||γ = inf
{
d > 0 : T(ζ, d) ≥ γ and M(ζ, d) ≤ 1 − γ, F(ζ, d) ≤ 1 − γ

}
,∀ γ ∈ (0, 1). Then {||.||γ : γ ∈ (0, 1)}

is an ascending family of norms on U. These norms are said to be γ-norms on U compatible to neutrosophic
norm (T,M,F).

3. Neutrosophic continuity

Proposition 3.1. Each B̊
(
0, 1

v ,
1
v

)
is balanced, absorbing and convex neighborhood of 0.

Proof. To see B̊
(
0, 1

v ,
1
v

)
is balanced, we should prove that

ηB̊
(
0, 1

v ,
1
v

)
⊆ B̊

(
0, 1

v ,
1
v

)
for |η| ≤ 1. Let ζ ∈ ηB̊

(
0, 1

v ,
1
v

)
, then ∃ a w ∈ B̊

(
0, 1

v ,
1
v

)
such that ζ = ηw. Thus
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T
(
ζ,

1
v

)
= T

(
ηw,

1
v

)
= T

(
w,

1
|η|v

)
≥ T

(
w,

1
v

)
> 1 −

1
v
,

M
(
ζ,

1
v

)
= M

(
ηw,

1
v

)
= M

(
w,

1
|η|v

)
≤ M

(
w,

1
v

)
<

1
v
,

F
(
ζ,

1
v

)
= F

(
ηw,

1
v

)
= F

(
w,

1
|η|v

)
≤ F

(
w,

1
v

)
<

1
v

since |η| ≤ 1. This means, ζ ∈ B̊
(
0, 1

v ,
1
v

)
.

To see B̊
(
0, 1

v ,
1
v

)
is absorbing, let ζ ∈ U be arbitrary. Then we should obtain an λ = λ(ζ) > 0 such that

ηζ ∈ B̊
(
0, 1

v ,
1
v

)
for every |η| ≤ λ.

Remember that ηζ ∈ B̊
(
0, 1

v ,
1
v

)
iff

T
(
w,

1
|η|v

)
> 1 −

1
v
, M

(
w,

1
|η|v

)
<

1
v

and F
(
w,

1
|η|v

)
<

1
v
.

By the fact that T
(
ζ, ⋄

)
: (0,∞)→ [0, 1] is continuous and limd→∞ T

(
ζ, d

)
= 1 we write T

(
ζ, 1
|η|v

)
→ 1 as |η| → 0.

Hence, we can choosen an λ1 > 0 such that T
(
ζ, 1
|η|v

)
> 1 − 1

v for |η| ≤ λ1.

By the similar conditions on M, we can find another λ2 > 0 such that M
(
ζ, 1
|η|v

)
< 1

v for |η| ≤ λ2.

Similar conditions on F, we can find another λ3 > 0 such that F
(
ζ, 1
|η|v

)
< 1

v for |η| ≤ λ3. Take λ =
min{λ1, λ2, λ3}.

Finally, suppose ζ,w ∈ B̊
(
0, 1

v ,
1
v

)
and 0 ≤ γ ≤ 1. Then

T
(
γζ + (1 − γ)w,

1
v

)
= T

(
γ
(
ζ +

1 − γ
γ

w
)
,

1
v

)
= T

(
ζ +

1 − γ
γ

w
)
,

1
γv

)
= T

(
ζ +

1 − γ
γ

w,
1
v
+

(1 − γ
γ

)1
v

)
≥ min

{
T
(
ζ,

1
v

)
,T

(1 − γ
γ

w,
(1 − γ
γ

)1
v

)}
=

{
T
(
ζ,

1
v

)
,T

(
w,

1
v

)}
> 1 −

1
v

and it isn’t hard to see in a similar way that

M
(
γζ + (1 − γ)w,

1
v

)
≤ max

{
M

(
ζ,

1
v

)
,M

(
w,

1
v

)}
<

1
v
,

F
(
γζ + (1 − γ)w,

1
v

)
≤ max

{
F
(
ζ,

1
v

)
,F

(
w,

1
v

)}
<

1
v
,

that is γζ + (1 − γ)w ∈ B̊
(
0, 1

v ,
1
v

)
.

Now, we create the strong and weak neutrosophic continuity of mappings between NNS.
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Definition 3.2. ([21]) Suppose (U,G, ⋄, ⋆) be a NNS and Y ⊂ U. Then Y is called neutrosophic open subset
U if for every ζ ∈ Y there exists some d > 0 and γ ∈ (0, 1) such that C(ζ, γ, d) ⊆ Y,where

C(ζ, γ, d) :=
{
y : T(ζ − y, d) > 1 − γ and M(ζ − y, d) < γ, F(ζ − y, d) < γ

}
.

Definition 3.3. Suppose (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆) be two NNS. A mapping h : U→ V ba a linear operator.

(i) The operator h is called weakly neutrosophic continuous at ζ0 ∈ U if for given λ > 0 and γ ∈ (0, 1) there
exists some ϑ = ϑ(λ, γ) > 0 such that for all ζ ∈ U
if T1

(
ζ − ζ0, ϑ

)
≥ γ, and M1

(
ζ − ζ0, ϑ

)
≤ 1 − γ, F1

(
ζ − ζ0, ϑ

)
≤ 1 − γ, then

T2

(
h(ζ) − h(ζ0), λ

)
≥ γ and M2

(
h(ζ) − h(ζ0), λ

)
≤ 1 − γ, F2

(
h(ζ) − h(ζ0), λ

)
≤ 1 − γ,

if h is weakly neutrosophic continuous at each point of U, then h is said to be weakly neutrosophic contin-
uous on X.

