
Filomat 39:2 (2025), 553–563
https://doi.org/10.2298/FIL2502553A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, fourth-order accurate difference schemes were proposed and analyzed for sys-
tems of second-order ordinary differential equations within the class of non-smooth solutions. Stability
conditions and a priori estimates were obtained and theorems on the accuracy of the constructed difference
schemes were proven. Additive difference schemes were proposed and the results were applied to the
study of multidimensional hyperbolic second-order partial differential equations. Accuracy estimates for
spatial and temporal variables were obtained. An algorithm for implementing the method was developed
and the scheme was tested. The results of a computational experiment illustrated the effectiveness of the
constructed numerical methods for solving hyperbolic equations with non-smooth solutions.

1. Statement of the problem

Mathematical models of many non-stationary processes result in solving second-order ordinary dif-
ferential equations. For instance, hyperbolic partial differential equations, multidimensional problems in
gas dynamics, internal wave theory, electro-magnetoelasticity of piezoelectric and electrically conductive
bodies, and geomechanics problems can be reduced to second-order ordinary differential equations when
spatial variables are approximated using the finite difference or finite element methods [8, 12, 14, 19]. Nu-
merous approximate methods, such as the finite difference method and the finite element method, have
been developed to solve second-order ordinary differential equations. However, these methods typically
exhibit low accuracy for smooth solutions of the differential problem. Consequently, it is practical to con-
struct simple, high-order accuracy difference schemes for equations with non-smooth solutions to improve
computational efficiency and precision.

Let us consider the abstract Cauchy problem for a nonstationary second-order equation with constant
coefficients

Dü + Au = f , t0 < t ≤ T, (1)
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u(t0) = u0, u̇(t0) = u1, (2)

where A and D are linear operators from H→ H, independent of t and constant over time. Here, A∗ = A > 0
and D∗ = D > 0, for all t ≥ 0, u = u(t) ∈ H, and f = f (t) ∈ H. In this notation, ü = d2u/dt2, u̇ = du/dt, and H
denotes a Hilbert space with scalar product (u, ϑ) and norm ∥u∥ =

√
(u,u).

In the theory of difference schemes for approximate solutions to problems (1) and (2), three-layer
difference schemes of second-order accuracy (in time) or Crank–Nicholson schemes are typically employed
[5, 10, 19]. High-order accuracy schemes were developed in [1, 2, 15, 16] based on the finite element
method. In [4], estimates for second-order accuracy of the finite difference method for a fourth-order
nonlinear Sobolev-type equation were established in the class of smooth solutions. In [3], stable compact
difference schemes with fourth-order accuracy and weighting parameters were analyzed in the class of
smooth solutions for multidimensional hyperbolic-parabolic equations with constant coefficients. A priori
stability and convergence estimates for the difference solution were derived in strong grid norms. In [7],
difference schemes for various hyperbolic equations in classes of generalized solutions were constructed
and studied. Various estimates of the stability and convergence of difference schemes were obtained. Their
dispersion properties were studied and methods for improving the quality of grid solutions were proposed.

2. Construction and study of a difference scheme

Let H be a Hilbert space with a given scalar product (.) and corresponding norm ∥.∥. We introduce the
following operator [11]

Ttu =
1
τ2

t+τ∫
t−τ

(τ − |t − θ|) u(θ)dθ. (3)

Using Taylor series, we obtain

u(θ) = u(t) + (t − θ) u̇(t) +
(t − θ)2

2
ü(t) + ... +

(t − θ)n

n !
u(n)(t) + Rn(θ),

Rn(θ) =
(t − θ)n+1

(n + 1) !
u(n+1)[θ + ε(θ − t)], 0 < ε < 1.

