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Abstract. The purpose of this work is to introduce two notions of closure in the category ConFCO of
constant filter convergence spaces with continuous maps and investigate whether they satisfy the idempo-
tency, productivity, (weak) hereditariness, and (full) additiveness as well as examine how they are related to
each other. Moreover, we characterize each of Ti, i = 1, 2 spaces with respect to these closures and examine
epimorphisms in the subcategories of ConFCO. Furthermore, we give the characterization of connected
constant filter convergence spaces and investigate some invariance properties of them. Finally, we compare
our results with results in some other topological categories.

1. Introduction

Since the category Top of topological spaces and continuous maps has no natural function space struc-
tures, it is not convenient in topological algebra, homotopy theory, and functional analysis etc. Con-
sequently, there have been many attempts to replace Top by supercategories which have the desired
properties.

The categories FCO of filter convergence spaces (resp. Lim of limit spaces) and continuous maps which
are supercategories of Top have natural function space structures [21, 22, 26]. Limit spaces with compatible
vector space structures are used in an important way to develop a calculus for vector spaces, without norm
[21]. In 1979, Schwarz [26] introduced the full subcategory ConFCO of FCO which is bireflective and have
natural function space structures.

Closure operators have been used to generalize separation and connectedness as well as they are used
to characterize the epimorphisms of subcategories of a topological category [6, 15–19, 23, 25].

The main objectives of this paper are stated as follows:

(1) We introduce two notions of closures in ConFCO and show whether they satisfy the idempotency,
productivity, (weak) hereditariness, and (full) additiveness.

(2) We characterize Ti, i = 1, 2 constant filter convergence spaces with respect to these closure operators.
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(3) We characterize the epimorphism in the subcategories of ConFCO.

(4) We give the characterization of connected constant filter convergence spaces and investigate invari-
ance properties of it.

(5) We compare our findings with ones in other topological categories.

2. Preliminaries

Let B , ∅ and F(B) be the set of filters on B. α ∈ F(B) is said to be improper (resp. proper) iff ∅ ∈ α (resp.
∅ < α). We denote byα∪β the smallest filter containing both β andα forα, β ∈ F(B) and [U] = {V ⊂ B : U ⊂ V}.

If the map L : B→ P(F(B)) satisfies,

(i) [{x}] = [x] ∈ L(x) for ∀x ∈ B,

(ii) if α ∈ L(x) and α ⊂ β, then β ∈ L(x),

then (B,L) is called a filter convergence space [22]. If L is a constant function, then (B,L) is called a con-
stant filter convergence space [26]. Let (B,L) and (C,S) be constant filter convergence spaces. A map
f : (B,L)→ (C,S) is said to be continuous if f (α) ∈ S for ∀α ∈ L.

We denote ConFCO by the category of constant filter convergence spaces and continuous maps, which
is a cartesian closed [26].

Proposition 2.1. (1) Let {(Bi,Li), i ∈ I} be a class of constant filter convergence spaces, B be a nonempty set, and
{ fi : B→ Bi, i ∈ I} be a source in the category Set of all sets and functions. A source { fi : (B,L)→ (Bi,Li), i ∈ I}
in ConFCO is an initial lift iff α ∈ L precisely when fi(α) ∈ Li for ∀i ∈ I.

(2) Let { fi : Bi → B, i ∈ I} be a sink in Set. An epi sink { fi : (Bi,Li) → (B,L), i ∈ I} in ConFCO is a final lift iff
α ∈ L implies that there exist i ∈ I and βi ∈ Li with fi(βi) ⊂ α.

Let B be a set, x ∈ B, and the infinity wedge
∨
∞

x B (resp. B2∨
∆ B2) be taking countably many disjoint

copies of B and identifying them at the point x (resp. two distinct copies of B2 identified along the diagonal
∆) [2].

The principal axis map A : B2
∨∆ B2

→ B3 is given by A(a, b)1 = (a, b, a) and A(a, b)2 = (a, a, b) and the
Skewed axis map S : B2

∨∆ B2
→ B3 is given by S(a, b)1 = (a, b, b) and S(a, b)2 = (a, a, b). The fold map

∇ : B2∨
∆ B2
→ B2 is given by ▽((a, b)i) = (a, b) for i = 1, 2.

A∞x :
∨
∞

x B → B∞ is given by A∞x (ai) = (x, ..., x, a, x, x, ...), where ai is the i-th component of
∨
∞

x B and
B∞ = B × B × ... is the countable cartesian product of B, and ▽∞x :

∨
∞

x B −→ B is given by ▽∞x (ai) = a for all
i ∈ I, where I is the index set {i : ai is the i-th component of

∨
∞

x B} [2].

Definition 2.2. ([2, 8, 9]) Let U : E → Set be topological [1], A ∈ Ob(E) with x ∈ U(A) = B, and Z ⊂ A .

(1) If the initial lift of the U-source {A∞x : ∨∞x B → B∞ = U(A∞) and ▽∞x : ∨∞x B → UD(B) = B} is discrete,
then {x} is said to be closed, where D is the discrete functor.

(2) If {∗}, the image of Z, is closed in Z = ∅ or A/Z, then Z is said to be closed, where A/Z is the final lift
of the epi U-sink Q : U(A) = B→ B/Z = {∗} ∪ (B\Z), identifying Z with a point ∗.

(3) If the complement Zc of Z is closed, then Z is said to be open.

For Top, openness (resp. closedness) coincides with the usual openness (resp. closedness) [2, 8].

Theorem 2.3. ([4]) Let (B,L) ∈ ConFCO, ∅ ,M ⊂ B, and x ∈ B.
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(1) {x} is closed iff (B,L) is T1 at x iff [y] ∩ [x] < L for all y ∈ B with y , x.

(2) M is closed iff α 1 [b] or α ∪ [M] is improper for every α ∈ L and every b ∈ B with b <M .

Theorem 2.4. Let (B,L) ∈ ConFCO.

(1) M ⊂ B is open iff α 1 [b] or α ∪ [Mc] is improper for every α ∈ L and every b ∈ B with b ∈M.

(2) If for each i ∈ I, Mi ⊂ B is closed, then
⋂

i∈I Mi is closed.

Proof. (1) It follows from Definition 2.2 and Theorem 2.3.
(2) Suppose b ∈ B, b <

⋂
i∈I Mi, and α ∈ L. Then ∃k ∈ I with b < Mk. Since Mk is closed, by Theorem

2.3, α 1 [b] or α ∪ [Mk] is improper. If α ∪ [Mk] is improper, then α ∪ [
⋂

i∈I Mi] is improper since α ∪ [Mk] ⊂
α ∪ [

⋂
i∈I Mi]. Consequently, by Theorem 2.3,

⋂
i∈I Mi is closed.

Example 2.5. (1) Theorems 2.3 and 2.4, all subsets of the discrete constant filter convergence space (B,L) are
both closed and open.

(2) Let (B,F(B)) be the indiscrete constant filter convergence space, i.e., L = F(B) with cardB ≥ 2. By
Theorem 2.4, the only closed (open) subset of B are ∅ and B.