(ii) The operator h is called strongly neutrosophic continuous at ζ0 ∈ U if for given λ > 0 and γ ∈ (0, 1) there
exists some ϑ = ϑ(λ, γ) > 0 such that for all ζ ∈ U
T2

(
h(ζ) − h(ζ0), λ

)
≥ T1

(
ζ − ζ0, ϑ

)
and M2

(
h(ζ) − h(ζ0), λ

)
≤ M1

(
ζ − ζ0, ϑ

)
,

F2

(
h(ζ) − h(ζ0), λ

)
≤ F1

(
ζ − ζ0, λ

)
, for all ζ ∈ U.

(iii) The operator h is called weakly neutrosophic bounded (for short, WNB) on U if for given γ ∈ (0, 1) ∃
some, pγ > 0 such that
T1(ζ, d

pγ
) ≥ γ⇒ T2

(
h(ζ), d

)
≥ γ and M1(ζ, d

pγ
) ≤ 1 − γ⇒ M2

(
h(ζ), d

)
≤ 1 − γ,

F1(ζ, d
pγ

) ≤ 1 − γ⇒ F2

(
h(ζ), d

)
≤ 1 − γ,

for all ζ ∈ U and d > 0. Let E′ (U,V) indicate the set of all WNB linear operators.

(iv) The operator h is called strongly neutrosophic bounded (for short, SN-B) on U if for given γ ∈ (0, 1), ∃
some, K > 0 such that

T2

(
h(ζ), d

)
≥ T1

(
ζ,

d
K

)
and M2

(
h(ζ), d

)
≤ M1

(
ζ,

d
K

)
,F2

(
h(ζ), d

)
≤ F1

(
ζ,

d
K

)
,

for all ζ ∈ U and d > 0. Let E(U,V) denote the set of all SN-B linear operators.

(i) A linear operator h : (U,G1, ⋄, ⋆) onto (V,G2, ⋄, ⋆) is called strongly neutrosophic bounded (briefly,
SN-bounded) if there exists a constant k > 0 such that T2(h(ζ), d) ≥ T1(kζ, d) and M2(h(ζ), d) ≤ M1(kζ, d),
F2(h(ζ), d) ≤ F1(kζ, d) for all ζ ∈ U and d > 0.

(ii) A linear operator h : (U,G1, ⋄, ⋆) onto (V,G2, ⋄, ⋆) is called weakly neutrosophic bounded (briefly, WN-
bounded) if for any γ ∈ (0, 1), there exists a constant kγ > 0 such that, for every ζ ∈ U and d > 0,
T1(kγζ, d) ≥ γ and M1(kγζ, d) ≤ 1 − γ, F1(kγζ, d) ≤ 1 − γ ⇒ T2(h(ζ), d) ≥ γ and M2(h(ζ), d) ≤ 1 − γ,
F2(h(ζ), d) ≤ 1 − γ.

It is clear that every SN-bounded operator is WN-bounded, but not conversely. In fact, the definition
of SN-bounded operator is first proposed in [10, Definition 6.1.] as neutrosophic bounded linear operator
without any particular limits on ⋄ and ⋆. They also present that every neutrosophic bounded linear op-
erator is continuous. The converse of this result is evident. This gives the neutrosophic analogue of the
general conjecture: a linear operator is bounded if and only if is continuous in simple normed spaces. We
are going to propose SN(WN)-continuity of functions in the next section.
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4. Limits and compactness of mappings in neutrosophic-settings

Definition 4.1. Consider (U,G1, ⋄, ⋆) onto (V,G2, ⋄, ⋆) be two NNS and h : U → V be a linear mapping.
Then,

(i) L is called strong neutrosophic limit of linear operator h at some ζ0 ∈ U iff for each λ > 0,∃ some
ϑ = ϑ(λ) > 0 such that

T2

(
h(ζ) − L, λ

)
≥ T1

(
ζ − ζ0, ϑ

)
and M2

(
h(ζ) − L, λ

)
≤ M1

(
ζ − ζ0, ϑ

)
,

F2

(
h(ζ) − L, ϑ

)
≤ F1

(
ζ − ζ0, ϑ

)
.

In this case, we write (Strong Neutrosophic-SN)-limζ→ζ0 h(ζ) = L,which also means that

lim
T1(ζ−ζ0,ϑ)→1

T2

(
h(ζ) − L, λ

)
= L, (SN) and lim

M1(ζ−ζ0,ϑ)→0
M2

(
h(ζ) − L, λ

)
= L(SN),

lim
F1(ζ−ζ0,ϑ)→0

F2

(
h(ζ) − L, λ

)
= L(SN) or

{
T2

(
h(ζ) − L, λ

)
= L, (SN) as T1(ζ − ζ0, ϑ)→ 1, and M2

(
h(ζ) − L, λ

)
= L, (SN) as

M1(ζ − ζ0, ϑ)→ 0, F2

(
h(ζ) − L, λ

)
= L, (SN) as F1(ζ − ζ0, ϑ)→ 0, ∀d > 0

}
.

(ii) L is called weak neutrosophic limit of h at some ζ0 ∈ U iff for given λ > 0 and γ ∈ (0, 1), ∃ some
ϑ = ϑ(λ, γ) > 0 s.t

T1

(
ζ − ζ0, ϑ

)
≥ γ ⇒ T2

(
h(ζ) − L, λ

)
≥ γ and M1

(
ζ − ζ0, ϑ

)
≤ 1 − γ ⇒ M2

(
h(ζ) − L, λ

)
≤ 1 − γ,

F1

(
ζ − ζ0, ϑ

)
≤ 1 − γ⇒ F2

(
h(ζ) − L, λ

)
≤ 1 − γ.