(4)

Substituting (4) into (3) and calculating the resulting integrals we get the following expression

Ttu(t) = u(t) + (τ2/12)ü(t) +O(τ4). (5)

Then, applying operator Tt to equation (1), we have

DTtü + ATtu = Tt f . (6)

Hence, considering (5) and the properties of operator Tt [11]

Ttü = utt, Ttu = u,

we obtain the following difference scheme

Dytt + Ay = φ, (7)

where y = yn = y(tn) approximates u(t), D = D+ τ2

12 A, ytt = (
∧

y −2y+
∨

y )/τ2,
∧

y = y(tn+1),
∨

y = y(tn−1), φ = Tt f ,
y ∈ Hh , φ ∈ Hh, tn ∈ ωτ, ωτ = {tn = nτ, n = 0, 1, 2, ...} , τ > 0 is the grid step, Hh is the grid space with
energy norm ∥ϑ∥A =

√
(ϑ, ϑ)A , (ϑ, ϑ)A = (Aϑ, ϑ).
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Let us introduce the approximation error z = y− u. Then, the substitution of y = z+ u into (7) leads to a
scheme for the error

Dztt + Az = ψ, (8)

where ψ = φ −Dutt − Au. Then, considering (6), we obtain

ψ = A
(
Ttu − u −

τ2

12
utt

)
or

ψ = Aη, η = Ttu − u −
τ2

12
utt.

Let us estimate functional η using the Bramble-Hilbert lemma [11]. To do this, we first write it in the
following form:

η (u) =
1
τ2

tn+τ∫
tn−τ

(τ − |tn − θ|)u(θ)dθ − u(tn) −
1
12

[u(tn + τ) − 2u(tn) + u(tn − τ)] .

The change of variables formula θ−tn
τ = ζ, θ = tn + τζ, dθ = τdζ gives us

η (u) =

1∫
0

(1 − |ζ|)u(tn + τζ)dζ − u(tn) −
1
12

[u(tn + τ) − 2u(tn) + u(tn − τ)] . (9)

If we introduce function u(ζ) = u(tn + τζ), then from (9), we obtain

η (u) =

1∫
0

(1 − |ζ|)u(ζ)dζ − u(0) −
1
12

[
u(1) − 2u(0) + u(−1)

]
.

By direct verification, one can see that this functional vanishes on polynomials up to the fourth power
in variable ζ. Therefore, η(u) is restricted to continuous functions η(u) ∈ C [0, 1]. Moreover, it is restricted
to η(u) ∈W4

2[0, 1]. Considering that

∣∣∣η (u)
∣∣∣ = ∣∣∣∣∣∣Ttu − u −

τ2

12
utt

∣∣∣∣∣∣ ≤M
4∑

m=0


1∫

0

(
dmu
dζm

)2

dζ


1/2

and using the Bramble–Hilbert lemma, we obtain the following estimate:

∣∣∣η (u)
∣∣∣ ≤M


1∫

0

(
d4u
dζ4

)2

dζ


1/2

.

Returning to the former variables, one can find the following inequality

∣∣∣η (u)
∣∣∣ ≤Mτ7/2


tn+1∫

tn

(
d4u
dt4

)2

dt


1/2

, ∀t ∈ [tn, tn+1]
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or ∥∥∥η(u)
∥∥∥2
≤M

2
τ7


tn+1∫

tn

(
d4u
dt4

)2

dt


1/2

≤

m−1∑
n=0

tn+1∫
tn

M
2
τ7

∥∥∥∥∥∥d4u
dt4

(t)

∥∥∥∥∥∥
2

dt′ =

=M
2
τ7

∥∥∥∥∥∥d4u
dt4

(t)

∥∥∥∥∥∥2

· τ =M
2
τ8

∥∥∥∥∥∥d4u
dt4

(t)

∥∥∥∥∥∥2

, ∀t ∈ [tn, tn+1].

Hence ∥∥∥η (u)
∥∥∥ ≤Mτ4

∥∥∥∥∥∥d4u
dt4

(t)

∥∥∥∥∥∥ ,
i.e., approximation error of scheme (7) is ψ = O(τ4).