(3) Let B = {m,n, p, r} and define constant filter convergence structures Li for i = 1, 2, 3 as follows:
L1 = {[p], [m], [n], [r], [n] ∩ [m], [∅]}.
L2 = {[p], [m], [n], [r], [n] ∩ [p], [p] ∩ [r], [r] ∩ [n], [∅]}.
L3 = {[p], [m], [n], [r], [n] ∩ [m], [p] ∩ [n], [r] ∩ [p], [m] ∩ [p], [n] ∩ [m] ∩ [p], [∅]}.
By Theorems 2.3 and 2.4, the only closed (open) subsets with respect to L1 are {r}, {p}, {n,m}, {r, p}, {n,m, p},
{n, r,m}, B, and ∅. The only closed (open) subsets with respect to L2 are {m}, {n, p, r}, B, and ∅. The only
closed (open) subsets with respect to L3 are B and ∅.

(4) Let B = {m,n, p, r, s} and define L as L = {[m], [n], [p], [r], [s], [m]∩[n], [m]∩[p], [n]∩[p], [m]∩[n]∩[p], [∅]}.
By Theorems 2.3 and 2.4, the only closed (open) subsets with respect to L are {r}, {s}, {r, s}, {n,m, p}, {n,m, p, s},
{n,m, p, r}, B, and ∅.

Theorem 2.6. Let (A,S), (B,L) ∈ ConFCO.

(1) If N ⊂ A and M ⊂ N are open, then M ⊂ A is open.

(2) If f : (A,S) −→ (B,L) is continuous and M ⊂ B is open, then f−1(M) ⊂ A is open.

Proof. (1) Suppose N ⊂ A and M ⊂ N are open, α ∈ S and for each b ∈ A with b < M. Let SN be a subspace
structure on N induced by the inclusion map i : N→ (A,S). Note that i−1(α) = α∪ [M] ∈ SN. Since M ⊂ N is
open, by Theorem 2.3, α ∪ [N] ∪ [N\M] = α ∪ [N\M] is improper or α ∪ [N] 1 [b] for every α ∈ S and every
b ∈ N with b <M.

If α ∪ [N] 1 [b], then α 1 [b] since [N] ⊂ [b]. Suppose α ∪ [N\M] is improper. Since N ⊂ A is open, by
Theorem 2.4, α 1 [b] or α ∪ [A\N] is improper. We need to show α ∪ [A\M] is improper. Since α ∪ [A\N] is
improper and α ∪ [N\M], ∃ V,U ∈ α with U ∩ (N\M) = ∅ and V ∩ (A\N) = ∅. Note that U ∩ V ∈ α and we
will show that (U∩V)∩ (A\M) = ∅. Suppose (U∩V)∩ (A\M) , ∅. ∃ x ∈ (U∩V)∩ (A\M) with x ∈ V, x ∈ U,
and x ∈ A\M.

Suppose x ∈ N. If x ∈M, then x < A\M, a contradiction.
If x <M, then x ∈ N\M and x ∈ U ∩ (N\M), a contradiction, hence U ∩ (N\M) = ∅.
If x < N, then x ∈ A\N. Since x ∈ V, x ∈ V ∩ (A\N), a contradiction.

Hence, (U ∩ V) ∩ (A\M) = ∅, i.e., α ∪ [A\M] is improper. By Theorem 2.4, M ⊂ A is open.

(2) Suppose M ⊂ B is open, b ∈ A with b ∈ f−1(M), and α ∈ S. Note that f (b) ∈ M, f (α) ∈ L and by
Theorem 2.4, f (α) 1 [ f (b)] or f (α) ∪ [B\M] is improper since M ⊂ B is open.

Suppose f (α) ∪ [B\M] is improper. By Lemma 2.1 of [13],

f (α ∪ [ f−1(B\M)]) = f (α ∪ [A\ f−1(M)]) ⊃ f (α) ∪ [ f f−1(B\M)] ⊃ f (α) ∪ [B\M].
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Since f (α) ∪ [B\M] is improper then f (α ∪ [A\ f−1(M)]) is improper and consequently, α ∪ [A\ f−1(M)] is
improper.

Suppose f (α) 1 [ f (b)]. If α ⊂ [b], then f (α) ⊂ [ f (b)], contradiction. Thus, α 1 [b]. By Theorem 2.4,
f−1(M) ⊂ A is open.

3. Closure operators in constant filter convergence spaces

In this section, we introduce two closure operators of ConFCO and investigate their properties as well
as examine how they are related to each other. Finally, we characterize each of Ti, i = 1, 2 spaces with
respect to these closures.

Definition 3.1. Let (B,L) ∈ ConFCO and Z ⊂ B. The closure clB(Z) of Z is the intersection of all closed
subsets of B containing Z. The quasi-component closure QB(Z) of Z is the intersection of all open and closed
subsets of B containing Z.

Definition 3.2. ([19]) Let c be a closure operator of a topological category E.

(1) T1(c) = {X ∈ E : cX({a}) = {a}, for each a ∈ X }.

(2) △(c) = {X ∈ E : cX2 (∆) = ∆, the diagonal }.

(3) ∇(c) = {X ∈ E : cX2 (∆) = X2
}.

Let E = Top, K be the ordinary closure and Q be the quasi-component closure. Then T1(K), △(K),
∇(Q), and T1(Q) are the class of T1-spaces, T2-spaces, connected spaces, and totally disconnected spaces,
respectively [19].

Let (B,L) ∈ ConFCO and M ⊂ B.

K(M) = {x ∈ B : ∃α ∈ L with α ∪ [M] is proper }.

K∗(M) = {x ∈ B : K({x}) ∩M , ∅}

= {x ∈ B : there exists a proper filter α ∈ L with α ⊂ [x] }.

Theorem 3.3. (1) cl is idempotent, weakly hereditary, productive, and finitely additive but it is not hereditary.

(2) Q is idempotent, weakly hereditary, finitely productive, and additive but it is not hereditary.

(3) cl = K̂ ∧ K∗, the hull of K ∧ K∗.

Proof. (1) By Theorem 3.4 of [20] and by Exercise 2.D of [19], cl is idempotent and weakly hereditary closure
operator.

Suppose Mi is closed in (Bi,Li) for ∀i ∈ I, a = (a1, a2, ...) ∈ B =
∏

i∈I Bi with a <M =
∏

i∈I Mi and α ∈ L. By
Proposition 2.1, πiα ∈ Li for ∀i ∈ I and ∃ k ∈ I with ak < Mk. Since Mk is closed, by Theorem 2.3, πkα ∪ [Mk]
is improper or πkα 1 [ak]. If πkα∪ [Mk] is improper, then ∃U ∈ πkα such that U ∩Mk = ∅ and hence ∃W ∈ α
with πkW ⊂ U and πkW ∩Mk = ∅. Let σ =

⋃
i∈I π

−1
i πiα, by Corollary 3.3 of [3], πiσ = πiα for all i ∈ I and

σ ⊂ α. Let Z =
∏

i∈I(πiW). Then Z ∈ σ and

Z ∩M =
∏
i∈I

(πiW) ∩
∏
i∈I

Mi =
∏
i∈I

(πiW ∩Mi) = ∅.

Consequently, σ ∪ [M] is improper and hence α ∪ [M] is improper.