In this case, we write (Weak Neutrosophic-WN)-limζ→ζ0 h(ζ) = L,which also means that

lim
T1(ζ−ζ0,ϑ)→1

T2

(
h(ζ) − L, λ

)
= L, (WN) and lim

M1(ζ−ζ0,ϑ)→0
M2

(
h(ζ) − ζ, λ

)
= L(SN),

lim
F1(ζ−ζ0,ϑ)→0

F2

(
h(ζ) − L, λ

)
= L(SN), or

{
T2

(
h(ζ) − L, λ

)
= L, (WN) as T1(ζ − ζ0, ϑ)→ 1, and M2

(
h(ζ) − L, λ

)
= L,

(WN) as M1(ζ − ζ0, ϑ)→ 0,F2

(
h(ζ) − L, λ

)
= L, (WN) as F1(ζ − ζ0, ϑ)→ 0

}
for all d > 0.

Proposition 4.2. SN − lim implies WN − lim but not conversely, in general. Further, SN − lim =WN − lim
whenever SN − lim exists.

Proof. The implications easily can be seen from the definition. Now let, (Strong Neutrosophic-SN)− limζ→ζ0 h(ζ) =
L, and (Weak Neutrosophic-WN)− limζ→ζ0 h(ζ) = L1. Then
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T2(L1 − L, 2d) = T2(L1 − h(ζ) + h(ζ) − L, 2d) ≥ min{T2(h(ζ) − L1, d),T2(h(ζ) − L, d)}

for each d > 0.Hence we get T2(L1−L, 2d) = 1, for all d > 0, since T2(h(ζ)−L1, d)→ 1 and T2(h(ζ)−L, d)→ 1
as T1(ζ − ζ0, d) → 1. So L = L1 from the definition (It doesn’t need to use inference on M1, M2 and F1 ,F2
here.).

The next example shows why the converse implication may not be true.

Example 4.3. Consider U be a neutrosophic norm space and let

T1(ζ, d) =

 d
d+∥ζ∥ if d > ∥ ζ ∥,
0 otherwise;

,T2(ζ, d) =

1, if d >∥ ζ ∥,
0, if d ≤∥ ζ ∥;

and

M1(ζ, d) =

 ∥ζ∥
d+∥ζ∥ if d > ∥ ζ ∥,
1 otherwise;

, M2(ζ, d) =

1, if d ≤∥ ζ ∥,
0, if d >∥ η ∥;

F1(ζ, d) =

 ∥ζ∥d if d > ∥ η ∥,
1 otherwise;

, F2(ζ, d) =

1, if d ≤∥ ζ ∥,
0, if d >∥ ζ ∥.

It is simple to perform thatG1 = (T1,M1,F1) andG2 = (T2,M2,F2) are neutrosophic norms on U. Consider
the identity function h(ζ) = ζ from (U,G1, ⋄) onto (U,G2, ⋆). Then, WN − limζ→0 h(ζ) = 0.
Let us show this. Take some λ > 0 and γ ∈ (0, 1). Then

T2(h(ζ) − L, λ) = T2(ζ, λ) ≥ 1 − γ and M2(h(ζ) − L, λ) = M2(ζ, λ) ≤ γ,
F2(h(ζ) − L, λ) = F2(ζ, λ) ≤ γ

⇒ λ > ||ζ||. So taking ϑ = (1−γ)λ
γ > 0 we get

T1(ζ − ζ0, ϑ) = T1(ζ, ϑ) =
(1 − γ)λ
γ

.
γ

(1 − γ)λ + γ||ζ||

≥
λ(1 − γ)

(1 − γ)λ + γλ
= 1 − γ,

T1(ζ − ζ0, ϑ) ≥ 1 − γ⇒ T2(h(ζ) − L, λ) ≥ 1 − γ and, similar way
M1(ζ − ζ0, ϑ) ≤ γ⇒ M2(h(ζ) − L, λ) ≤ γ,
F1(ζ − ζ0, ϑ) ≤ γ⇒ F2(h(ζ) − L, λ) ≤ γ.
However, SN − limζ→0 h(ζ) = 0 doesn’t exist. Because, for ||ζ|| = λ, there is no ϑ > 0 satisfying the condition

T1(ζ, λ) = 0 ≥ T1(ζ, ϑ) =
ϑ

||ζ|| + ϑ
=
ϑ
λ + ϑ

.

Definition 4.4. Let (U,G1, ⋄, ⋆)→ (V,G2, ⋄, ⋆) be two NNS and h : U→ V be a mapping. Then,

(i) h is called strong neutrosophic continuous (SN-continuous, for short) at some ζ0 ∈ U if and only if

SN − lim
ζ→0

h(ζ) = h(ζ0).

(ii) h is called weak neutrosophic continuous (WN-continuous, for short) at some ζ0 ∈ U if and only if

WN − lim
ζ→0

h(ζ) = h(ζ0).
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Remark 4.5. The main difference between SN− lim and WN− lim is in determining the ϑ for given λ and γ.
In the strong neutrosophic limit, ϑ is determined entirely by λ and not by γ, but in the weak neutrosophic
limit, it is determined by both λ and γ. This is shown better when the neutrosophic normed spaces satisfy
the condition (β).

Definition 4.6. [22] Suppose (U,G, ⋄, ⋆) be a NNS. A sequence ζ = (ζi) is called a Cauchy sequence w.r.t G,
if for each λ > 0 and d > 0, ∃ d ∈ N such that T(ζi − ζk, d) > 1 − λ, M(ζi − ζk, d) < λ and F(ζi − ζk, d) < λ for
all i, k ≥ d.

