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Abstract. Let α ∈ [0, 1) be a real number, and let G be a connected graph of order n with n ≥ λ(α), where
λ(α) = 9 for 0 ≤ α ≤ 2

3 and λ(α) = 4
1−α for 2

3 < α < 1. A spanning tree T of G is a subgraph of G that is a tree
covers all vertices of G. The leaf distance of a tree is the minimum of distances between any two leaves of a
tree. Let Aα(G) = αD(G)+(1−α)A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix
of vertex degrees of G. The largest eigenvalues of Aα(G), denoted by ρα(G), is called Aα-spectral radius of G.
In this paper, it is proved that G has a spanning tree with leaf distance at least 4 if ρα(G) ≥ γ(n), where γ(n) is
the largest root of x3

− (αn+n+α−3)x2+ (αn2+α2n−αn−n−2α+1)x−α2n2+3α2n−αn+n−4α2+5α−3 = 0.

1. Introduction

Graphs considered in this article are simple and undirected. Let G = (V(G),E(G)) denote a graph, where
V(G) = {v1, v2, · · · , vn} is its vertex set and E(G) is its edge set. The order of G is denoted by |V(G)| = n. A
graph G is called trivial if n = 1. Let i(G) denote the number of isolated vertices in G. For a vertex v in G,
we let dG(v) denote the degree of v in G. For any S ⊆ V(G), we denote by G[S] the subgraph of G induced
by S, and by G− S the subgraph of G induced by V(G) \ S. The complete graph of order n is denoted by Kn.

Let G1 and G2 be two vertex disjoint graphs. We use G1 ∪ G2 to denote the union of G1 and G2. The
join G1 ∨ G2 is the graph formed from G1 ∪ G2 by adding all possible edges between V(G1) and V(G2). For
an integer k ≥ 3, The sequential join G1 ∨ G2 ∨ · · · ∨ Gk of graphs G1,G2, · · · ,Gk is the graph with vertex set
V(G1)∪V(G2)∪· · ·∪V(Gk) and edge set E(G1)∪E(G2)∪· · ·∪E(Gk)∪{e = xixi+1 : xi ∈ V(Gi), xi+1 ∈ V(Gi+1), 1 ≤
i ≤ k − 1}.

Let A(G) be the adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees of G. Let
Q(G) = D(G)+A(G) denote the signless Laplacian matrix of G. For any α ∈ [0, 1), Nikiforov [25] defined the
Aα-matrix of G as

Aα(G) = αD(G) + (1 − α)A(G).

It is clear that A0(G) = A(G) and A 1
2
(G) = 1

2 Q(G). Hence, Aα(G) generalizes both the adjacency matrix and
the signless Laplacian matrix of G. The largest eigenvalues of A(G), Q(G) and Aα(G), denoted by ρ(G),
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q(G) and ρα(G), are called the adjacency spectral radius and the signless Laplacian spectral radius and
Aα-spectral radius of G, respectively. Obviously, ρ0(G) = ρ(G) and ρ 1

2
(G) = 1

2 q(G).

For two integers a and b with 1 ≤ a ≤ b, an [a, b]-factor of G is a spanning subgraph F of G with
a ≤ dF(v) ≤ b for any v ∈ V(G). An [a, b]-factor is a [1, r]-factor if a = 1 and b = r. A [1, r]-factor is a 1-factor
(or a perfect matching) if n is even and r = 1. A spanning tree T of a connected graph G is a subgraph of
G that is a tree covers all vertices of G. For an integer k ≥ 2, a spanning k-tree is a spanning tree with the
maximum degree at most k, a spanning k-ended tree is a spanning tree with at most k leaves. In particular, a
spanning k-tree is also a connected [1, k]-factor and a spanning 2-ended tree is also called a Hamilton path.
Let T be a spanning tree of a connected graph G. The leaf degree of a vertex v ∈ V(T) is defined as the
number of leaves adjacent to v in T. The leaf degree of T is the maximum leaf degree among all the vertices
of T. The leaf distance of T is defined as the minimum of distances between any two leaves of T.