If πkα 1 [ak], then σ 1 [a], otherwise, πiσ = πiα ⊂ [ai] for each i ∈ I. This is a contradiction. By Theorem
2.3, M is closed, i.e., cl is productive.
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To see cl is finitely additive, suppose Mi is closed subset of B for i = 1, 2, ...,n, a ∈ B, a < M =
⋃n

i=1 Mi,
α ∈ L. Since Mi is closed, by Theorem 2.3, α ∪ [Mi] is improper for i = 1, 2, ...,n or α 1 [a]. If α ∪ [Mi] is
improper, then there exists Ui ∈ α such that Ui ∩Mi = ∅.

Let U =
⋂n

i=1 Ui. Since U ∈ α, α is a filter, and

M ∩U = (
n⋃

i=1

Mi) ∩ (
n⋂

i=1

Ui) =
n⋃

i=1

(Mi ∩Ui) = ∅.

Hence, α ∪ [M] is improper and by Theorem 2.3, M is closed and consequently, cl is finitely additive.
Let (B,L3) be as in Example 2.5 (3) with A = {m, r} and M = {m}. Let LA be structure on A induced by

i : A→ (B,L3).
LA = {[r], [m], [∅]}.

By Theorem 2.3, the closed subsets respect to LA are {m}, {r}, ∅, and A. Note that clA(M) = {m}, clB(M) = B
and clA(M) = {m} , {m, r} = clB(M) ∩ A. Hence, cl is not hereditary.

(2) By Theorem 3.4 of [20], by Exercise 2.D of [19] and Theorem 2.6, Q is idempotent and weakly hereditary
closure operator.

To see Q is finitely productive, let Mi ⊂ Bi be open and closed for all i = 1, 2, ...,n, a = (a1, a2, ...an) ∈ B =∏n
i=1 Bi with a ∈ M =

∏n
i=1 Mi and α ∈ L, the product structure on B. For each i = 1, 2, ...,n, ai ∈ Mi and

πiα ∈ Li. Since Mi ⊂ Bi are open for all i = 1, 2, ...,n, by Theorem 2.4, πiα 1 [ai] or πiα ∪ [Bi\Mi] is improper.
Let σ =

⋃n
i=1 π

−1
i πiα, by Corollary 3.3 of [3], πiσ = πiα ∈ Li for all i = 1, 2, ...,n and by Proposition 2.1, σ ∈ L.

If αi 1 [ai] for each i = 1, 2, ...,n, σ 1 [a].
Suppose πiα∪ [Bi\Mi] are proper for all i = 1, 2, ...,n. Then ∃Wi ∈ α such that πiWi ∩ (Bi\Mi) = ∅ for each

i = 1, 2, ...,n.
Let W =

⋂n
i=1 Wi and Z =

∏n
i=1(πiWi). Since α is a filter, W ∈ α and Z ∈ σ. We show that σ ∪ [Mc] =

σ ∪ [B\M] is improper. Note that

B\M = (
n∏

i=1

Bi)\(
n∏

i=1

Mi) = ((B1\M1)×B2×B3× ...×Bn)∪(B1×(B2\M2)×B3× ...×Bn)∪ ...∪(B1×B2× ...×(Bn\Mn))

Z ∩Mc = (
n∏

i=1

πiWi) ∩ (((B1\M1) × B2 × ... × Bn) ∪ (B1 × (B2\M2) × ... × Bn) ∪ ... ∪ (B1 × B2 × ... × (Bn\Mn))

= ((π1W1 ∩ (B1\M1)) × π2W2 × ... × πnWn) ∪ (π1W × (π2W ∩ (B2\M2) × ... × πnWn) ∪ ...
∪ (π1W1 × π2W2 × ... × πn−1Wn−1 × (πnWn ∩ (Bn\Mn)))

= ∅

Hence, α∪ [Mc] is improper and by Theorem 2.4, M is open in B. By Part (1), M is closed and by Definition
2.4, Q is finitely productive.

To see Q is additive, let Mi ⊂ B be open for each i = 1, 2, ...,n and a ∈ B with a ∈ M =
⋃n

i=1 Mi. By
Theorem 2.4, M is open and by Part (1), M is closed. Consequently, by Definition 3.2, Q is additive.

Finally, we will show that Q is not hereditary. Let (B,L3) be as in Example 2.5(3) with M = {r} and
A = {p, r}. Then LA induced by i : A→ (B,L3), i.e.,

LA = {[p], [r], [∅]}

Note that QB(M) = B, QA(M) =M, and QB(M) ∩ A = B ∩ A ,M = QA(M). Hence, Q is not hereditary.

(3) Follows from Theorem 2.4.

Theorem 3.4. (1) (B,L) ∈ T1(cl) iff for any y, x ∈ B with y , x, [x] ∩ [y] < L.
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(2) (B,L) ∈ T1(Q) iff for any y, x ∈ B with y , x, [x] ∩ [y] < L and exists a subset of M of B with x ∈ M, y < M,
α ∪ [M] is improper or α ∪ β is improper or β ∪ [Mc] is improper for every proper filters α, β ∈ L.

(3) (B,L) ∈ ∆(cl) iff for every y, x ∈ B with y , x and for every proper filters α, β ∈ L, α 1 [x] or β 1 [y] or α ∪ β
is improper.

(4) If (B,L) ∈ ∆(Q), then for every y, x ∈ B with y , x and for every proper filters β, α ∈ L, α 1 [x] or β 1 [y] or
α ∪ β is improper.

Proof. (1) Suppose (B,L) ∈ T1(cl). By Definition 3.2, for ∀x ∈ B, clB({x}) = {x}. Hence, by Theorem 2.4, {x} is
closed and by Theorem 2.3, [x] ∩ [y] < L for every y, x ∈ B with y , x.

Conversely, suppose for every y, x ∈ B with y , x, [x] ∩ [y] < L. By Theorem 2.3, {x} is closed and by
Definition 3.1, clB({x}) = {x}, i.e., by Definition 3.2, (B,L) ∈ T1(cl).

(2) Suppose (B,L) ∈ T1(Q), y, x ∈ B with y , x. By Theorem 2.4, {x} = QB({x}) is closed and by Theo-
rem 2.3, [x] ∩ [y] < L for ∀y, x ∈ B with x , y. y < {x} = QB({x}) and by Definition 3.1, there exists a open
and closed M ⊂ B containing x but not y. Since M is closed (resp. open), by Theorem 2.3 (resp. by Theorem
2.4), α ∪ [M] (resp. β ∪ [Mc]) is improper or α 1 [y] (resp. β 1 [x]) for proper filters α, β ∈ L.

If β ∪ [Mc] and α ∪ [M] are improper, then ∃V ∈ β and ∃U ∈ αwith U ∩M = ∅ = V ∩Mc. It follows that
U ∩ V ⊂Mc

∩M = ∅. Consequently, ∅ = U ∩ V, i.e., α ∪ β is improper.
If α∪ [M] (resp. β∪ [Mc]) is improper, then ∃ U ∈ α (resp. V ∈ β) with U ∩M (resp. V ∩Mc) = ∅. Hence,

∀a ∈M (resp. ∀b ∈Mc), a < U (resp. b < V) and α 1 [x] (resp. β 1 [y]).