Definition 4.7. Suppose (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆) be two NNS. A mapping h from (U,G1, ⋄, ⋆) →
(V,G2, ⋄, ⋆) is called neutrosophic continuous at ζ0 ∈ U if for any given λ > 0, ∃ d = d(c, λ), i = i(c, λ) ∈ (0, 1)
such that ∀ ζ ∈ U and for all c ∈ (0, 1),

T1(ζ − ζ0, d) > 1 − γ =⇒ T2(h(ζ) − h(ζ0), λ) > 1 − c,

M1(ζ − ζ0, d) < γ =⇒ M2(h(ζ) − h(ζ0), λ) < c,

F1(ζ − ζ0, d) < γ =⇒ F2(h(ζ) − h(ζ0), λ) < c.

Proposition 4.8. Let (U,G1, ⋄, ⋆) → (V,G2, ⋄, ⋆) be two NNS satisfying the condition (β) and h : U → V be a
mapping. Then,

(i) WN − limζ→0 h(ζ) = L ⇐⇒

for each γ ∈ (0, 1), lim||ζ−ζ0 ||
1
γ→0 ||h(ζ) − L||2γ = 0.

(ii) SN − limζ→0 h(ζ) = L ⇐⇒

lim||ζ−ζ0 ||
1
γ→0 ||h(ζ) − L||2γ = 0, uniformly in γ

where ||.||1γ and ||.||2γ are the γ− norms of the neutrosophic normsG1 = (T1,M1,F1) andG2 = (T2,M2,F2), respectively.

Theorem 4.9. If a sequence (ζp) is SN-convergent then it is WN-convergent to the same limit, but not conversely.
It is simple that SN-convergence implies WN-convergence. But not converse,

Proof. Let us just prove the second part because the first one is easy. Suppose SN − limζ→0 h(ζ) = L, i.e,
given λ > 0, there exists some ϑ = ϑ(λ) > 0 such that for every ζ ∈ U,

T2(h(ζ) − L, λ) ≥ T1(ζ − ζ0, ϑ) and M2(h(ζ) − L, λ) ≤ M1(ζ − ζ0, ϑ),
F2(h(ζ) − L, λ) ≤ F1(ζ − ζ0, ϑ).

Now for every γ ∈ (0, 1), if

||ζ − ζ0||
1
γ = inf

{
ϑ > 0 : T1(ζ − ζ0, ϑ) > γ and M1(ζ − ζ0, ϑ) < 1 − γ,F1(ζ − ζ0, ϑ) < 1 − γ

}
≤ ϑ,

then T1(ζ − ζ0, ϑ) ≥ γ and M1(ζ − ζ0, ϑ) < 1 − γ, F1(ζ − ζ0, ϑ) < 1 − γ by the hypothesis. This means
||h(ζ) − L||2γ ≤ λ. Since ϑ doesn’t depend on the γ this shows that

lim
||ζ−ζ0 ||

1
γ→0
||h(ζ) − L||2γ = 0
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uniformly in γ.

Conversely, let lim||ζ−ζ0 ||
1
γ→0 ||h(ζ)−L||2γ = 0 uniformly in γ. For givenλ > 0, there exists someϑ = ϑ(λ) > 0

such that for every ζ ∈ U

||ζ − ζ0||
1
γ ≤ ϑ⇒ ||h(ζ) − L||2γ ≤ λ, for all γ ∈ (0, 1)

Consider some T1(ζ − ζ0, ϑ) > ℓ and M1(ζ − ζ0, ϑ) < 1 − ℓ, F1(ζ − ζ0, ϑ) < 1 − ℓ. Observe that

T1(ζ − ζ0, ϑ) = sup
{
γ : γ ∈ (0, 1) : ||ζ − ζ0||

1
γ ≤ ϑ

}
and

M1(ζ − ζ0, ϑ) = inf
{
1 − γ : γ ∈ (0, 1) : ||ζ − ζ0||

1
γ ≤ ϑ

}
F1(ζ − ζ0, ϑ) = inf

{
1 − γ : γ ∈ (0, 1) : ||ζ − ζ0||

1
γ ≤ ϑ

}
.

Hence, there exists some γ0 ∈ (0, 1) such that ℓ < γ0 and ||ζ − ζ0||
1
γ ≤ ϑ. Hence ||h(ζ) − L||2γ0

≤ λ, by the
hypothesis, and so,

T2(h(ζ) − L, λ) ≥ γ0 > ℓ and M2(h(ζ) − L, λ) ≤ 1 − γ0 < 1 − ℓ,F2(h(ζ) − L, λ) ≤ 1 − γ0 < 1 − ℓ.

Consequently, this follows that

T2(h(ζ) − L, λ) ≥ T1(ζ − ζ0, ϑ) and M2(h(ζ) − L, λ) ≤ M1(ζ − ζ0, ϑ),
F2(h(ζ) − L, λ) ≤ F1(ζ − ζ0, ϑ).

by the definitions of supremum and infimum.

Definition 4.10. Consider {ζp} be a sequence in an NNS (U,G, ⋄, ⋆). Then

(i) It is called weakly convergent, briefly, WN-convergent, to ζ ∈ U and is denoted by ζp
WN
−−→ ζ iff, for

each γ ∈ (0, 1) and λ > 0 and there exists some p0 = p0(γ, λ) such that p ≥ p0 ⇒ T(ζp − ζ, λ) ≥ 1 − γ and
M(ζp − ζ, λ) ≤ γ,F(ζp − ζ, λ) ≤ γ.

(ii) It is called strong convergent, briefly, SN-convergent, to ζ ∈ U and is denoted by ζp
SN
−−→ ζ iff, for each

γ ∈ (0, 1), there exists some p0 = p0(γ) such that p ≥ p0 ⇒ T(ζp−ζ, d) ≥ 1−γ and M(ζp−ζ, d) ≤ γ,F(ζp−ζ, d) ≤ γ,
for all d > 0.

Hence we can derive the definitions of the SN(WN)-Cauchy sequence and SN(WN)-complete NNS
from the above definition as is in the classical cases. Proving that each SN(WN)-convergent sequence is
SN(WN)-Cauchy is an ordinary task.