To achieve the order of approximation O(τ4) of initial conditions, we replace du/dt by yt and using the
Taylor expansion with equation (1) and formulas (3), (6), we obtain the initial conditions for scheme (7)

y(0) = u0, ẏ(0) = u1, (10)

u1 = 0.5τD−1

[(
E −

τ2

12
A
)

(Au0 − f 0) −
τ
3

˙f
0
−
τ2

12
f̈

0
]
+

(
E +

τ2

6
D−1A

)
u1.

Then, initial conditions for (8) have the following form:

z(0) = 0, ż(0) = ψ1. (11)

Approximation error of the second initial condition is∥∥∥ψ1
∥∥∥ = ∥zt(0)∥ =

∥∥∥u1 − ut(0)
∥∥∥ = O(τ4).

Based on the results for the three-layer difference scheme (7), (10) obtained in [10], the following theorem
holds.

Theorem 2.1. Let the operators satisfy the following conditions: A∗ = A > 0, and D∗ = D > 0. Assume the stability
condition:

D >
1 + ε

4
τ2A, (12)

where ε > 0 is any number independent of τ. Then, for the solution of problem (7), (10), there is an a priori estimate
given by:

∥∥∥yn+1
∥∥∥

D ≤

√
1 + ε
ε

∥∥∥y(0)
∥∥∥

D +
∥∥∥Dyt(0)

∥∥∥
A−1 +

n∑
s=1

τ
∥∥∥φs

∥∥∥
A−1

 . (13)

Consequently, based on (13), approximation error of scheme (8) ψ = O(τ4), and initial conditions (11),
we obtain the following result.

Theorem 2.2. Let operators satisfy A∗ = A > 0 and D∗ = D > 0. Suppose u(t) ∈ W4
2 [0,T] and f (t) ∈ C2 [0,T]. In

addition, assume that condition (12) is satisfied. Then the solution of the difference scheme (7), (10) converges to the
exact solution of the differential problem (1), (2) and the following accuracy estimate holds:∥∥∥u(t) − y(t)

∥∥∥
D ≤Mτ4 , M > 0. (14)
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3. Schemes with weights

Based on scheme (7), (10) one can write the following class of difference schemes with weights:

D̄yt̄t + Ay(σ1,σ2) = φ, tn ∈ ωτ, (15)

with initial conditions (10), where

D̄ = D +
τ2

12
A, y(σ1,σ2) = σ1

∧

y + (1 − σ1 − σ2)y + σ2
∨

y .

To study the stability of scheme (15), (10), one can write it to the canonical form of three-layer difference
schemes

Dyt̄t + By◦
t
+Ay = Φ, tn ∈ ωτ. (16)

Substituting the following identity into (15)

y(σ1,σ2) = y + τ(σ1 − σ2)y◦
t
+
τ2

2
(σ1 + σ2)yt̄t, (17)

where y◦
t
=

(
∧

y −
∨

y
)
/(2τ), we obtain(

D +
τ2

12
A +

τ2

2
(σ1 + σ2)A

)
yt̄t + τ(σ1 − σ2)Ay◦

t
+ Ay = Φ,

i. e.

D = D +
τ2

12
A +

τ2

2
(σ1 + σ2)A, B = τ(σ1 − σ2)A, A = A, Φ = φ.

For σ1 = σ2 = 0, we get an explicit difference scheme (7), (10), and for σ1 = σ2 = σ, we get a symmetric
difference scheme.