Since {y} and {x} are closed, the case β 1 [x] and α 1 [y] always holds. Therefore, we must have α ∪ β is
improper or α ∪ [M] is improper or β ∪ [Mc] is improper for some M ⊂ B with y <M, x ∈M.

Conversely, suppose the conditions hold, α, β are proper filters in L, and y, x ∈ B with x , y. Since
[x] ∩ [y] < L, by Theorem 2.3, {x} is closed. Let M = {x}. By assumption, α ∪ [x] is improper or β ∪ [{x}c] is
improper or α ∪ β is improper.

If α ∪ β is improper, then ∃ V ∈ β and U ∈ α with U ∩ V = ∅. If U ∩M = ∅, then x < U and α 1 [x]. If
U ∩M , ∅, then β 1 [x] and x < V.

If α ∪ [x] is improper, then α 1 [x].
If β ∪ [{x}c] is improper, then ∃U ∈ β with U ∩ {x}c = ∅ and so, U = ∅ or U = {x}. Since β is proper,

{x} = U ∈ β and β = [x] 1 [a] for every a , x. By Theorem 2.4, {x} is open and by Definition 3.1, for every
x ∈ B, QB({x}) = {x}, i.e.,(B,L) ∈ T1(Q).

(3) Suppose (B,L) ∈ ∆(cl), y, x ∈ B, y , x, and β ⊂ [y] and α ⊂ [x] for all β, α ∈ L. We show α ∪ β is
improper. Suppose α ∪ β is proper. Let σ = π−1

1 α ∪ π
−1
2 β. By Corollary 3.3 of [3], π1σ = α ∈ L, π2σ = β ∈ L.

Hence, σ ∈ L2 and σ ⊂ [(x, y)]. α ∪ β is proper implies for every U2 ∈ β and U1 ∈ α, U1 ∩U2 , ∅ and thus,

(U1 ×U2) ∩ ∆ , ∅.

Consequently, σ ∪ [∆] is proper. By Theorem 2.3, ∆ is not closed and hence, α ∪ β is improper.
Suppose for every y, x ∈ B, y , x, and ∀β, α ∈ L if β ⊂ [y] and α ⊂ [x], then α ∪ β is improper. We

show (B,L) ∈ ∆(cl), i.e., by Theorem 2.3, ∀(x, y) < ∆ and ∀α ∈ L2, α ∪ [∆] is improper or α 1 [(x, y)]. Let
σ = π−1

1 π1α ∪ π−1
2 π2α. By Corollary 3.3 of [3], σ ⊂ α, π1σ = π1α ∈ L and π2σ = π2α ∈ L . By assumption,

π1σ 1 [x] or π2σ 1 [y] or π1α ∪ π2α = π1σ ∪ π2σ is improper. If π1α = π1σ 1 [x] or π2α = π2σ 1 [y], then
α 1 [(x, y)].
Suppose π1σ∪ π2α is improper. There exist V ∈ π1σ = π1α and U ∈ π2σ = π2α such that V ∩U = ∅. Hence,
∆ ∩ (U × V) = ∅, i.e., σ ∪ [∆] is improper and thus α ∪ [∆] is improper. Consequently, by Theorem 2.3, ∆ is
closed and by Definition 3.2, clB2 (∆) = ∆, i.e., (B,L) ∈ ∆(cl).

(4) Suppose (B,L) ∈ ∆(Q), y, x ∈ B, y , x, (x, y) < ∆ = QB2 (∆). By Definition 3.1, there exists closed
and open M set with M ⊃ ∆ with (x, y) < M. Since M is closed, by Theorem 2.3, ∀α ∈ L2, α 1 [(x, y)] or
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α ∪ [M] is improper. If α ∪ [M] is improper, then α ∪ [∆] is improper and hence π1α ∪ π2α is improper. If
α 1 [(x, y)], then π1α 1 [x] or π2α 1 [y]. Since M is open, by Theorem 2.4, ∀α ∈ L2 and ∀(a, b) ∈M, α 1 [(a, b)]
or α ∪ [Mc] is improper. If α 1 [(a, b)], then π2α 1 [b] or π1α 1 [a]. Suppose α ∪ [Mc] is improper. Let
σ = π−1

1 π1α ∪ π−1
2 π2α. If σ ∪ [Mc] is improper, then there exist U1 ∈ π1α and U2 ∈ π2α such that

(U1 ×U2) ∩Mc = ∅.

If σ ∪ [M] is improper, then ∃ V2 ∈ π2α and V1 ∈ π1α such that

(V1 × V2) ∩M = ∅.

Therefore, U1 ∩ V1 ∈ π1α and U2 ∩ V2 ∈ π2α. Thus,

((U1 ∩ V1) × (U2 ∩ V2)) ∩Mc = ∅.

By Theorem 2.4, M is not open, i.e., we get QB2 (∆) = ∆, a contradition.

Theorem 3.5. (1) T1(Q) ⊂ T1(cl).

(2) T1(Q) ⊂ ∆(cl).

(3) ∆(cl) ⊂ T1(cl).

Proof. (1) Suppose (B,L) ∈ T1(Q) and y, x ∈ B with y , x. Since (B,L) ∈ T1(Q), y < {x} = QB({x}) and by
Theorem 2.4, QB({x}) = {x} is closed. By Theorem 2.3, [x] ∩ [y] < L and by Theorem 3.4, (B,L) ∈ T1(cl).

(2) Suppose (B,L) ∈ T1(Q), α, β ∈ L, x, y ∈ B with y , x. y < {x} = QB({x}) and by Definition 3.1, there
exists a open and closed subset M of B containing x but not y. Since M is closed, by Theorem 2.3, α ∪ [M]
is improper or α 1 [y] and M is open by Theorem 2.4, β ∪ [Mc] is improper or β 1 [x] for all proper filters
β, α ∈ L.

If β ∪ [Mc] and α ∪ [M] are improper, then ∃V ∈ β and U ∈ α with U ∩M = ∅ = V ∩Mc. It follows that
U ∩ V ⊂Mc

∩M = ∅. Consequently, ∅ = U ∩ V, i.e., α ∪ β is improper.
If α ∪ [M] (resp. β ∪ [Mc]) is improper, then ∃U ∈ α (resp. V ∈ β) with U ∩M (resp. V ∩Mc = ∅). Hence

∀a ∈M (resp. ∀b ∈Mc), a < U (resp. b < V). α 1 [x] (resp. β 1 [y]). Hence by Theorem 3.4, (B,L) ∈ ∆(cl).

(3) Suppose (B,L) ∈ ∆(cl) and [x] ∩ [y] ∈ L for some x, y ∈ B with y , x. Let β = [x] ∩ [y] = α. Note
that β, α ∈ L, β ∪ α is proper, β ⊂ [y] and α ⊂ [x], a contradiction since (B,L) ∈ ∆(cl). Hence, [x] ∩ [y] < L for
∀x, y ∈ A with x , y and by Theorem 3.4, (B,L) ∈ T1(cl).

Theorem 3.6. If B is finite, then the following are equivalent:

(1) (B,L) ∈ T1(Q),

(2) (B,L) ∈ T1(cl),

(3) (B,L) ∈ ∆(Q),

(4) (B,L) ∈ ∆(cl).