Spanning trees and [a, b]-factors have attracted many researchers’ attention. Some sufficient conditions
for graphs with [1, 2]-factors were obtained by many researchers [1, 5, 6, 9, 11, 18, 19, 21, 22, 32, 36, 38, 43].
Kim, O, Park and Ree [15], Kano and Saito [12], Zhou, Xu and Sun [40] showed some results for the
existence of [1, b]-factors in graphs. Zhou and Liu [33] studied the relationship between the spectral radius
of a connected graph and its odd [1, b]-factors, and claimed a lower bound on the existence of odd [1, b]-
factors via the spectral radius. Many scholars investigated the properties of [a, b]-factors in graphs, and
provided some graphic parameter conditions for graphs having [a, b]-factors [20, 23, 24, 28, 31, 34, 35, 41].
Win [27] established a connection between toughness and the existence of spanning k-trees in a graph. Kyaw
[16] showed a degree and neighborhood condition for the existence of a spanning k-tree in a connected
graph. Fan, Goryainov, Huang and Lin [7] presented a lower bound on the spectral radius of a connected
graph G to ensure that G contains a spanning k-tree. Zhou and Wu [39] showed a distance spectral radius
condition which guarantees the existence of a spanning k-tree in a connected graph. Zhou, Zhang and
Liu [42] studied the connection between the distance signless Laplacian spectral radius and the spanning
k-tree in a connected graph and verified an upper bound on the distance signless Laplacian spectral radius
in a connected graph G to ensure the existence of a spanning k-tree. Broersma and Tuinstra [3] gave a
degree sum condition for a connected graph to have a spanning k-ended tree. Flandrin, Kaiser, Kužel, Li
and Ryjáček [8], Kyaw [17] obtained some results on the existence of spanning k-ended trees in connected
graphs. Ao, Liu and Yuan [2], Wu [29] provided some tight spectral radius conditions for the existence
of a spanning tree with leaf degree at most k in a connected graph. Zhou, Sun and Liu [37] provided
the upper bounds for the distance spectral radius and the distance signless Laplacian spectral radius in a
connected graph G to ensure that G has a spanning tree with leaf degree at most k, respectively. Kaneko
[13] posed a criterion for the existence of a spanning tree with leaf degree at most k in a connected graph
and a conjecture for a connected graph of order n with n ≥ d+1 having a spanning tree with leaf distance at
least d, where d ≥ 3 is an integer. The above conjecture holds for d = 3 [13]. Kaneko, Kano and Suzuki [14]
established a connection between the number of isolated vertices and spanning trees with leaf distance at
least 4 in connected graphs, which implies that the above conjecture is true for d = 4. Chen, Lv, Li and Xu
[4] provided a lower bound on the size of a connected graph G to ensure that G contains a spanning tree
with leaf distance at least 4 and a lower bound on the spectral radius (or the signless Laplacian spectral
radius) of a connected graph G to guarantee the existence of a spanning tree with leaf distance of at least 4.

Motivated by [4, 14, 26] directly, we present an Aα-spectral radius condition for the existence of a
spanning tree with leaf distance at least 4 in a connected graph.

Theorem 1.1. Let α ∈ [0, 1) be a real number, and let G be a connected graph of order n with n ≥ λ(α), where

λ(α) =
{

9, i f 0 ≤ α ≤ 2
3 ;

4
1−α , i f 2

3 < α < 1.

If ρα(G) ≥ γ(n), then G has a spanning tree with leaf distance at least 4, where γ(n) is the largest root of
x3
− (αn + n + α − 3)x2 + (αn2 + α2n − αn − n − 2α + 1)x − α2n2 + 3α2n − αn + n − 4α2 + 5α − 3 = 0.
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2. Some preliminaries

In this section, we present some necessary preliminary lemmas, which are used to prove Theorem 1.1.
Kaneko, Kano and Suzuki [14] established a connection between the number of isolated vertices and a
spanning tree with leaf distance at least 4 in a connected graph.

Lemma 2.1 (Kaneko, Kano and Suzuki [14]). Let G be a connected graph of order n with n ≥ 5. If

i(G − S) < |S|

for any ∅ , S ⊆ V(G), then G contains a spanning tree with leaf distance at least 4.

Lemma 2.2 (Nikiforov [25]). For a complete graph Kn of order n, we possess

ρα(Kn) = n − 1.

Lemma 2.3 (Nikiforov [25]). Let G be a connected graph, and H be a proper subgraph of G. Then

ρα(G) > ρα(H).