Since A∗ = A > 0, D∗ = D > 0, then A = A∗ > 0, D = D∗ > 0 , B = B∗ ≥ 0, if σ1 − σ2 ≥ 0. Consequently,
the stability condition for three-layer difference scheme (16) has the following form:

B ≥ 0, D ≥
1 + ε

4
τ2 A,

which will be fulfilled under the following conditions

σ1 ≥ σ2, σ1 + σ2 ≥
2 + 3ε

6
. (18)

4. On the convergence of a scheme with weights

To study the convergence of scheme (15), (10), we obtain a problem for the approximation error. Con-
sidering that z = y − u (y = u + z), we obtain the equation for the error

D̄zt̄t + Az(σ1,σ2) = ψ̃, tn ∈ ωτ, z(0) = 0, ż(0) = ψ1,

where ψ̃ = φ − D̄ut̄t − Au(σ1,σ2). Then, considering (6), we obtain

ψ = A
(
Ttu − u(σ1,σ2)

−
τ2

12
ut̄t

)
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or

ψ = Aη, η = Ttu − u(σ1,σ2)
−
τ2

12
ut̄t.

Let us estimate functional η using the Bramble-Hilbert lemma. To do this we express it in the following
form:

η (u) =
1
τ2

tn+τ∫
tn−τ

(τ − |tn − θ|)u(θ)dθ − u(σ1,σ2)(tn) −
1

12
[u(tn + τ) − 2u(tn) + u(tn − τ)] ,

or using (17):

η (u) =
1
τ2

tn+τ∫
tn−τ

(τ − |tn − θ|)u(θ)dθ −
1
2

(σ1 − σ2) [u(tn + τ) − u(tn − τ)]−

−
1
2

(σ1 + σ2 +
1
6

) [u(tn + τ) − 2u(tn) + u(tn − τ)] .

A change of variables, θ−tn
τ = ζ, θ = tn + τζ, dθ = τdζ, gives:

η (u) =

1∫
0

(1 − |ζ|)u(tn + τζ)dζ − u(tn) −
1
2

(σ1 − σ2) [u(tn + τ) − u(tn − τ)]−

−
1
2

(
σ1 + σ2 +

1
6

)
[u(tn + τ) − 2u(tn) + u(tn − τ)] .

(19)

If we introduce the function ū(ζ) = u(tn + τζ), then from (19), we obtain:

η (ū) =

1∫
0

(1 − |ζ|)ū(ζ)dζ − ū(0) −
1
2

(σ1 − σ2) [ū(1) − ū(−1)]−

−
1
2

(
σ1 + σ2 +

1
6

)
[ū(1) − 2ū(0) + ū(−1)] .

Hence, if σ1 = σ2 = 0, then we obtain functional (9). If, however, σ1 = σ2 = σ, then we obtain the
following functional

η (ū) =

1∫
0

(1 − |ζ|)ū(ζ)dζ − ū(0) −
(
σ +

1
12

)
[ū(1) − 2ū(0) + ū(−1)] . (20)

Analyzing (20), we obtain the
∥∥∥η (u)

∥∥∥ = O(τ4), provided that u(t) ∈W4
2[0,T].

Consequently, the following theorem holds.

Theorem 4.1. Let the operators satisfy A∗ = A > 0, and D∗ = D > 0, and let σ1 = σ2 = σ. In addition, suppose that
the solution to problem (1), (2) satisfies u(t) ∈ W4

2 [0,T] and f (t) ∈ C2 [0,T]. Assume that the stability conditions
(18) hold, i.e., σ ≥ 2+3ε

12 . Then the solution of the difference scheme (15), (10) converges to the exact solution of the
differential problem (1), (2), and the following accuracy estimate holds:∥∥∥u(t) − y(t)

∥∥∥
D ≤Mτ4 , M > 0.
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5. Additive schemes

To construct additive difference schemes, we will focus on additive representations of stationary operator
A in the following form:

A =
p∑
α=1

Aα, Aα = (Aα)∗ > 0, α = 1, p. (21)

The transition from one time layer tn to another tn+1 is related to the solution of problems for individual
constant operators Aα in additive expansion (21). Thus, the original problem decomposes into p of simpler
sub-problems.