Proposition 4.11. Consider {ζp} be a sequence in an NNS (U,G, ⋄, ⋆) and, satisfying the condition (β) Then

(i) ζp
WN
−−→ ζ ⇐⇒ limp→∞ ||ζp − ζ||γ = 0, for each γ ∈ (0, 1).

(ii) ζp
SN
−−→ ζ ⇐⇒ limp→∞ ||ζp − ζ||γ = 0, uniformly in γ ∈ (0, 1),

where ||.||γ are the γ-norms of the NNS (T,M,F).

Every SN-convergent sequence is also a WN-convergent sequence. However, as the following example
shows, the inverse of this assertion may not be true.
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Example 4.12. Consider U be a NNS and define

T(ζ, d) =

 d−∥ζ∥
d+∥ζ∥ if d > ||ζ||
0 if d ≤ ||ζ||;

M(ζ, d) =

 2∥ζ∥
d+∥ζ∥ if d < ∥ ζ ∥
1 if d ≤∥ ζ ∥;

F(ζ, d) =

 2∥ζ∥
d+∥ζ∥ if d < ∥ ζ ∥
1 if d ≤∥ ζ ∥ .

on U. We can find γ-norms of neutrosophic norm (T1,M1,F1) since satisfies the followings condition (β).
Thus

T(ζ, d) ≥ γ ⇐⇒ d−∥ζ∥
d+∥ζ∥ ≥ γ ⇐⇒

1+γ
1−γ ∥ ζ ∥≤ d,

M(ζ, d) ≤ 1 − γ ⇐⇒ 2∥ζ∥
d+∥ζ∥ ≤ 1 − γ ⇐⇒ 1+γ

1−γ ∥ ζ ∥≤ d,

F(ζ, d) ≤ 1 − γ ⇐⇒ 2∥ζ∥
d+∥ζ∥ ≤ 1 − γ ⇐⇒ 1+γ

1−γ ∥ ζ ∥≤ d,

This shows that

∥ ζ ∥γ= inf
{
d > 0 : T(ζ, d) ≥ γ and M(ζ, d) ≤ 1 − γ,F(ζ, d) ≤ 1 − γ

}
=

1+γ
1−γ ∥ ζ ∥ .

T
(
ζ,

1+γ
1−γ ∥ ζ ∥

)
= γ and M

(
ζ,

1+γ
1−γ ∥ ζ ∥

)
= 1 − γ, F

(
ζ,

1+γ
1−γ ∥ ζ ∥

)
= 1 − γ

whence,

1 + γ
1 − γ

∥ ζ ∥∈
{
d > 0 : T(ζ, d) ≥ γ and M(ζ, d) ≤ 1 − γ,F(ζ, d) ≤ 1 − γ

}
.

This means ∥ ζ ∥γ=
1+γ
1−γ ∥ ζ ∥ . Let r ∈ YU = {ζ ∈ U : ||ζ|| = 1} be fixed and define the sequence {ζp} =

{
r
p

}
.We

now show that the sequence {ζp} =
{

r
p

}
.WN-convergent to 0. This is easy since, for each γ ∈ (0, 1),

∥ ζ − 0 ∥γ=
1+γ
1−γ

∥r∥
p → 0, as p→∞.

However, this convergence is not uniform in γ. For given λ > 0,

∥ ζ ∥γ=
1 + γ
1 − γ

∥ r ∥
p
< λ ⇐⇒

1 + γ
(1 − γ)λ

< p,

whence, we cannot find desired p0 since 1+γ
(1−γ)λ →∞ as γ→ 1.

Definition 4.13. A subset C in an NNS (U,G, ⋄, ⋆) is called SN(WN)-compact if each sequence of elements
of C has a SN(WN)-convergent subsequence.
Obviously, every SN− compact set is WN− compact, but not vice-versa.

Example 4.14. Take U = C in the Example 4.12. Then the unit sphere
CU = {ζ ∈ U : ||ζ|| = 1} is WN− compact in (U,G, ⋄, ⋆).However, it is not SN-compact. Indeed; the sequence(

1
p

)
cannot have a SN-convergent subsequence as is shown in the last part of the Example 4.12.
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Definition 4.15. The SN(WN)-closure of a subset B in an NNS (U,G, ⋄, ⋆) is denoted by C−s(C−w) and de-
fined by the set of all ζ ∈ U such that there exists a sequence {ζp} in XU = {ζ ∈ U : ||ζ|| ≤ 1} such that

ζp
SN(WN)
−−−−−−→ ζ.We say that C is SN(WN)-closed whenever C−s(C−w) = C.

It is easy to see that C−s
⊆ C

−w. Let us present an example showing that this inclusion may be strict

Example 4.16. Let U be a normed space. Again consider the NNS (U,G, ⋄, ⋆) and Example 4.12 and let
XU = {ζ ∈ U : ||ζ|| < 1}. Then

X−w
U = CU = {ζ ∈ U : ||ζ|| ≤ 1}

Let us show this. For every ζ ∈ CU we must find a sequence {ζp}
∞

p=1 ⊂ XU such that ||ζp − ζ||γ → 0, as

p→∞ for each γ ∈ (0, 1), This is accomplished by taking ζp =
(
1 − 1

p

)
ζ since each ζp ∈ XU and

∥ ζp − ζ ∥γ=

(
1 + γ
1 − γ

)
∥ ζp − ζ ∥

(
1+γ
1−γ

)
1

p+1 → 0, as p→∞, for each γ ∈ (0, 1).