Let M be a real symmetric matrix whose rows and columns are indexed by V = {1, 2, · · · ,n}. Assume
that M, with respect to the partition π : V = V1 ∪ V2 ∪ · · · ∪ Vt, can be written as

M =


M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt

 ,
where Mi j denotes the submatrix (block) of M formed by rows in Vi and columns in V j. Let qi j denote the
average row sum of Mi j. Then matrix Mπ = (qi j) is called the quotient matrix of M. If the row sum of every
block Mi j is a constant, then the partition is equitable.

Lemma 2.4 (You, Yang, So and Xi [30]). Let M be a real symmetric matrix with an equitable partition π,
and let Mπ be the corresponding quotient matrix. Then every eigenvalue of Mπ is an eigenvalue of M.
Furthermore, if M is nonnegative, then the largest eigenvalues of M and Mπ are equal.

The subsequent lemma is the well-known Cauchy Interlacing Theorem.

Lemma 2.5 (Haemers [10]). Let M be a Hermitian matrix of order s, and let N be a principal submatrix of
M with order t. If λ1 ≥ λ2 ≥ · · · ≥ λs are the eigenvalues of M and µ1 ≥ µ2 ≥ · · · ≥ µt are the eigenvalues of
N, then λi ≥ µi ≥ λs−t+i for 1 ≤ i ≤ t.

3. The proof of Theorem 1.1

In this section, we shall give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G0 = K1 ∨ (Kn−2 ∪ H), where H = K1. In view of the partition V(G0) = V(H) ∪
V(Kn−2) ∪ V(K1), the quotient matrix of Aα(G0) equals

B0 =

 α 0 1 − α
0 n + α − 3 1 − α

1 − α (1 − α)(n − 2) αn − α

 .
Then the characteristic polynomial of B0 is equal to

fB0 (x) =x3
− (αn + n + α − 3)x2 + (αn2 + α2n − αn − n − 2α + 1)x

− α2n2 + 3α2n − αn + n − 4α2 + 5α − 3.
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According to the condition of Theorem 1.1, γ(n) is the largest root of fB0 (x) = 0. Since the partition
V(G0) = V(H) ∪ V(Kn−2) ∪ V(K1) is equitable, by Lemma 2.4, we have ρα(G0) = γ(n). One checks that
G0 = K1∨ (Kn−2∪K1) contains a spanning tree with leaf distance at least 4. Consequently, Theorem 1.1 holds
for G = G0. In what follows, we assume that G , G0.

Suppose to the contrary that G has no spanning tree with leaf distance at least 4. According to Lemma
2.1, there exists a nonempty subset S ⊆ V(G) satisfying i(G − S) ≥ |S|. Choose a connected graph G of order
n such that its Aα-spectral radius is as large as possible. Together with Lemma 2.3 and the choice of G,
the induced subgraph G[S] and every connected component of G − S are complete graphs, respectively.
Furthermore, G = G[S] ∨ (G − S).

For convenience, let i(G − S) = i and |S| = s. One may see that there exists at most one nontrivial
connected component in G − S. Otherwise, we can add edges among all nontrivial connected components
to obtain a bigger nontrivial connected component. Then Lemma 2.3 deduces a contradiction to the choice
of G. Next, we proceed by considering the two possible cases.

Case 1. G − S has just one nontrivial connected component, say G1.
Let |V(G1)| = n1 ≥ 2. Then G = Ks ∨ (Kn1 ∪ iK1), where n1 = n − s − i ≥ 2. If i ≥ s + 1, then we

construct a new graph H1 obtained from G by joining every vertex of G1 with one unique vertex in iK1
by an edge. Then i(H1 − S) ≥ s and G is a proper spanning subgraph of H1. By virtue of Lemma 2.3,
we conclude ρα(G) < ρα(H1), which is a contradiction to the choice of G. Consequently, i ≤ s. Together
with i ≥ s, we deduce i = s, and so n1 = n − 2s and G = Ks ∨ (Kn−2s ∪ sK1). In terms of the partition
V(G) = V(sK1) ∪ V(Kn−2s) ∪ V(Ks), the quotient matrix of Aα(G) equals

B1 =

 αs 0 (1 − α)s
0 n − (2 − α)s − 1 (1 − α)s

(1 − α)s (1 − α)(n − 2s) αn + (1 − α)s − 1

 .
Then the characteristic polynomial of B1 equals

fB1 (x) =x3
− (αn + n + αs − s − 2)x2

+ (αn2 + α2sn − αn − n − s2
− 2αs + s + 1)x

− α2sn2 + (2α2
− 2α + 1)s2n + (α2 + α)sn

− (3α2
− 5α + 2)s3

− (α2
− α + 1)s2

− αs. (1)