Let σ1 = σ2 = σ in (15) (a symmetrical scheme):

D̄yt̄t + Ay(σ) = φ, tn ∈ ωτ, (22)

where y(σ) = σ
∧

y + (1 − 2σ)y + σ
∨

y . The initial conditions are given in the form of (10).
Based on scheme (22), we construct an additive scheme. To achieve this, we reduce the difference

scheme (22) to the canonical form of a three-layer difference schemes:

(D̄ + στ2A)yt̄t + Ay = φ, tn ∈ ωτ. (23)

Here, the stability condition D̄ + στ2A ≥ [(1 + ε)/4] τ2A is satisfied for all σ ≥ (2 + 3ε)/12. The estimate
(13) takes the following form:∥∥∥yn+1

∥∥∥
D̄+στ2A ≤

√
1 + ε
ε

∥∥∥y(0)
∥∥∥

D̄+στ2A +
∥∥∥Dyt(0)

∥∥∥
A−1 +

n∑
s=1

τ
∥∥∥φs

∥∥∥
A−1

 .
The additive scheme corresponding to (23) is defined as in [13]:

yt̄t + R−1
p∑
α=1

Aαy = R−1φ, tn ∈ ωτ, (24)

where R =
p∑
β=1

(D̄ + στ2Aβ).

Thus, based on Theorem 4.1, the following result holds.

Theorem 5.1. Let the solution to problem (1), (2) satisfy u(t) ∈ W4
2 [0,T], f (t) ∈ C2 [0,T], and let the condition

σ ≥ 1/4 (ε = 1/3) be satisfied. Then, the solution to the difference problem (24) with operators R = R∗ > 0, A∗ =
A > 0 converges to the solution of the differential problem (1), (2) with accuracy O(τ4), i. e., the following accuracy
estimate holds: ∥∥∥u(t) − y(t)

∥∥∥
R ≤Mτ4 , M > 0 − const.

The computational implementation of the scheme is based on solving p of locally one-dimensional
problems:

yαn+1 − 2yn + yn−1

pτ2 + R−1Aαyn =
1
p

R−1φ, α = 1, p, n = 1, 2, ..., (25)

y0 = u0, Ryt(0) = y1. (26)

We define the approximate solution on the new layer as:

yn+1 =
1
p

p∑
α=1

y(α)
n+1, n = 0, 1, ... .

In this interpretation, we have an additive locally averaged one-dimensional difference scheme (25),
(26).
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6. Example

Let us consider p-dimensional initial-boundary value problem of hyperbolic type in rectangular domain
Ω = {x : x = (x1, x2, ..., xp), 0 < xα < lα, α = 1, p}, Ω̄ = Ω ∪ Γ. One can seek the solution w(x, t) to the
following equation:

∂2w
∂t2 + Lw = f (x, t), x ∈ Ω, 0 < t ≤ T (27)

with boundary and initial conditions:

w(x, t) = 0, x ∈ Γ = ∂Ω , 0 < t ≤ T, (28)

w(x, 0) = w0(x),
∂w
∂t

(x, 0) = u1(x), x ∈ Ω. (29)

Here the operator L is defined as Lw = −
p∑
α=1

∂
∂xα

(
kα(xα) ∂w

∂xα

)
, 0 < c1 ≤ kα(xα) ≤ c2, c1, c2 are positive

constants.
Problem (27)–(29) is approximated only in the spatial variables xα, α = 1, p. To do this, we introduce a

uniform rectangular grid with steps hα, α = 1, p in the parallelepiped Ω. Define the discrete grid as

ω̄hα =
{
x : x = (x1, x2, ..., xp), xα = iαhα, iα = 1,Nα − 1, Nαhα = lα

}
, α = 1, p .

On the set of grid functions y ∈ Hh that vanish for all x < ω, we define the difference operator

Ay ≡ Ly = −
p∑
α=1

(aαyx̄α )xα , xα ∈ ωhα , (30)

where
a1(x1, x2, ..., xp) = k1(x1 + 0.5h1, x2, ..., xp),

a2(x1, x2, ..., xp) = k2(x1, x2 + 0.5h2, x3, ..., xp),

...............................................................

ap(x1, x2, ..., xp) = kp(x1, x2, ..., xp + 0.5hp).