However, X−s
U = XU. Indeed; if ζ ∈ X−s

U then there exists {ζp}
∞

p=1 ⊂ XU such that ||ζp − ζ||γ → 0 uniformly
in γ as p→ ∞. This means, given λ > 0, there exists an integer p0(λ) > 0 such that for λ ≥ λ0 and for every
γ ∈ (0, 1),

∥ ζp − ζ ∥γ≤ λ.

On the other hand,

∥ ζ ∥ ≤ ∥ ζp − ζ ∥ + ∥ ζp ∥

< ∥ ζp − ζ ∥ +1

=

(
1 − γ
1 + γ

)
∥ ζp − ζ ∥γ +1

=

(
1−γ
1+γ

)
λ + 1, for λ ≥ λ0, and for every γ ∈ (0, 1).

By letting λ→ 0 we get ∥ ζ ∥ < 1 that is, ζ ∈ XU. Note that, there is no danger of γ→ 1 as λ→ 0 since
changes on λ (via p0) doesn’t effect γ. Hence, X−s

U ⊆ XU.

Definition 4.17. Let (U,G1, ⋄, ⋆) → (V,G2, ⋄, ⋆) be two NNS and h : U → V be a mapping. Then h is said
to be SN(WN)-compact if for every neutrosophic bounded C ⊂ U the subset h(C) is relatively SN(WN)-
compact that is, the SN(WN)-clousre of h(C) is SN(WN)-compact.

The following theorem, which has a similar proof to its classical counterpart, is an easy and quick
characterization of SN(WN)-compact operators.
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Theorem 4.18. Let (U,G1, ⋄, ⋆) → (V,G2, ⋄, ⋆) be two NNS and h : U → V be a mapping. Then h is said to be
SN(WN)-compact if and only if it maps every neutrosophic bounded sequence {ζp} in U onto a sequence {h{ζp}} in V
which has a SN(WN)-convergent subsequence.

Remark 4.19. Of course, every SN-compact operator is also a WN-compact operator, but not the other way
around. The identity operator on U in Example 4.12 is clearly not SN-compact, but it is WN-compact.

Theorem 4.20. Consider (U,G1, ⋄, ⋆)→ (V,G2, ⋄, ⋆) be two NNS satisfying the condition (β) and h : U→ V be a
mapping. Suppose that h is WN-compact. Then h is an ordinary compact operator from the normed space

(
U, ∥ . ∥γ

)
into

(
V, ∥ . ∥γ

)
, for each γ ∈ (0, 1)

Proof. Let γ ∈ (0, 1) be arbitrary and pick some arbitrary bounded sequence {ζp} ⊂
(
U, ∥ . ∥γ

)
and say

K = supp ∥ ζp ∥ < ∞. So

T1

(
ζp,K

)
≥ γ and M1

(
ζp,K

)
≤ 1 − γ, F1

(
ζp,K

)
≤ 1 − γ, for each p = 1, 2, 3, . . .

by the definition of
(
U, ∥ . ∥γ

)
. Thus, {ζp} is an neutrosophic bounded sequence in U. There exist a WN-

convergent subsequence {h{ζp}} of {h{ζpk }} in V by the hypothesis. Hence {h{ζpk }} is convergent in the normed

space
(
V, ∥ . ∥γ

)
by the Proposition 4.11.

Theorem 4.21. Consider ((U,G1, ⋄, ⋆)→ (V,G2, ⋄, ⋆) be two NNS satisfying the condition (β) and h : U → V be
a mapping. Then every SN(WN)-compact linear opreator h : U→ V is SN(WN)-continuous.

Definition 4.22. Let (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆) be two NNS,X ⊆ U be an neutrosophic open subset and
h : X→ V probably non-linear. Then,

(i) h is called strong neutrosophic Fréchet differentiable at ζ0 ∈ X if there exists a strong neutrosophic
bounded linear operator L from (U,G1, ⋄, ⋆) to (V,G2, ⋄, ⋆) such that, given λ > 0, there exists some
ϑ = ϑ(λ) > 0 such that

T2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − T1( j, ϑ)
, λ

)
≥ T1( j, ϑ) = T1(ζ − ζ0, ϑ)

and

M2

(
h(ζ0 + j) − h(ζ0) − Lj

1 −M1( j, ϑ)
, λ

)
≤ M1( j, ϑ) = M1(ζ − ζ0, ϑ),

F2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − F1( j, ϑ)
, λ

)
≤ F1( j, ϑ) = F1(ζ − ζ0, ϑ).

where j = ζ − ζ0. In this case, it is written that L = DSNh[ζ0]

(ii) h is called weak neutrosophic Fréchet differentiable at ζ0 ∈ X if there exists a weak neutrosophic bounded
linear operator L from (U,G1, ⋄, ⋆) to (V,G2, ⋄, ⋆) such that, given λ > 0, and γ ∈ (0, 1) there exists some
ϑ = ϑ(λ, γ) > 0 such that

T1( j, ϑ) ≥ 1 − γ⇒ T2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − T1( j, ϑ)
, λ

)
≥ 1 − γ
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M1( j, ϑ) ≤ γ⇒ M2

(
h(ζ0 + j) − h(ζ0) − Lj

1 −M1( j, ϑ)
, λ

)
≤ γ

F1( j, ϑ) ≤ γ⇒ F2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − F1( j, ϑ)
, λ

)
≤ γ

where h = ζ − ζ0. In this case, it is written that L = DWNh[ζ0]
h is called SN(WN)-Fréchet differentiable on U if it is SN(WN)-Fréchet differentiable at every point of X.

Proposition 4.23. A strongly (weakly) neutrosophic bounded linear operator h is SN(WN)-Fréchet differentiable at
every point ζ0 andDSN(WN)h[ζ0] = L.