Proof. Suppose B is a finite set, (B,L) ∈ T1(cl), and α is any proper filter on B. Then α = [Z] for some Z ⊂ B.
If α ∈ L and y, x ∈ Z with y , x, then α ⊂ [x] ∩ [y] and [x] ∩ [y] ∈ L, a contradiction since (B,L) ∈ T1(cl).
Hence Z must be a one-point set. Note also that if H ⊂ B, then H is both open and closed. Indeed, if H = ∅,
then by Definition 2.2, H is closed and open. If H = {a1}, a one-point set, then H is closed since (B,L) ∈ T1(cl)
and

Hc = B\{a1} = {a2, a3, ..., an} = {a1} ∪ {a2} ∪ ... ∪ {an}

is closed by Theorem 3.3. Hence, H = {a1} is open. If

H = {a1, a2, ..., ak} = {a1} ∪ {a2} ∪ ... ∪ {ak},

then H is both open and closed. The result follows from Theorems 3.4 and 3.5.
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Let B , ∅, M ⊂ B, B
∐

M B denote the quotient of the coproduct B
∐

B = B×{0, 1} obtained by identifying
each (m, 0), m ∈ M with (m, 1). Let q : B

∐
B → B

∐
M B be the quotient map. The maps ki : B → B

∐
M B,

s : B
∐

M B → B
∐

M B and p : B
∐

M B → B are respectively defined by ki(x) = q(x, i), s(q(x, 0)) = q(x, 1),
s(q(x, 1)) = q(x, 0) and p(q(x, i)) = x, for i = 0, 1 and x ∈ X. If M = {p}, then B

∐
M B = B

∨
p B in [2] and if

M = ∆, then B2∐
M B2 = B2∨

∆ B2 in [2].

Lemma 3.7. ([18]) Let δ be a quotient-reflective subcategory of containing a space with at least two points and let
X ∈ δ. A subset M ⊂ X is δ-closed iff X

∐
M X belongs to δ.

Theorem 3.8. Let (B,L) ∈ ConFCO and M ⊂ B with at least two point.

(1) If (B,L) ∈ T1(cl), then (B
∐

B,L′) ∈ T1(cl), where L′ is the final lift of i1, i2 : (B,L)→ (B
∐

B,L′).

(2) If (B,L) ∈ T1(cl) and M is cl-closed, (i.e., closed), then (B
∐

M B,L′′) ∈ T1(cl), where L′′ is the final lift of
k1, k2 : (B,L)→ (B

∐
M B,L′′).

(3) If (B,L) ∈ ∆(cl), then (B
∐

B,L′) ∈ ∆(cl).

(4) If (B,L) ∈ ∆(cl) and M is cl-closed, then (B
∐

M B,L′′) ∈ ∆(cl).

Proof. (1) Suppose (B,L) ∈ T1(cl) and for some (y, j) , (x,n) in B
∐

B, n, j = 0, 1, [(y, j)]∩ [(x,n)] ∈ L′, where L′

is the final lift of the U-sink {i0, i1 : (B,L)→ B
∐

B} (i0 and i1 are the canonical injections). By Proposition 2.1,
∃ α ∈ L such that [(x,n)]∩ [(y, j)] ⊃ ikα for some k = 0 or 1. This holds iff [x]∩ [y] ∈ L and n = j = k, a contra-
diction since (B,L) ∈ T1(cl), if y = x, then n = 0 and j = 1 (resp. n = 1 and j = 0). Since [(x, 0)] ∩ [(x, 1)] ⊃ ikα
for some k = 0 or 1, then B×{k} ∈ [(x, 0)]∩[(x, 1)], a contradiction. Hence, by Theorem 3.4, (B

∐
B,L′) ∈ T1(cl).

(2) Suppose (B,L) ∈ T1(cl), M ⊂ B is cl-closed, and q′ : (B
∐

B,L′) → (B
∐

M B,L′′) is the quotient map
defined as above. Suppose for some z = q′((y, j)) , q′((x,n) = z′ for j,n = 0, 1, in B

∐
M B, [z] ∩ [z′] ∈ L′′.

By Proposition 2.1, there exixts α ∈ L′ such that [z] ∩ [z′] ⊃ q′(α). If y, x < M, then [(y, j)] ∩ [(x,n)] ⊃ α and
consequently, [(y, j)]∩ [(x,n)] ∈ L′, a contradiction, since (B

∐
B,L′) ∈ T1(cl) by Theorem 3.4 and by Part (1).

If y < M (resp. y ∈ M and x < M) and x ∈ M, then α ∪ [{(x, 1), (x, 0)}] (resp. α ∪ [{(y, 1), (y, 0)}]) is
proper and consequently α ⊂ [(x, 0)] or α ⊂ [(x, 1)] or α ⊂ [{(x, 1), (x, 0)}] (resp. α ⊂ [(y, 0)] or α ⊂ [(y, 1)] or
α ⊂ [{(y, 1), (y, 0)}]).

If α ⊂ [(x, k)] for k = 0, 1, then α ⊂ [(x, 1)] ∩ [(x, 0)] and thus [(x, 1)] ∩ [(x, 0)] ∈ L′, since α ∈ L′, a
contradiction.

If α ⊂ [(y, k)] for k = 0, 1, then α ⊂ [(y, 1)] ∩ [(y, 0)] and thus [(y, 1)] ∩ [(y, 0)] ∈ L′, since α ∈ L′, a
contradiction.

If x, y ∈ M, then α ∪ [{(x, 1), (x, 0), (y, 1), (y, 0)}] is proper and consequently, [(x,n)] ∩ [(y, j)] ∈ L′, contra-
diction since (B

∐
B,L′) ∈ T1(cl).

(3) Suppose (B,L) ∈ ∆(cl) and there exist (y, j), (x,n) in (B
∐

B,L′) with (x,n) , (y, j) and proper filter
β, α ∈ L with β ∪ α is proper and β ⊂ [(y, j)], α ⊂ [(x,n)]. By Proposition 2.1, there exist proper filters
β1, α1 ∈ L such that α ⊃ in(α1), β ⊃ i j(β1), and in(x) = (x,n), i j(y) = (y, j) for some n, j = 0, 1. It follows
that i−1

n (α) ⊃ α1, i−1
j (β) ⊃ β1, i−1

n (α) ∪ i−1
j (β) ⊃ α1 ∪ β1, i−1

n (α) ⊂ [x], and i−1
j (β) ⊂ [y]. Since α ∪ β is proper,

i−1
n (α) ∪ i−1

j (β) is proper and consequently, α1 ∪ β1 is proper, α1 ⊂ [x] and β1 ⊂ [y], a contradiction since
(B,L) ∈ ∆(cl). If y = x, then n = 0 and j = 1 (n = 1 and j = 1). Since α ⊃ i0(α1) and β ⊃ i1(β1),

∅ = (B × {1}) ∩ (B × {0}) ∈ β ∪ α,

i.e., β ∪ α is improper, a contradiction. Hence, by Theorem 3.4, (B
∐

B,L′′) ∈ ∆(cl).