Here hp is a step in direction p.
The grid operator A defined in (30) is known to be self-adjoint and positive. Therefore, after spatial

discretization, the continuous problem (27)–(29) reduces to the Cauchy problem (1), (2) with operators
D ≡ E and A from (30).

Consider scheme (24) for (1), (2) with operators (30). The approximation error of the scheme is ψ =
O(τ4 + |h|2), if u(x, t) ∈ W4

2[0,T; C4(Ω)], f (x, t) ∈ C2,2
t x

[
Q̄T

]
, |h|2 = h2

1 + h2
2 + ... + h2

p. It is possible to increase
the approximation error in x using scheme (24) with operators (30) as in [8]. For example, in the case of

p = 2 (two-dimensional case), operator A is taken as Ā = A +
h2

1+h2
2

12 A1A2, which approximates operator L
with error O(|h|4). Then scheme (24) has the following form:

ℑyt̄t +ℜy = φ̃, tn ∈ ωτ, (31)

where ℑ =
2∑
β=1

(D̃ + στ2Āβ), ℜ = Ā, D̃ = E + τ2

12 A +
h2

1+h2
2

12 A1A2, φ̃ = f n + τ2

12 f n
tt +

h2
1

12 f n
x1x1
+

h2
2

12 f n
x2x2

, f n
tt =

∂2 f
∂t2 ,

f n
xαxα =

∂2 f
∂x2

α
, α = 1, 2.
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To increase the order of approximation of the initial conditions, we introduce a fictitious time layer
corresponding to the time point t = −τ, n = −1. We expand equation (31) to zero time t = 0, n = 0:

ℑ
y1
− 2y0 + y−1

τ2 +ℜy0 = φ̃0

and approximate the second initial condition (2) using the central derivative:

ℑy◦
t
(0) ≡

ℑy1
− ℑy−1

2τ
=

(
ℑ −

τ2

6
ℜ

)
u1 +

τ2

6
∂ f 0

∂t
.

For smooth solutions, both equations have the fourth order of approximation: the first - for equation
(1), the second - for the second initial condition (2). Then, eliminating fictitious value y−1, we obtain the
following initial condition:

ℑyt(0) =
(
ℑ −

τ2

6
ℜ

)
u1 +

τ
2

(φ̃0
−ℜu0) +

τ2

6
∂ f 0

∂t
. (32)

Next, let us study the constructed fourth-order approximation scheme with corresponding initial con-
ditions y0 = u0 and (32). Its stability condition is determined as:

ℑ = ℑ∗ > 0, ℜ =ℜ∗ > 0, ℑ ≥
1 + ε

4
τ2
ℜ, (33)

which will be fulfilled subject to σ ≥ (2+ 3ε)/12. Consequently, based on (13), if condition (33) is met, there
is an a priori estimate [1] to solve scheme (31):

∥∥∥yn+1

∥∥∥
ℑ
≤

√
1 + ε
ε

∥∥∥y(0)
∥∥∥
ℑ
+

∥∥∥ℑyt(0)
∥∥∥
ℜ−1 +

n∑
s=1

τ
∥∥∥φs

∥∥∥
ℜ−1

 .
Based on this estimate, the following assertion holds.

Theorem 6.1. Let the solution to problem (27)–(29) be u(x, t) ∈ W4
2[0,T; C6(Ω)], f (x, t) ∈ C2,4

t x
[
Q̄T

]
and condition

σ ≥ (2 + 3ε)/12 be satisfied. Then scheme (31) with initial conditions y0 = u0, ℑyt(0) and operators ℑ = ℑ∗ >
0, ℜ = ℜ∗ > 0 converges to the solution of the original problem (27)–(29) with accuracy O(τ4 + |h|4), i.e., there is
an accuracy estimate ∥∥∥u(x, t) − y(x, t)

∥∥∥
ℑ
≤M(τ4 + |h|4) , M > 0 − const.