Since the partition V(G) = V(sK1) ∪ V(Kn−2s) ∪ V(Ks) is equitable, according to Lemma 2.4, the largest root,
say γ1, of fB1 (x) = 0 is equal to ρα(G). Let γ1 = ρα(G) ≥ γ2 ≥ γ3 be the three roots of fB1 (x) = 0 and
Q = diag(s,n − 2s, s). By a simple calculation, we possess

Q
1
2 B1Q−

1
2 =


αs 0 (1 − α)s
0 n − (2 − α)s − 1 (1 − α)s

1
2 (n − 2s)

1
2

(1 − α)s (1 − α)s
1
2 (n − 2s)

1
2 αn + (1 − α)s − 1

 .
Obviously, Q

1
2 B1Q−

1
2 is symmetric and also contains(

αs 0
0 n − (2 − α)s − 1

)
as its submatrix. Since Q

1
2 B1Q−

1
2 and B1 possess the same eigenvalues, the Cauchy interlacing theorem (see

Lemma 2.5) yields that

γ2 ≤ n − (2 − α)s − 1 < n − 2 (α ∈ [0, 1) and s ≥ 1). (2)

If s = 1, then G = K1 ∨ (Kn−2 ∪ K1) = G0, which is a contradiction to G , G0. Hence, we have s ≥ 2.
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Notice that Kn−1 is a proper subgraph of K1 ∨ (Kn−2 ∪K1). It follows from Inequality (2), Lemmas 2.2 and
2.3 that

γ(n) = ρα(K1 ∨ (Kn−2 ∪ K1)) > ρα(Kn−1) = n − 2 > γ2. (3)

Let γ = γ(n). Notice that fB0 (γ) = 0. By a direct computation, we obtain

fB1 (γ) = fB1 (γ) − fB0 (γ) = (s − 1)p(γ), (4)

where p(γ) = (1 − α)γ2 + (α2n − 2α − s)γ − α2n2 + (2α2
− 2α + 1)sn + (3α2

− α + 1)n − (3α2
− 5α + 2)s2

− (4α2
−

6α + 3)s − 4α2 + 5α − 3.

Subcase 1.1. 0 ≤ α ≤ 2
3 .

Recall that n = 2s + n1 ≥ 2s + 2. By virtue of Inequality (3.3) and s ≥ 2, we infer

−
α2n − 2α − s

2(1 − α)
< n − 2 < γ,

and so

p(γ) >p(n − 2)

=(1 − α)n2 + (2α2s − 2αs + α2 + α − 3)n − (3α2
− 5α + 2)s2

− (4α2
− 6α + 1)s − 4α2 + 5α + 1

=:l(n, s). (5)

Recall that s ≥ 2 and n ≥ 2s + 2. We deduce

−
2α2s − 2αs + α2 + α − 3

2(1 − α)
< 2s + 2 ≤ n,

and so

l(n, s) ≥l(2s + 2, s)

=(s2 + 2s − 2)α2
− (3s2 + 4s − 3)α + 2s2 + s − 1

≥
4
9

(s2 + 2s − 2) −
2
3

(3s2 + 4s − 3) + 2s2 + s − 1

=
1
9

(4s2
− 7s + 1)

>0, (6)

where the last two inequalities hold from 3s2+4s−3
2(s2+2s−2) >

2
3 ≥ α and s ≥ 2, respectively.

Using (4), (5), (6) and s ≥ 2, we get

fB1 (γ) = (s − 1)p(γ) > (s − 1)l(n, s) > 0.

As γ = γ(n) = ρα(K1 ∨ (Kn−2 ∪ K1)) > n − 2 > γ2 (see (3)), we deduce ρα(G) < γ(n) for 2 ≤ s ≤ n
2 − 1, which

contradicts ρα(G) ≥ γ(n).

Subcase 1.2. 2
3 < α < 1.

According to Equality (1), we get

fB1 (n − 2) =(3α − 2)(1 − α)s3 + (2α2n − 2αn − α2 + α + 1)s2

+ (n2
− αn2

− α2n + 3αn − 3n − α + 2)s

+ αn2
− n2

− 2αn + 3n − 2
=:φ(s,n).
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By a simple computation, we obtain

∂φ(s,n)
∂s

=3(3α − 2)(1 − α)s2 + 2(2α2n − 2αn − α2 + α + 1)s

+ n2
− αn2

− α2n + 3αn − 3n − α + 2.