(4) Suppose (B,L) ∈ ∆(cl), β ∪ α is proper, α ⊂ [z] and β ⊂ [z′] for some z = q′(x,n), z′ = q′(y, j) for
some proper filter α, β ∈ L′′. Suppose x , y. By Proposition 2.1, ∃α1, β1 ∈ L′ with α ⊃ q′(α1) and β ⊃ q′(β1).
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Since α1, β1 ∈ L′, by Proposition 2.1, ∃α2, β2 ∈ L such that α1 ⊃ in(α2) and β1 ⊃ i j(β2) for some n, j = 0, 1 and
in(x) = z, i j(y) = z′. It follows that

(q′oin)−1α ⊃ α2, (q′oi j)−1β ⊃ β2, α2 ⊂ [x], β2 ⊂ [y].

Since α∪ β is proper, α2 ∪ β2 is proper, a contradiction since (B,L) ∈ ∆(cl). Suppose x = y, n = 0, b and y = 1.
Note that (q′oi0)(α2) ∪ (q′oi1)(β2) is proper and consequently α2 ∪ β2 ∪ [M] is proper. Since α2 ∪ β2 is proper,
α2∪β2 ∈ L, α2∪β2 ⊂ [x], and M is closed, by Theorem 2.3, x ∈M, a contradiction since z = (x, 0) , (x, 1) = z′.
Hence, by Theorem 3.4, (B

∐
M B,L′′) ∈ ∆(cl).

Theorem 3.9. The subcategories T1(cl) and ∆(cl) are quotient-reflective in ConFCO.

Proof. One can easily show T1(cl) and ∆(cl) are isomorphism-closed, full, closed under final structures and
closed under formation of subspaces. We show that they are closed under products.

Let (Bi,Li) ∈ T1(cl) for ∀i ∈ I and B =
∏

i∈I Bi. We show (B,L) ∈ T1(cl). Suppose (B,L) < T1(cl). Hence, by
Theorem 3.4, [y] ∩ [x] ∈ L for some y = (y1, y2, ...), x = (x1, x2, ...) in B with y , x. Then there exists j ∈ I such
that x j , y j in B j and by Proposition 2.1 and by Lemma 2.1 of [13],

π j([x] ∩ [y]) = π j([x]) ∩ π j([y]) = [x j] ∩ [y j] ∈ L j,

a contradiction since (Bi,Li) ∈ T1(cl). Hence, (B,L) ∈ T1(cl).
Suppose (Bi,Li) ∈ ∆(cl) for all i ∈ I but (B,L) < ∆(cl). By Theorem 3.4, β ∪ α is proper, β ⊂ [y] and α ⊂ [x]

for some proper filters β, α ∈ L and y, x ∈ B with y , x. Hence, ∃ j ∈ I with y j , x j in B j, π j(β), π j(α) are
proper filters in L j, π j(β) ∪ π j(α) is proper (since π j(β ∪ α) ⊃ π j(β) ∪ π j(α) and β ∪ α is proper), π j(α) ⊂ [x j]
and π j(β) ⊂ [y j], a contradiction since (B j,L j) ∈ ∆(cl). Hence, by Theorem 3.4, (B,L) ∈ ∆(cl).

Theorem 3.10. If (B,L) ∈ T1(cl) (resp. ∆(cl)) and M ⊂ B is closed (i.e., cl-closed), then the epimorphism in T1(cl)
(resp. ∆(cl)) are onto. In particular, T1(cl) and ∆(cl) are co-well-powered categories.

Proof. By Theorem 3.9, ∆(cl) and T1(cl) are quotient-reflective and by Theorem 3.8, (B
∐

M B,L′′) ∈ ∆(cl), L′′

is the quotient structure on B
∐

M B. By Lemma 1.1 of [18], M is T1(cl) (resp. ∆(cl)) closed and the result
follows.

4. Connected constant filter convergence spaces

Definition 4.1. ([8, 16, 23]) Let B be an object in a topological category E.

(1) B is called strongly connected if the only subsets of B both open and closed are B and ∅.

(2) B is called D-connected if any morphism from B to discrete object is constant.

(3) B is called c-connected if B ∈ ∇(c), where c is a closure operator of E.

In Top, Q-connectedness, strong connectedness, and D-connectedness coincides with the usual connected-
ness [8, 16].

Theorem 4.2. The following are equivalent:

(a) A constant filter convergence space (B,L) is strongly connected.

(b) For any nonempty proper subset M of B either the condition (I) or (II) holds.

(I) There exists a proper filter α ∈ L such that α ∪ [M] is proper and α ⊂ [a] for some a ∈Mc.

(II) There exists a proper filter α ∈ L such that α ∪ [Mc] is proper and α ⊂ [a] for some a ∈M.

(c) (B,L) is D-connected.
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Proof. By Theorems 2.3 and 2.4 and Definition 4.1, we get (a)⇒ (b).

(b) ⇒ (c) : Suppose the condition (I) holds. Let f : (B,L) → (A,S) be a continuous map with (A,S) is
the discrete constant filter convergence space. If cardA = 1, then f is continuous. Suppose cardA > 1 and f
is not constant. There exist b, a ∈ B with b , a and f (b) , f (a). Let M = {a}. By assumption, there exists a
proper filter α ∈ L with α ∪ [M] = α ∪ [a] is proper and α ⊂ [c] for some c ∈ Mc. It follows that f (α) ⊂ [ f (c)]
and f (α) ⊂ [ f (a)]. In particular, f (α) ⊂ [ f (b)]∩ [ f (c)]. If f (α) ∈ S, then [ f (c)]∩ [ f (a)] ∈ S, a contradiction since
S is the discrete structure on A and f (c) , f (a). Hence, f (α) < S, i.e., f is not continuous, a contradiction.
If the condition (II) holds, by the similar argument the result follows. Hence, by Definition 4.1, (B,L) is
D-connected.

(c) ⇒ (a) : Suppose (B,L) is D-connected but it is not strongly connected, i.e., there is a nonempty proper
open and closed M ⊂ B. Let (A,S) be discrete constant filter convergence space with cardA > 1. Define
f : (B,L)→ (A,S) by

f (x) =

c, i f x ∈M
d, i f x <M

Let α ∈ L. Since M is closed, α 1 [a] or α ∪ [M] is improper for ∀a ∈ B with a <M.
If α 1 [a], then ∃V ∈ αwith a < V. f (V) = {c} ∈ f (α) i.e., f (α) = [c] ∈ S.
If α ∪ [M] is improper, then ∃U ∈ αwith M ∩U = ∅. If α = [∅], then f (α) = [∅] ∈ S.

Suppose α , [∅] and W ∈ f (α). Then ∃ V ∈ α with W ⊃ f (V). Note that V ∩ U ∈ α, U ⊂ Mc, and
f (V ∩U) = {d} ∈ f (α) and hence, f (α) = [d] ∈ S.
If α ∪ [Mc] is improper, then by similar argument f (α) = [∅] or [c]. Hence, f is continuous but it is not
constant. This is a contradiction.

Theorem 4.3. A constant filter convergence space (B,L) is cl-connected if and only if for every y, x ∈ B with y , x
there exist proper filters β, α ∈ L such that β ∪ α is proper, β ⊂ [y] and α ⊂ [x].