Remark 6.2. In Theorem 6.1, the smoothness condition for u(x, t) is spatially overestimated, C6(Ω). This
condition can be weakened using the operators of exact difference schemes in space up to W4

2(Ω) [7]; this
issue requires a separate study.

7. Computational experiment

Let us consider the equation of string vibration, which is the simplest second-order hyperbolic type
equation and has all the characteristic features of such equations [9, 17]. Therefore, checking the quality
of numerical methods using these equations is a necessary condition for applying them to more complex
hyperbolic equations.

Consider the following problem:

∂2u
∂t2 −

∂2u
∂x2 = 0, u(0, t) = 1, u(1, t) = 0, 0 < t ≤ T, u(x, 0) =

∂u
∂t

(x, 0) = 0,

with exact solution u(x, t) = H(t − x), where is the Heaviside function. This test allows us to compare
schemes on non-smooth (discontinuous) solutions.
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(a) (b)

Figure 1: Solution graphs and scheme error: t = 0.8, τ = 0.025, h = 0.03125

For this problem, consider the fourth-order approximation scheme in time and space (12), (10) with
operators D̄ = E + [(τ2 + h2)/12]A, A = −yx̄x. The stability condition depends on parameters σ1, σ2. If
σ1 = σ2 = σ, then we obtain stability condition σ ≥ 1/4 for ε = 1/3. Figure 1 shows solution graphs: a) y(x, t)
solid thick line and u(x, t) solid thin line; b) error z = y(x, t) − u(x, t) of the corresponding test, at time t for
the values of the grid parameters h, τ.

To determine the order of convergence in spatial variables and time variables in norm C, the following
formulas were used [6]:

ph
∞ = log2(∥z(2h, τ)∥L∞/∥z(h, τ)∥L∞ ), pτ∞ = log2(∥z(h, 2τ)∥L∞/∥z(h, τ)∥L∞ ).

Tables 1 and 2 show the orders of convergence rate in spatial and temporal directions according to an
explicit scheme, obtained experimentally. Since the difference solution converges to an exact solution with
the fourth order in both variables, to check the rate of convergence, we choose the space step arbitrarily; the
time step is determined from the stability condition of the scheme. At that, the deviation of the calculated
values from the exact solution in norm C was taken as an error estimate.

Table 1: Convergence rates in spatial direction

Space step Time step Error Order
h=0.01 τ = 0.01 2.69E-08 -
h=0.005 τ = 0.01 6.76E-09 3.992768
h=0.0025 τ = 0.01 1.71E-11 3.9855
h=0.00125 τ = 0.01 4.34E-12 3.974529

Table 2: Convergence rates in temporal direction

Space step Time step Error Order
h=0.01 τ = 0.01 2.69E-08 -
h=0.01 τ = 0.005 6.71E-09 4.003222
h=0.01 τ = 0.0025 1.68E-11 3.997852
h=0.01 τ = 0.00125 4.19E-12 4.003439

8. Conclusions

Difference schemes with weights of fourth-order accuracy were constructed for the abstract Cauchy
problem for a second-order equation in the class of generalized solutions. Stability conditions and a priori
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estimates in energy standards were obtained and, on their basis, accuracy estimates of the constructed
schemes were proven. Based on difference schemes with weights, additive difference schemes of the fourth-
order accuracy for both variables were proposed. A computational algorithm for locally one-dimensional
problems was presented. An example of solving a multidimensional initial-boundary value problem of
hyperbolic type in a rectangular domain was given. A theorem was proven on the convergence of the
solution of the difference scheme to the solution of the original problem with fourth-order accuracy for all
variables. The computational experiments conducted using an explicit scheme illustrated the effectiveness
of the constructed numerical methods.
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