Notice that 2
3 < α < 1 and n ≥ λ(α) = 4

1−α . By a simple computation, we possess

∂φ(s,n)
∂s

∣∣∣∣
s=2
=(1 − α)n2 + (7α2

− 5α − 3)n − 40α2 + 63α − 18

≥(1 − α)
( 4

1 − α

)2

+ (7α2
− 5α − 3)

( 4
1 − α

)
− 40α2 + 63α − 18

=
1

1 − α
(40α3

− 75α2 + 61α − 14)

>0,

and

∂φ(s,n)
∂s

∣∣∣∣
s= n

2−1
=

1
4

((−α2 + 3α − 2)n2 + (12α2
− 28α + 16)n − 24α2 + 48α − 24)

≤
1
4

(
(−α2 + 3α − 2)

( 4
1 − α

)2

+ (12α2
− 28α + 16)

( 4
1 − α

)
− 24α2 + 48α − 24

)
=

1
4(1 − α)

(24α3
− 24α2

− 24α + 8)

<0.

This yields that fB1 (n − 2) = φ(s,n) ≥ min
{
φ(2,n), φ

(
n
2 − 1,n

)}
, because the highest degree coefficient of

φ(s,n) (view as a cubic polynomial of s) is positive, and 2 ≤ s ≤ n
2 − 1. In light of 2

3 < α < 1 and
n ≥ λ(α) = 4

1−α , we get

φ(2,n) =(1 − α)n2 + (6α2
− 4α − 3)n − 28α2 + 42α − 10

≥(1 − α)
( 4

1 − α

)2

+ (6α2
− 4α − 3)

( 4
1 − α

)
− 28α2 + 42α − 10

=
2

1 − α
(14α3

− 23α2 + 18α − 3)

>0,

and

φ
(n

2
− 1,n

)
=

1
8

((α2
− 3α + 2)n3

− (4α2
− 16α + 14)n2

− (4α2 + 8α − 24)n + 16α2
− 24α − 8)

≥
1
8

((α2
− 3α + 2)

( 4
1 − α

)3

− (4α2
− 16α + 14)

( 4
1 − α

)2

− (4α2 + 8α − 24)
( 4

1 − α

)
+ 16α2

− 24α − 8)

=
1

8(1 − α)2 (16α4
− 40α3 + 8α2 + 56α − 8)

>0.
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Thus, we have fB1 (n − 2) ≥ min
{
φ(2,n), φ

(
n
2 − 1,n

)}
> 0 for 2 ≤ s ≤ n

2 − 1. As γ(n) = ρα(K1 ∨ (Kn−2 ∪ K1)) >
n − 2 > γ2 (see (3)), we infer ρα(G) < n − 2 < γ(n) for 2 ≤ s ≤ n

2 − 1, which is a contradiction to ρα(G) ≥ γ(n).

Case 2. G − S has no nontrivial connected component.
In this case, we have G = Ks∨ iK1. If i ≥ s+2, we can construct a new graph H2 formed from G by adding

an edge in iK1. Then i(H2 − S) ≥ s and H2 − S has exactly one nontrivial connected component. By Case
1, we deduce ρα(G) < γ(n), a contradiction. Hence, we obtain i ≤ s + 1. Together with i ≥ s, we conclude
s ≤ i ≤ s + 1.

Subcase 2.1. i = s.
In this subcase, n = 2s and G = Ks∨sK1. Consider the partition V(G) = V(Ks)∪V(sK1). The corresponding

quotient matrix of Aα(G) is equal to

B2 =

(
αs + s − 1 (1 − α)s
(1 − α)s αs

)
,

whose characteristic polynomial equals

fB2 (x) = x2
− (2αs + s − 1)x + 3αs2

− s2
− αs.

Notice that the partition V(G) = V(Ks)∪V(sK1) is equitable. In terms of Lemma 2.4, ρα(G) is the largest root
of fB2 (x) = 0. By a direct calculation, we obtain

ρα(G) =
2αs + s − 1 +

√
(4α2 − 8α + 5)s2 − 2s + 1

2
.