Proof. This is explicit since

T2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − T1( j, d)
, d

)
= T2(0, d) = 1,

M2

(
h(ζ0 + j) − h(ζ0) − Lj

1 −M1( j, d)
, d

)
= M2(0, d) = 0,

F2

(
h(ζ0 + j) − h(ζ0) − Lj

1 − F1( j, d)
, d

)
= F2(0, d) = 0, ∀ d > 0

Proposition 4.24. If h is SN(WN)-Fréchet differentiable at ζ0 ∈ U then it is strong (weak) neutrosophic continuous
at ζ0.

Proof. We take the following inequalities. For given d > 0,

T2(h(ζ) − h(ζ0), d) = T2(h(ζ) − h(ζ0) − Lj + Lj, d + dT1( j, d) − dT1( j, d))
≥ T2(h(ζ) − h(ζ0) − Lj, d(1 − T1( j, d))) ⋄ (Lj, dT1( j, d))

= T2

(
h(ζ) − h(ζ0) − Lj

(1 − T1( j, d))
, d

)
⋄ T2

(
Lj

T1( j, d)
, d

)
,

M2(h(ζ) − h(ζ0), d) = M2(h(ζ) − h(ζ0) − Lj + Lj, d + dM1( j, d) − dM1( j, d))
≤ M2(h(ζ) − h(ζ0) − Lj, dM1( j, d)) ⋆ (Lj, d(1 −M1( j, d))

= M2

(
h(ζ) − h(ζ0) − Lj

(M1( j, d))
, d

)
⋆M2

(
Lj

1 −M1( j, d)
, d

)
,

F2(h(ζ) − h(ζ0), d) = F2(h(ζ) − h(ζ0) − Lj + Lj, d + dF1( j, d) − dF1( j, d))
≤ F2(h(ζ) − h(ζ0) − Lj, dF1( j, d)) ⋆ (Lj, d(1 − F1( j, d))
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= F2

(
h(ζ) − h(ζ0) − Lj

(F1( j, d))
, d

)
⋆ F2

(
Lj

1 − F1( j, d)
, d

)
.

Since h is SN(WN)-Fréchet differentiable at ζ0 ∈ H, it follows that

T2(h(ζ) − h(ζ0), d) ≥ 1 ⋄ T2

(
Lj

T1( j, d)
, d

)
,

and

M2(h(ζ) − h(ζ0), d) ≤ 0 ⋆M2

(
Lj

1 −M1( j, d)
, d

)
,

F2(h(ζ) − h(ζ0), d) ≤ 0 ⋆ F2

(
Lj

1 − F1( j, d)
, d

)
,

where L = DSN(WN)h[ζ0]. Therefore h is strong(weak) neutrosophic continuous.

Theorem 4.25. Suppose (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆) be two NNS, X ⊆ U be an neutrosophic open subset and
h : X → V. If h is SN-Fréchet differentiable at some ζ0 ∈ X then it is WN-Fréchet differentiable at some ζ0 with the
same derivative but not conversely. The proof of the above theorm follows directly from the Proposition 4.11.

Example 4.26. Consider the linear spaces U = V = ℓ∞, the Banach space of all bounded sequences with the sup
norm

∥x∥∞ = sup |xn| where x = {xn}
∞

n=1,

and define the functions:

T(x, t) =

 t2

t2+2∥x∥∞
, if t > 0

0, if t ≤ 0

M(x, t) =

0, if t > 0 and t2 > ∥x∥∞
1, if t ≤ 0 or t2

≤ ∥x∥∞

F(x, t) =

0, if t > 0 and t2 > ∥x∥∞
1, if t ≤ 0 or t2

≤ ∥x∥∞

These functions constitute neutrosophic normed spaces. Show that T, M, and F are NF norms on U = V = ℓ∞.
Further, consider the shift operator

S(x) = S({x1, x2, . . . }) = {0, x1, x2, . . . }

on ℓ∞.
Consider the shift operator S(x) on ℓ∞:

S(x) = {0, x1, x2, x3, . . . }.

We claim that:

S = DwnS[x] for all x ∈ ℓ∞.
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The operator S(x) converges weakly to zero, i.e., S(x) ⇀ 0, but does not converge strongly since the norm of S(x) is
the same as the norm of x. Thus: S(x) converges weakly to 0, that is, S = DwnS[x] for all x ∈ ℓ∞, but it does not
converge strongly to 0, which means DsnS[x] does not exist.

DsnS[x] does not exist.

Theorem 4.27. Let (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆) be two NNS satisfying the condition (β), X ⊆ U be an neutrosophic
open subset and h : X→ V. Then,

(i) h is SN-Fréchet differentiable at some ζ0 ∈ X with L = DSNh[ζ0] iff for each γ ∈ (0, 1),

lim
|| j||1γ→0

||h(ζ0 + j) − h(ζ0) − Lj||2γ
|| j||1γ

= 0.

(ii) h is WN-Fréchet differentiable at some ζ0 ∈ X with L = DWNh[ζ0] iff for each γ ∈ (0, 1),

lim
|| j||1γ→0

||h(ζ0 + j) − h(ζ0) − Lj||2γ
|| j||1γ

= 0.

where ∥ . ∥1γ and ∥ . ∥2γ are the γ-norms of the NNS (U,G1, ⋄, ⋆) and (V,G2, ⋄, ⋆), respectively.

Now let us state a main result including some useful properties of neutrosophic differentiation.

Theorem 4.28. Let (U,G1, ⋄, ⋆), (V,G1, ⋄, ⋆) and (W,G3, ⋄, ⋆) NNS, (β), X ⊆ U and Y ⊆ V be neutrosophic open
subset.
Let h, 1 : X → V. be a mappings and DSN(WN)h[ζ0] and DSN(WN)1[ζ0] exists. Then DSN(WN)(h + 1)[ζ0] exists and
DSN(WN)(h + 1)[ζ0] = DSN(WN)h[ζ0] +DSN(WN)1[ζ0].
(ii) Suppose that h : X→ V and 1 : Y→W. are such that 1◦h : X→W is defined,DSN(WN)h[ζ0] andDSN(WN)1[ζ0]
exists. ThenDSN(WN)(h + 1)[ζ0] exists and
DSN(WN)(1 ◦ h)[ζ0] = DSN(WN)1[h(ζ0)] ◦ DSN(WN)[h(ζ0)].