Proof. Suppose (B,L) is cl-connected and y, x ∈ B with y , x. (x, y) ∈ B2 = clB2 (∆) since (B,L) is cl-connected.
By Theorem 2.3, ∃ σ ∈ L2 with σ∪[∆] is proper and σ ⊂ [(x, y)] since cl(∆) is closed, L2 is the product structure
on B2. Let θ = π−1

1 π1σ ∪ π−1
2 π2σ and note that by Corollary 3.3 of [3], θ ⊂ σ, π1θ = π1σ ∈ L, π2θ = π2σ ∈ L,

π1θ ⊂ [x] and π2θ ⊂ [y]. Since σ∪ [∆] is proper, θ∪ [∆] is proper. Hence, π1θ∪π2θ is proper. We have also
π1θ ⊂ [x] and π2θ ⊂ [y].

Suppose for ∀y, x ∈ B with y , x and there exist proper filters α, β ∈ L with β ∪ α is proper, β ⊂ [y] and
α ⊂ [x]. Let σ = π−1

1 β ∪ π
−1
2 α. By Corollary 3.3 of [3], π2σ = β ∈ L, π1σ = α ∈ L, σ ⊂ [(x, y)], and σ ∈ L2. Since

π1σ ∪ π2σ = α ∪ β is proper, σ ∪ [∆] is proper. By Theorem 2.3, (x, y) ∈ cl(∆), which shows clB2 (∆) = B2 and
by Definition 4.1, (B,L) is cl-connected.

Example 4.4. (1) By Theorems 4.2 and 4.3, the indiscrete space (B,F(B)) is both strongly connected and
cl-connected.

(2) By Theorems 4.2 and 4.3, the discrete constant filter convergence space with at least two elements is
neither strongly connected nor cl-connected.

(3) (B,L) discrete constant filter convergence space is strongly connected (cl-connected) iff cardB ≤ 1.

(4) Let B = {m,n, p, r} and define constant filter convergence structure L as follows:

L = {[p], [n], [m], [r], [n] ∩ [m], [p] ∩ [n], [p] ∩ [r], [∅]}.

By Theorem 2.3 and 2.4, the only closed and open subsets of B are B and ∅ and consequently, by
Theorem 4.2, (B,L) is strongly connected and D-connected.

Theorem 4.5. If (B,L) is cl-connected, then (B,L) is strongly connected.
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Proof. Suppose (B,L) is cl-connected and M is a nonempty proper subset of B. Let x ∈ M and y ∈ Mc.
Since (B,L) is cl-connected, by Theorem 4.3, there exist proper filters α, β ∈ L with α ∪ β is proper, α ⊂ [x]
and β ⊂ [y]. Note that α ∪ [M] is proper since x ∈ M and α ⊂ [x]. Since α ∪ β is proper, it folllows that
α ⊂ [a] for a ∈Mc. Hence, condition (I) in Theorem 4.2 holds and by Theorem 4.2, (B,L) is strongly connected.

By Example 4.4(4), (B,L) is strongly connected. For m, r ∈ B, there do not exist proper filter α, β ∈ L with
α ∪ β is proper, α ⊂ [r] and β ⊂ [m]. By Theorem 4.3, (B,L) is not cl-connected.

Theorem 4.6. Let f : (B,L) → (A,S) be continuous. If (B,L) is strongly connected (resp. cl-connected), then f (B)
is strongly connected (resp. cl-connected).

Proof. Let M be a nonempty proper subset of f (B). f−1(M) is a nonempty proper subset of B. Since (B,L) is
strongly connected, either condition (I) or (II) of Theorem 4.2 holds. If the condition (I) in Theorem 4.2 holds,
then there exists a proper filterα ∈ K with [ f−1(M)]∪α is proper andα ⊂ [a] for some a ∈ f−1(Mc) = ( f−1(M))c.
Since α ∈ L and f is continuous, f (α) ∈ S and by Remark 3.4 of [11],

f (α) ∪ [M] ⊂ f (α) ∪ [ f f−1(M)]) ⊂ f (α ∪ [ f−1(M)])

and consequently, f (α) ∪ [M] is proper. Since α ⊂ [a], f (α) ⊂ [ f (a)] for f (a) ∈ Mc. Similarly, if the condition
(II) in Theorem 4.2 holds, f (α) ⊂ [ f (a)] for some f (a) ∈M and [Mc]∪ f (α) is proper. Hence, by Theorem 4.2,
f (B) is strongly connected.

Let y, x ∈ f (B) with y , x. Then ∃b, a ∈ B with b , a such that f (a) = x, f (b) = y. Since (B,L) is
cl-connected, by Theorem 4.3, there exist proper filters β, α ∈ L with β ∪ α is proper and β ⊂ [b] and α ⊂ [a].
Since f is continuous, f (α), f (β) ∈ S and by Remark 3.4 of [11], f (α ∪ β) ⊃ f (α) ∪ f (β). Since β ∪ α is proper,
f (β ∪ α) is proper and thus f (α) ∪ f (β) is proper. Also, f (β) ⊂ [y], f (α) ⊂ [x] and consequently, by Theorem
4.3, f (B) is cl-connected.

Theorem 4.7. A product of strongly connected constant filter convergence spaces is strongly connected.

Proof. Let (Bi,Li) be strongly connected constant filter convergence spaces for ∀i ∈ I with Bi , ∅. Let
(B =

∏
i∈I Bi,L) be product space and M be nonempty proper subset of B. We assume without loss of

generality, each of πiM is proper nonempty subset of Bi (otherwise, there is always a subset M′ of M with
πiM′ is a nonempty proper subset of B for each i ∈ I). Since (Bi,Li) is strongly connected, by Theorem 4.2,
there exits a proper filter αi ∈ Li such that αi ∪ [πi(M)] is proper and αi ⊂ [ai] for some ai ∈ (πi(M))c or
αi ∪ [(πi(M))c] is proper and αi ⊂ [bi] for some bi ∈ πi(M).

Suppose [(πi(M))] ∪ αi is proper and αi ⊂ [ai] for some ai ∈ (πi(M))c. Let σ =
⋃

i∈I π
−1
i αi, b = (b1, b2, ...)

and a = (a1, a2, ...), N =
∏

i∈I πiM ⊃ M. Since αi ∈ Li for every i ∈ I and by Corollary 3.3 of [3], πiσ = αi and
by Proposition 2.1, σ ∈ L. Note that σ ∪ [N] is proper since αi ∪ [πiM] is proper for each i ∈ I and for U ∈ σ,

U ∩N = (U1 ×U2 × ...) ∩
∏
i∈I

(πi(M)) = (U1 ∩ π1M) × (U2 ∩ π2M) × ... , ∅

where Ui ∈ αi. Hence, α ∪ [N] is proper and α ⊂ [a] for a ∈
∏

i∈I(πiM)c
⊂ Nc.

Suppose αi ∪ [(πi(M))c] is proper and αi ⊂ [bi] for some bi ∈ πi(M). Let σ =
⋃

i∈I π
−1
i αi and N =∏

i∈I(Bi\πi(M)). Note that σ ∈ L and σ ∪ [N] is proper and α ⊂ [b] for b ∈ M. N ⊂ Mc implies σ ∪ [Mc] is
proper and by Theorem 4.2, (B,L) is strongly connected.

Theorem 4.8. A product of cl-connected constant filter convergence spaces is cl-connected.