Claim 1. ρα(G) < 2s − 2.
Proof. Let M1 = (2(2s− 2)− (2αs+ s− 1))2 and N1 = (4α2

− 8α+ 5)s2
− 2s+ 1. By a simple calculation, we get

M1 −N1 = 4(1 − α)s2
− 4(4 − 3α)s + 8.

Write q1(s) = 4(1 − α)s2
− 4(4 − 3α)s + 8. If 0 ≤ α ≤ 2

3 , then n = 2s ≥ λ(α) = 9. Thus, we infer s ≥ 5 and

4(4 − 3α)
8(1 − α)

=
4 − 3α

2(1 − α)
< 5 ≤ s,

and so
q1(s) ≥ q1(5) = 28 − 40α > 0.

If 2
3 < α < 1, then n = 2s ≥ λ(α) = 4

1−α . Thus, we conclude s ≥ 2
1−α and

4(4 − 3α)
8(1 − α)

=
4 − 3α

2(1 − α)
<

2
1 − α

≤ s.

Hence, we obtain

q1(s) ≥ q1

( 2
1 − α

)
=

1
1 − α

(16α − 8) > 0.

From the above discussion, we have q1(s) > 0, which yields M1 > N1, that is,

2s − 2 =
2αs + s − 1 +

√
(2(2s − 2) − (2αs + s − 1))2

2

>
2αs + s − 1 +

√
(4α2 − 8α + 5)s2 − 2s + 1

2
=ρα(G).
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This completes the proof of Claim 1. □
It follows from Inequality (3), n = 2s and Claim 1 that

ρα(G) < 2s − 2 = n − 2 < γ(n),

which contradicts ρα(G) ≥ γ(n).

Subcase 2.2. i = s + 1.
In this subcase, n = 2s + 1 and G = Ks ∨ (s + 1)K1. In terms of the partition V(G) = V(Ks) ∪ V((s + 1)K1),

the quotient matrix of Aα(G) is

B3 =

(
αs + s + α − 1 (1 − α)(s + 1)

(1 − α)s αs

)
.

Then the characteristic polynomial of B3 is

fB3 (x) = x2
− (2αs + s + α − 1)x + (3α − 1)s2 + (α − 1)s.

Since the partition V(G) = V(Ks) ∪ V((s + 1)K1) is equitable, using Lemma 2.4, ρα(G) is the largest root of
fB3 (x) = 0. By a direct computation, we have

ρα(G) =
2αs + s + α − 1 +

√
(4α2 − 8α + 5)s2 + (4α2 − 6α + 2)s + (α − 1)2

2
.

Claim 2. ρα(G) < 2s − 1.
Proof. Let M2 = (2(2s − 1) − (2αs + s + α − 1))2 and N2 = (4α2

− 8α + 5)s2 + (4α2
− 6α + 2)s + (α − 1)2. By a

direct computation, we obtain

M2 −N2 = 4(1 − α)s2
− 4(2 − α)s + 4α.

Set q2(s) = 4(1 − α)s2
− 4(2 − α)s + 4α. If 0 ≤ α ≤ 2

3 , then n = 2s + 1 ≥ λ(α) = 9. Thus, we possess s ≥ 4 and

4(2 − α)
8(1 − α)

=
2 − α

2(1 − α)
< 4 ≤ s,

and so
q2(s) ≥ q2(4) = 32 − 44α > 0.

If 2
3 < α < 1, then n = 2s + 1 ≥ λ(α) = 4

1−α . Therefore, we get s ≥ 2
1−α −

1
2 and

4(2 − α)
8(1 − α)

=
2 − α

2(1 − α)
<

2
1 − α

−
1
2
≤ s.

Thus, we conclude

q2(s) ≥ q2

( 2
1 − α

−
1
2

)
=

1
1 − α

(−α2 + 12α − 3) > 0.

From the above discussion, we deduce q2(s) > 0, which implies M2 > N2, namely,

2s − 1 =
2αs + s + α − 1 +

√
(2(2s − 1) − (2αs + s + α − 1))2

2

>
2αs + s + α − 1 +

√
(4α2 − 8α + 5)s2 + (4α2 − 6α + 2)s + (α − 1)2

2
=ρα(G).

Claim 2 is proved. □
According to (3), n = 2s + 1 and Claim 2, we have

ρα(G) < 2s − 1 = n − 2 < γ(n),

which is a contradiction to ρα(G) ≥ γ(n). This completes the proof of Theorem 1.1. □
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