Proof. Since proof of the first part is elementary let us prove the second.
We prove the assertion only for SN-Fréchet differential.
Suppose T1( j, d) , 1,∧(ζ0, j) = 1(h(ζ0 + j)) − 1(h(ζ0)) andA = DSN1[h(ζ0)] B = DSN[h(ζ0)].
Now, let 1(h(ζ0)) + 1(ζ0 + j) − h(ζ0) − 1(h(ζ0) = ∧(ζ0, j) and, by the hypothesis, given λ > 0 there exists some
ϑ(λ) > 0 such that T1( j, d) , 1,
∧ (ζ0, j) = 1(h(ζ0 + j)) − 1(h(ζ0)),

T3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−T2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)
≥ T2(h(ζ0 + j) − h(ζ0), ϑ),

M3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−M2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)
≤ M2(h(ζ0 + j) − h(ζ0), ϑ),

F3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−F2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)
≤ F2(h(ζ0 + j) − h(ζ0), ϑ)

where j = ζ − ζ0. But, since h is SN-continuous at ζ0, there exist some ϑ1(ϑ) > 0 such that

T2(h(ζ0 + j) − h(ζ0), ϑ) ≥ T1( j, ϑ1) and M2(h(ζ0 + j) − h(ζ0), ϑ) ≤ M1( j, ϑ1)

F2(h(ζ0 + j) − h(ζ0), ϑ) ≤ F1( j, ϑ1).

Hence
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T3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−T1( j,ϑ1) , λ

)
≥ T3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−T2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)
≥ T2(h(ζ0 + j) − h(ζ0), ϑ) ≥ T1( j, ϑ1)

and

M3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−M1( j,ϑ1) , λ

)
≤ M3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−M2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)

≤ M2(h(ζ0 + j) − h(ζ0), ϑ) ≤ M1( j, ϑ1)

F3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−F1( j,ϑ1) , λ

)
≤ F3

(
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−F2(h(ζ0+ j)−h(ζ0),ϑ) , λ

)

≤ F2(h(ζ0 + j) − h(ζ0), ϑ) ≤ F1( j, ϑ1)

Now, consider following equality

∧(ζ0, j)−A((Bj)
1−T1( j,d) =

∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0)−Bj−(h(ζ0+ j))−h(ζ0))
1−T1( j,d)

=
∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))

1−T1( j,d) −A

(
(h(ζ0+ j))−h(ζ0)−Bj

1−T1( j,d)

)
.

SinceA is SN-bounded linear operator (at 0) there exists some ϑ2(λ) > 0 such that

T3

(
A

(
(h(ζ0+ j))−h(ζ0)−Bj

1−T1( j,d)

)
, λ

)
≥ T2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−T1( j,d) , ϑ2

)
and

M3

(
A

(
(h(ζ0+ j))−h(ζ0)−Bj

1−M1( j,d)

)
, λ

)
≤ M2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−M1( j,d) , ϑ2

)
,

F3

(
A

(
(h(ζ0+ j))−h(ζ0)−Bj

1−F1( j,d)

)
, λ

)
≤ F2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−F1( j,d) , ϑ2

)
, for every d > 0.

Further, since B = DSN(WN)h[ζ0] there exists some ϑ3(ϑ2) > 0 such that

T2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−T1( j,ϑ3) , ϑ2

)
≥ T1( j, ϑ3) and M2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−M1( j,ϑ3) , ϑ2

)
≤ M1( j, ϑ3)

F2

(
(h(ζ0+ j))−h(ζ0)−Bj

1−F1( j,ϑ3) , ϑ2

)
≤ F1( j, ϑ3).

Let ϑ4 = max{ϑ1, ϑ3} and ϑ4 = min{ϑ1, ϑ3} and say P = ∧(ζ0, j)−(A(h(ζ0+ j))−h(ζ0))
1−T1( j,ϑ1)

and Q = A
(

(h(ζ0+ j))−h(ζ0−Bj))
1−T1( j,ϑ3)

)
. Then

T3

(
∧(ζ0, j)−A(Bj))

1−T1( j,ϑ4) , 2λ
)
≥ T3

(
P + Q, 2λ

)
≥ max{T3(P, λ),T3(Q, λ)}
≥ T1( j, ϑ5)

and

M3

(
∧(ζ0, j)−A(Bj))

1−M1( j,ϑ4) , 2λ
)
≤ M3

(
P + Q, 2λ

)
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≤ min{M3(P, λ),M3(Q, λ)}
≤ M1( j, ϑ5),

F3

(
∧(ζ0, j)−A(Bj))

1−F1( j,ϑ4) , 2λ
)
≤ F3

(
P + Q, 2λ

)
≤ min{F3(P, λ),F3(Q, λ)}
≤ F1( j, ϑ5).

This proves thatDSN(WN)(h + 1)[ζ0] = DSN(WN)h[ζ0] +DSN(WN)1[ζ0].

5. Conclusion

In this paper, we investigated a few key aspects of Fréchet’s differentiation of nonlinear operators and
established a link between the various notions of ”NNS” and the boundedness of linear operators between
neutrosophic normed functions. The current work is an extension and amplification of Yilmaz’s work [34]
in a ”NNS”, which is more regular than the ”IFNS”. We have also initiated the study of neutrosophic
compact operators in ”NNS” and obtained different important properties of them. Hence, some classical
results have been generalized.
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