Proof. Let (Bi,Li) be cl-connected constant filter convergence spaces for ∀i ∈ I with Bi , ∅, (B =
∏

i∈I Bi,L),
b = (b1, b2, ...), a = (a1, a2, ...) ∈ B with b , a. There exists k ∈ I with ak , bk. We consider the following cases.

(1) ai = bi for each i ∈ I with k , i.

(2) ai , bi for all i ∈ I.
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(3) am = bm for m ∈ J and an , bn for n ∈ I\J.

Suppose case (i) holds and ak , bk. Since (Bk,Lk) is cl-connected by Theorem 4.3, there exist proper filters
αk, βk ∈ Lk such that αk ∪ βk is proper, αk ⊂ [ak] and βk ⊂ [bk]. Let

α = [(a1, a2, ...ak−1)] × αk × [(ak+1, ak+2, ...)]

and
β = [(a1, a2, ...ak−1)] × βk × [(ak+1, ak+2, ...)]

Note that α and β are proper and by Proposition 2.1, α, β ∈ L since πiα, πiβ ∈ L for all i ∈ I. Since αk ∪ βk is
proper, β ∪ α is proper, α ⊂ [a] and β ⊂ [b].

Suppose case (ii) holds, i.e., ai , bi for all i ∈ I. Since each (Bi,Li) is cl-connected , by Theorem 4.3,
there exists proper filters αi, βi ∈ Li with αi ∪ βi is proper, αi ⊂ [ai] and βi ⊂ [bi]. Let α =

⋃
i∈I π

−1
i αi and

β =
⋃

i∈I π
−1
i βi. πiα = αi ∈ Li, πiβ = βi ∈ Li, by Proposition 2.1, α, β ∈ L. Let V ∈ β and U ∈ α. Then there exist

Ui ∈ αi and Vi ∈ βi with V1 × V2 × ... ⊂ V and U1 ×U2 × ... ⊂ U. Hence,

(U1 ∩ V1) × (U2 ∩ V2) × ... ⊂ U ∩ V.

Since each αi ∪ βi is proper, Ui ∩ Vi , ∅ for all i ∈ I, and consequently, U ∩ V , ∅. Hence, α ∪ β is proper.
Since αi ⊂ [ai] and βi ⊂ [bi] for all i ∈ I, α ⊂ [a] and β ⊂ [b].

Suppose case (iii) holds. Since (Bn,Ln) are cl-connected for all n ∈ I\J, by Theorem 4.3, there exists proper
filters αn, βn ∈ Ln such that αn ∪ βn is proper, αn ⊂ [an] and βn ⊂ [bn]. Let

α = [(aim , aim+1 , ...)] ∪ (
⋃
k∈I\J

π−1
k αk)

and
β = [(aim , aim+1 , ...)] ∪ (

⋃
k∈I\J

π−1
k βk)

Note that β, α are proper, [b] ⊃ β, [a] ⊃ α and α ∪ β is proper since each αk ∪ βk is proper for k ∈ I\J. Hence,
by Theorem 4.3, (B,L) is cl-connected.

5. Comparative evaluation

We compare our findings with ones in other topological categories. We can infer results:

(1) In Top,

(i) By Remark 5.2 of [7] and Theorem 2.2.11 of [2], T1(Q) = T2Top ⊂ T1(cl) = ∆(cl) = T1Top ⊂ T0Top.

(ii) By [8], strong connectedness⇐⇒ D-connectedness⇐⇒ the usual connectedness.

(2) In ConFCO,

(i) By Theorem 2.1 of [5] and Theorem 3.4, T0ConFCO and T1(cl) are isomorphic categories and they

are closed under formations of subspaces and products.

(ii) By Theorem 3.5, T1(Q) ⊂ ∆(cl) ⊂ T1(cl).

(iii) By Theorem 3.6, If (B,L) is finite, then

(B,L) ∈ ∆(cl)⇐⇒ (B,L) ∈ ∆(Q)⇐⇒ (B,L) ∈ T1(Q)⇐⇒ (B,L) ∈ T1(cl).

(iv) By Theorem 3.5, the subcategories T1(cl) and ∆(cl) are quotient-reflective in ConFCO.
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(v) By Theorems 4.2 and 4.5,
cl-connectedness =⇒ strong connectedness ⇐⇒ D-connectedness.

(3) In psqMet (the category of extended pseudo-quasi-semi metric spaces and non-expansive maps),

(i) By Theorem 3.10 of [12], ∆(cl) = T1(cl) = ∇(cl) = T1(Q).

(ii) By Theorem 4.9 of [12],
strong connectedness =⇒ D-connectedness.
Moreover, if a space is in T1PsqMet, then by Theorems 3.13 and 3.14 of [14],
strong connectedness⇐⇒ cl-connectedness⇐⇒ D-connectedness.

(4) In PBorn (the category of prebornological spaces and bounded maps),

(i) By Corollary 3.11 of [4] and Theorem 3.7 of [10], T1(cl) = ∆(cl) = ∇(cl) = ∆(Q).

(ii) By Remarks 4.8 and 5.4 of [10], if a space is NT2, then,
strong connectedness⇐⇒ cl-connectedness =⇒ D-connectedness.

(5) In FCO,

(i) By Theorem 2.9 of [6] and Corollary 3.15 of [4], ∆(cl) = T1(cl).

(ii) By Remark 4.13, Theorems 4.12, 4.9 of [8], and Theorem 3.2 of [4],
strong connectedness =⇒ cl-connectedness =⇒ D-connectedness.

(6) In RRel (the category of reflexive relation spaces and relation preserving functions),

(i) By Theorem 3.7 of [10], ∆(cl) = ∆(Q) ⊂ T1(cl).

(ii) By Theorems 4.3 and Remark 4.8 of [10], strong connectedness =⇒ D-connectedness and
if a space is NT2, then
strong connectedness⇐⇒ D-connectedness⇐⇒ cl-connectedness.

(7) In CP (the category of pairs and functions),

(i) By [10] and by Corollary 3.13 of [4], T1(cl) = T1(Q) = ∆(cl) = ∆(Q).

(ii) By [10] and by Theorem 3.8 of [4],
strong connectedness⇐⇒ cl-connectedness⇐⇒ D-connectedness.

(8) In CApp (the category of approach spaces and contraction maps), by Theorems 4.8, 4.9, 4.12, and
4.13 of [24],

∇(cl) ⊂ ∆(cl) ⊂ T1(cl).

6. Conclusion

In this work, we introduced two closure operators of ConFCO denoted by cl and Q. Then we showed
these closure operators are idempotent, weakly hereditary, productive, and finitely additive but they are not
hereditary. Furthermore, we obtained T0ConFCO and T1(cl) are isomorphic and they are quotient-reflective
in ConFCO.

Also, we showed that T1(Q) ⊂ ∆(cl) ⊂ T1(cl) and if (B,L) is finite, then

(B,L) ∈ ∆(Q) ⇐⇒ (B,L) ∈ ∆(cl) ⇐⇒ (B,L) ∈ T1(cl) ⇐⇒ (B,L) ∈ T1(Q).

Finally, we investigated how D-connectedness, strong connectedness, and cl-connectedness are related
to each other and we presented a comparison with our findings and ones in other topological categories.
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